Chapter 2: First-Order Differential Equations —
Part 2

E LA

Department of Electrical Engineering
National Taiwan University

ihwang@ntu.edu.tw

October 1, 2013

ERM DE Lecture 4


ihwang@ntu.edu.tw

Organization of Lectures in Chapter 2 and 3

We will not follow the order in the textbook. Instead,

mimE
! | Separable |
':L' DE (2-2) | |
| |
! ¢ :
Bl % ! #R14DE | Linear
(2-1) ! (2-3) I \_ Models (3-1)
| |
! ! : !
HELZ® | | ExactDE | Nonlinear
(2-6) ! (2-4) | Models (3-2)
v
| EEEm |
! (2-5) |

x5 DE Lecture 4



Exact Equations

Exact Equations

# DE Lecture 4



Exact Equations

AR REBE BT REGER  RTUKTETF?

ERM DE Lecture 4



Exact Equations

One proposal: reverse engineering — 2B T A% > BRIEE L F 2R

Set up the solution curve: G(z,y) = 0 (can be an implicit solution)
and an initial point (g, yo)-
Compute the differential of G(z, y):

Let %—g = M(z,y) and %—2 = N(z,y). Then, we have a DE:

dy M(z, )
M(z, y)dz+ N(z, )dy = 0 —> =2 = —
(7, y)dr+ N(=, y)dy = 0 y e
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Exact Equations

FRAAEIRE: BB B E M AR SREs

We can get the solution: F(z, y) = ¢, where ¢ = F(xp, o).
Note: the function F(z,y) you get may not be the same as the
designer's choice G(z, y).

Because the designer chose G(z, y) = 0 as his/her solution, while what
you get is F(z,y) = F(zo, y0)-

Nevertheless, G(z,y) = F(z,y) — F(z0, %)

We shall develop a general method of solving this kind of DE based on
the above observation.
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Exact Equations

Exact Differential and Exact Equation

Definition (Exact Equation)

A differential expression M(z, y)dz+ N(z, y)dy is an Exact Differential
if it is the differential of some function z = F(z, y), that is,

dz = M(z, y)dz+ N(z, y)dy.
A first-order DE of the form M(z, y)dz+ N(z, y)dy = 0 is said to be an
Exact Equation if the LHS is an exact differential.
Question: How to check if a differential expression is an exact differential?

sy, O (OF) _ 0O oF
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Exact Equations

Criterion for an Exact Differential

Let M(x,y) and N(z,y) be continuous and have continuous first partial
derivatives. Then,

oM ON
M(z, y)dz+ N(z, y)dy is an exact differential <— — = —
dy Oz
Proof.
“=": Simply because a% (%5 =2 (g—i).

“«<": We just need to construct a function z= F(z, y) such that
dz = M(z, y)dz + N(z, y)dy.

In fact, this is the procedure of solving an exact DE. We will outline the
procedure later.
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Exact Equations

Solving an Exact DE

Solve (€2 — ycos(zy)) dz+ (2z€®Y — zcos(zy) + 2y) dy = 0.

A: Let M(z,y) = €2¥ — ycos(zy) and N(z,y) = 2xe*¥ — zcos(xy) + 2v.
m Check if the DE is exact:

%—M = aﬁ (€Y — ycos(zy)) = 2€*¥ — cos(zy) + zysin(zy)
4 4
ON 0

92 = B2 (2z€?Y — zcos(zy) + 2y) = 2€*Y — cos(zy) + zysin(zy)
x T

m Since M = 7 and we want to find F, why not integrate M with
respect to z?

F(z, y) /{e Y — ycos(zy) } dz+ g(y) = €Yz — sin(zy) + g(y).
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Exact Equations

Solving an Exact DE

Example
Solve (ezy — ycos(:z:y)) dx + (2:)362y — zcos(zy) + 2y) dy = 0.
A: Let M(z,y) = €Y — ycos(zy) and N(x, y) = 22€*¥ — zcos(zy) + 2.

So far we found that F(z,y) = €*x — sin(zy) + g(y) where g(y) is yet to
be determined.

m To find g(y), we use the fact that N = 2 3y

oF 0

il (eriL’* sin(zy) + g(y))

2z¢%Y — zcos(zy) + 2y =
oy 9y

d
= 2z¢*Y — zcos(zy) + ¢ (y) = diggj =2y = g(y) =¥

Hence, F(z,y) = ze*¥ — sin(zy) + ¢?, and the implicit solution is
2 sin(xy) + 9* = c
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Exact Equations

Solving an Exact DE M(x, y)dz+ N(z, y)dy = 0

Goal: Find z = F(x, y) such that dz= M(z, y)dz+ N(z, y)dy = 0.

General Procedure of Solving an DE

Transform DE into the differential form: M(x, y)dz+ N(z, y)dy = 0.
oM o ON
dy  Ox
Integrate M with respect to = (or /N with respect to y):
F(z,y) = /Md:v—i— 9(y) (or F(z,y) = / Ndy + h(z))

Verify if it is exact:

Take partial derivative with respect to y (or

)
oF oF 0 )
M + —_— = — Ndy | + h'(z) = M(z,
By 6y (/ dx) g(y) = Nz Ox oz ( . U) & (2,9)

= g(y) /(N— —/Mdm) = h(z) :/ (\17 i \(/z/) dz
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Exact Equations

Nonexact DE Made Exact

dy

20 2y 3z

Solve = = — — = — — , y(1) =-1
r  xy T Y
A:
@_@_27@/_?&_20—2112—312
de  zy y xy
M(z,y) N(z,y)

— =
= (327 +29* —20) dz+ (zy) dy=0

Check if this equation is exact: G} =4y # Gl = y.

Can we make it exact, by multiplying both M and N with some pu(z, y)?
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Exact Equations

Nonexact DE Made Exact

M(z,y) N(z,y)
20 2 3z AT i S—

2 ‘
= (372 +2¢* —20)dz+ (zy) dy=0
r oy Ty

Goal: find p(z, y) such that a(“M) = %. Let p, = %, fhy = 2

%,
a(g;/”) = M+ My = (322 + 292 — 20)p1, + 4y

5(5?) = paN+ Nopt = () 1z + ypo

8(/5;4) = %L;V) = (3% 4 297 — 20)puy + 4y = (zy) s + ypu

This is a PDE?! How to solve it?
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Exact Equations

Nonexact DE Made Exact

M(z,y) N(z,y)
d 20 2 3 — e =
Solve ¥ -2 _2Y 9% (327 4 29% — 20) dz+ (zy) dy=0
dr  zy x Y

Focus on finding a function p(z, y) such that

(32% + 2¢% — 20) 1y, + 4yp = (wy) o + yp

Let's make some restriction: how about finding  that only depends on z?

‘;‘; _ 3?“ — u=4a" (works)

d,
dyp = (TY)pa + yu = xyd% =3y =

How about finding u that only depends on y?

du 3y .
32% + 23 — 20 dyp = T till hard!
(32 + 2y Iy + dyp = yp = ay 32 1 2,7 — 20" (still hard!)
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Exact Equations

Nonexact DE Made Exact

M(z,y) ]~V'(z,y)
d 20 2 3 AN
Solve & == 2Y 2T 23322 + 217 — 20) dz+ (2ty) dy =10
dr  zy «x Y

Finally we multiply both M(z, y) and N(z,y) with u(z) = 2% (see above).

We then solve it by the procedures discussed before:

N= 6—FzFx,y /Ncly—f‘l2 h(z)
dy

~  OF 0 (1 44 dh 3 o dh

M= 27 —20) = — (= o9 =
6x:>$(3x+y 0) Bx(sz)—’—dx xy_'_dx
dh_ 5 3 _16 4

B dz—?)x 200 = h(x)_2x 5%

= F(z,y) = %z4y2 + %z6 — 54"
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Exact Equations

Nonexact DE Made Exact

d

20 2y 3z

We arrive at an implicit solution: F(z,y) = 12*y? + 12 — 52% = ¢.
Plug in the initial condition, we get %a:4y2 + %xﬁ — bt =c=—4.
To get an explicit solution, we see that

1 1

3 4y2+§x6—5$4:—4 — P =10—2* -8z~

= y=+v10— 12 — 8z~4
= y=—V10—22 —8z*

Exercise. Find an interval of definition for the above solution.
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Exact Equations

Nonexact DE M(z, y)dx + N(z,y)dy = 0 Made Exact

Nonexact DE: M, — N, := A(z,y) #0

Key Idea 1: Introduce a function u(z,y) (integrating factor) to ensure

Aud) = ) = pryM+ pMy = pa N+ pNy
dy Jr

However in general this is a PDE which may be hard to solve.

Key Idea 2: Restrict u(z,y) to be pu(x) or u(y).

Plan A: pu(z,y) = p(z) = py =0 = puMy = pN+ pN,
du My, — N, A

de N H= Nﬂ
Plan B: p(z,y) = pu(y) = pa=0 = pyM+ puMy = pN,
du  Np— M, A
= =
dy M M
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Exact Equations

Nonexact DE M(z, y)dx + N(z,y)dy = 0 Made Exact

Nonexact DE: M, — N, := A(z,y) # 0

. _ dp A
Plan A: p(z,y) = p(z) = —- =
Plan B: pu(z,y) = p(y) = % = —A%/i

Key Idea 3: Which plan should we choose? Choose it based on A(z, y):

A A

mIf N only depends on z, then % = N,u is separable. Plan Al
A d A

m If U only depends on y, then d—z =-—y" is separable. Plan B!
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Solutions by Substitutions

Exact Equations

Solutions by Substitutions

Summary
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. L ous Equations
Solutions by Substitutions us tquation

Hol
Be Equation

SR HBELH— AR AR BT ARG T F 7

One proposal: reverse engineering —

ABTHEL > BREDETEX

Another proposal: substitution of variables —

ABETFTHEN TR > Bl ey o8 g RIER 2,y 9 H

d
Write down a simple DE: d—z = flu, x).
Replace u by G(z, y):

G 0G  0Gd
%:f@(@y)w) = %ty dz F(G(z,y), 7)
Y\
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Solutions by Substitutions

MRAAERE  BFERFTREAAS u i s FREK -

dy  f(G(x,9), ) — Gu(z,y) du
dr Gy(z,y) T

fu, z)

Key: setting u:= G(z,y). 12 > BB EEH G FFF H#E
We can only “guess” based on inspection and experience.

In this lecture we cover 3 classes of DE where we know how to pick G:
dy

=

m Homogeneous Equations

f(Az+ By+ C) and some other special equations

m Bernoulli’s Equation
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Solutions by Substitutions

Solve % = f(Az+ By + C)

Obviously, we shall set u:= Ax+ By+ C. We have:

u=Az+ By+ C = @:A—FB@:A—l—Bf(u).
dx dx

The new DE is easy to solve by separation of variables, since

du

is separable.
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Solutions by Substitutions

Example

dy 9
lve —2 = (—2 — = 0.
Solve e (—2z4+y)* =7, 90)=0

du dy 9
A: — 9 M oY —9=(u— .
Set u z+y = 7 + i 9= (u—3)(u+3)

We solve u as follows:
du 1
— =d +3 = ——— | du=
(u—3)(u+3) T uf / (u— u+3) vt
1
= Eln|u—3|—éln\u+3|:x+c.

Plug in the initial condition y(0) =0 = u(0) =0, we get ¢ =0 and

3—u 1 — 5% P

= = u=3— - = y—2x—|—31+ =

3+u 14 b=
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Homogeneous Equations

Solutions by Substitutions Bernoulli's Equation

Exact Equations

Solutions by Substitutions
m Homogeneous Equations

Summary
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Homogeneous Equations

Solutions by Substitutions Bemoniine Equation

Homogeneous Functions

Definition (Homogeneous Function)

A function f(z, y) is homogeneous of degree « if for all z, y,

f(tx, ty) = t“f(z, y) for some «.

Example (Determine if a function is homogeneous and its degree )

flz,y) =2 + 2 + o fltz, ty) = £2f(z, v) Yes, a = 3.
flo,y) =22 + 2 + 22 flto, ty) = (22 + 4°) + £24° No.

Az, y) = NZ f(tz, ty) = £ f(x, y) Yes, a = 2.5.
flw,y) = etV ftz, ty) = €'flz, y) No.

flz,y) = (a+ vaEge®  fita, ty) = tf(z,y) Yes, a = 1.
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Homogeneous Equations

Solutions by Substitutions Bernoulli's Equation

Homogeneous Functions

Definition (Homogeneous Function)

A function f(z, y) is homogeneous of degree « if for all z, y,

f(tx, ty) = t“f(z, y) for some «.

Lemma

If a function f(z,y) is homogeneous of degree «, then

f(CE, y) = xaf(lv y/x) = yaf(‘r/yv 1)'

Proof. The first equality is proved by setting ¢ = 1/x and hence

[, y/z) = (1/2)*f(z,y) = fa,y) = 2*f(1,y/). The second equality
is proved similarly by setting t = 1/y.
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Homogeneous Equations

Solutions by Substitutions A
Y Bernoulli's Equation

Homogeneous Equations

Definition (Homogeneous Equation)

Consider a DE in the differential form: M(z, y)dz+ N(z, y)dy = 0.
If both M and N are homogeneous of the same degree «, we called this
DE homogeneous.

From the previous Lemma, we get

M(z,y) = 2* M(1, y/ ) N(z,y) = 2°N(1, y/2)
= y* M(z/y,1) = y*N(z/y, 1)

Hence, M(z, y)dx+ N(z,y)dy = 0 implies
M1, y/z)de+ N(1,y/z)dy = M(z/y,1)dx+ N(z/y,1)dy = 0.

A natural substitution: Set u:= y/z or v:= z/y.
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Solutions by Substtutions | HomoBencous Equations

Solving a Homogeneous Equation

To solve a homogeneous equation M(z, y)dz+ N(z, y)dy = 0, first we set
u:= y/z and we get

M(z, y)dz + N(z,y)dy =0 M(1,y/x)dv+ N(1,y/z)dy =0
M1, w)dx+ N(1,u)dy =0

o
—

dy —M(1
Y M1,y
=

#R dr — N(1,u)
du o —M(1, u)
D=t Tar T TN W)
N du 1 N M(1, u)
3 —=——3u
#2A dz x N(1, u)

This new equation is separable and hence easy to solve.

Note: we can also begin with setting v := x/y, depending on which will
lead to a simpler from.
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Homogeneous Equatlons

Solutions by Substitutions Bernoulli's Equ

Example

Example
Solve (2% + y?)dz + (2% — ay)dy =0, y(1) =0

A: Note that this equation is not exact, A = My — N, = y — 2z, and
hence both A and & o Will depend on x and y. 2- 4 technique won't work!

Instead, we see that this equation is homogeneous. Hence we set
u:= y/m, i.e., y= uz, and get

(14 v?)dr+ 2*(1 — w)d(uz) = 0
d(uz)=udat+zdu = (1+ u?)dz + (1 — u)(udz + zdu) = 0
dr 1—wu

= (1+wdz+ (1 - wzdu=0 = ——i— du
14+ u
w(D)=y(1)/1=0 = In|a] —u+2In[l+u=c=0
1 2
WZl - 12+y2:3;e%
e xr
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Solutions by Substitutions B "
7 ernoulli’s Equation

Exact Equations

Solutions by Substitutions

m Bernoulli's Equation

Summary
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Hom

ot B ome ons
Solutions by Substitutions Bemanlive Equation

Bernoulli's Equation

Definition (Bernoulli's Equation)

d
The DE EZ + P(z)y = f(z)y" where r € R is any real number.

For =0, 1, the equation is linear.

For r# 0, 1, we shall use the substitution u:= y'~" to make it linear:

dy _ 1,55 du
. dr — 1-r dzl
u=y"" = y=utr = { Pa)y=Pz)ui
fa)y" = fla)ur
dy 1 - du 1 ,
_7 P — T 9y1—r P T — T—7
W Pay= Y = s ® P = oy
d«
= dl +(1—P@)u=(1—nfz)|: Linearl
z
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Solutions by Substitutions

Example

Solve xﬂ/ +y=2y y(1) =1
dz

d
A: Rewrite the equation into d—y + L x> = Bernoulli, r= 2.

r x
Hence, we set u =y~ " = 1/y: (y #0)

dy  d(u!) _tde o lde 1@ fdu o
de  dxr u?dx wdr  ux 2 dz B

Solve u (exercise!) and we get u = 2z — 12,

1
== |y= 5, 0<z<2.

2r— x
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Solutions by Substitutions

Alternative Substitution

dy

Example

lve z— + y = 2242, y(1) =1
Sove:z;dx—l—y y=, y(1)

There is actually a much simpler approach, if you find a better
substitution!

Can you find it? (exercise!)

ERM DE Lecture 4



Summary

Summary
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Summary

Short Recap

m Exact differential and exact equation

m Nonexact equation made exact: integrating factor

Substitution of variables — simplify your equation
m ¥ = f(Az+ By+ C)
m Homogeneous equations

m Bernoulli's equation
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Summary

Self-Practice Exercises

2-4: 1, 7,9, 11, 13, 15, 17, 27, 33, 35, 39

2-5:1,7,9, 13, 17, 19, 21, 25, 27, 35
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