Chapter 2：First－Order Differential Equations－ Part 2

王奕翔

Department of Electrical Engineering
National Taiwan University
ihwang＠ntu．edu．tw

October 1， 2013

Organization of Lectures in Chapter 2 and 3

We will not follow the order in the textbook．Instead，

1 Exact Equations

2 Solutions by Substitutions

－Homogeneous Equations
－Bernoulli＇s Equation

3 Summary

今天，我要出一道微分方程的考題，我可以從哪邊下手？

One proposal：reverse engineering－先寫下解答，再反推回去方程式
1 Set up the solution curve：$G(x, y)=0$（can be an implicit solution） and an initial point（ x_{0}, y_{0} ）．
$\boxed{2}$ Compute the differential of $G(x, y)$ ：

$$
d(G(x, y))=\frac{\partial G}{\partial x} d x+\frac{\partial G}{\partial y} d y
$$

3 Since $G(x, y)=0$ ，we have

$$
0=d(G(x, y))=\frac{\partial G}{\partial x} d x+\frac{\partial G}{\partial y} d y
$$

4 Let $\frac{\partial G}{\partial x}=M(x, y)$ and $\frac{\partial G}{\partial y}=N(x, y)$ ．Then，we have a DE：

$$
M(x, y) d x+N(x, y) d y=0 \Longrightarrow \frac{d y}{d x}=-\frac{M(x, y)}{N(x, y)}
$$

解題者觀點：看到一個一階常微分方程，若能將其化為

$$
\frac{\partial F}{\partial x} d x+\frac{\partial F}{\partial y} d y=0
$$

We can get the solution：$F(x, y)=c$ ，where $c=F\left(x_{0}, y_{0}\right)$ ．
Note：the function $F(x, y)$ you get may not be the same as the designer＇s choice $G(x, y)$ ．

Because the designer chose $G(x, y)=0$ as his／her solution，while what you get is $F(x, y)=F\left(x_{0}, y_{0}\right)$ ．

Nevertheless，$G(x, y)=F(x, y)-F\left(x_{0}, y_{0}\right)$ ．
We shall develop a general method of solving this kind of DE based on the above observation．

Exact Differential and Exact Equation

Definition（Exact Equation）

A differential expression $M(x, y) d x+N(x, y) d y$ is an Exact Differential if it is the differential of some function $z=F(x, y)$ ，that is，

$$
d z=M(x, y) d x+N(x, y) d y
$$

A first－order DE of the form $M(x, y) d x+N(x, y) d y=0$ is said to be an Exact Equation if the LHS is an exact differential．

Question：How to check if a differential expression is an exact differential？ Hint：$\frac{\partial}{\partial y}\left(\frac{\partial F}{\partial x}\right)=\frac{\partial}{\partial x}\left(\frac{\partial F}{\partial y}\right)$ ．

Criterion for an Exact Differential

Theorem

Let $M(x, y)$ and $N(x, y)$ be continuous and have continuous first partial derivatives．Then，

$$
M(x, y) d x+N(x, y) d y \text { is an exact differential } \Longleftrightarrow \frac{\partial M}{\partial y}=\frac{\partial N}{\partial x}
$$

Proof．

$" \Rightarrow "$ ：Simply because $\frac{\partial}{\partial y}\left(\frac{\partial F}{\partial x}\right)=\frac{\partial}{\partial x}\left(\frac{\partial F}{\partial y}\right)$ ．
$" \Leftarrow$＂：We just need to construct a function $z=F(x, y)$ such that

$$
d z=M(x, y) d x+N(x, y) d y
$$

In fact，this is the procedure of solving an exact DE．We will outline the procedure later．

Solving an Exact DE

Example

Solve $\left(e^{2 y}-y \cos (x y)\right) d x+\left(2 x e^{2 y}-x \cos (x y)+2 y\right) d y=0$ ．
A：Let $M(x, y)=e^{2 y}-y \cos (x y)$ and $N(x, y)=2 x e^{2 y}-x \cos (x y)+2 y$ ．
■ Check if the DE is exact：

$$
\begin{aligned}
& \frac{\partial M}{\partial y}=\frac{\partial}{\partial y}\left(e^{2 y}-y \cos (x y)\right)=2 e^{2 y}-\cos (x y)+x y \sin (x y) \\
& \frac{\partial N}{\partial x}=\frac{\partial}{\partial x}\left(2 x e^{2 y}-x \cos (x y)+2 y\right)=2 e^{2 y}-\cos (x y)+x y \sin (x y)
\end{aligned}
$$

■ Since $M=\frac{\partial F}{\partial x}$ and we want to find F ，why not integrate M with respect to x ？

$$
F(x, y)=\int\left\{e^{2 y}-y \cos (x y)\right\} d x+g(y)=e^{2 y} x-\sin (x y)+g(y)
$$

Solving an Exact DE

Example

Solve $\left(e^{2 y}-y \cos (x y)\right) d x+\left(2 x e^{2 y}-x \cos (x y)+2 y\right) d y=0$ ．
A：Let $M(x, y)=e^{2 y}-y \cos (x y)$ and $N(x, y)=2 x e^{2 y}-x \cos (x y)+2 y$ ． So far we found that $F(x, y)=e^{2 y} x-\sin (x y)+g(y)$ where $g(y)$ is yet to be determined．
－To find $g(y)$ ，we use the fact that $N=\frac{\partial F}{\partial y}$ ：

$$
\begin{aligned}
& 2 x e^{2 y}-x \cos (x y)+2 y=\frac{\partial F}{\partial y}=\frac{\partial}{\partial y}\left(e^{2 y} x-\sin (x y)+g(y)\right) \\
& =2 x e^{2 y}-x \cos (x y)+g^{\prime}(y) \Longrightarrow \frac{d g}{d y}=2 y \Longrightarrow g(y)=y^{2}
\end{aligned}
$$

Hence，$F(x, y)=x e^{2 y}-\sin (x y)+y^{2}$ ，and the implicit solution is

$$
x e^{2 y}-\sin (x y)+y^{2}=c .
$$

Solving an Exact DE $M(x, y) d x+N(x, y) d y=0$

Goal：Find $z=F(x, y)$ such that $d z=M(x, y) d x+N(x, y) d y=0$ ．

General Procedure of Solving an DE

1 Transform DE into the differential form：$M(x, y) d x+N(x, y) d y=0$ ．
2．Verify if it is exact：$\frac{\partial M}{\partial y} \stackrel{?}{=} \frac{\partial N}{\partial x}$
3 Integrate M with respect to x（or N with respect to y ）：

$$
F(x, y)=\int M d x+g(y)\left(\text { or } F(x, y)=\int N d y+h(x)\right)
$$

4 Take partial derivative with respect to y（or x ）：

$$
\begin{array}{cl}
\frac{\partial F}{\partial y}=\frac{\partial}{\partial y}\left(\int M d x\right)+g^{\prime}(y)=N(x, y) & \frac{\partial F}{\partial x}=\frac{\partial}{\partial x}\left(\int N d y\right)+h^{\prime}(x)=M(x, y) \\
\Longrightarrow g(y)=\int\left(N-\frac{\partial}{\partial y} \int M d x\right) d y & \Longrightarrow h(x)=\int\left(M-\frac{\partial}{\partial x} \int N d y\right) d x
\end{array}
$$

Nonexact DE Made Exact

Example

Solve $\frac{d y}{d x}=\frac{20}{x y}-\frac{2 y}{x}-\frac{3 x}{y}, y(1)=-1$
A：

$$
\begin{aligned}
\frac{d y}{d x} & =\frac{20}{x y}-\frac{2 y}{x}-\frac{3 x}{y}=\frac{20-2 y^{2}-3 x^{2}}{x y} \\
& \Longrightarrow \overbrace{\left(3 x^{2}+2 y^{2}-20\right)}^{M(x, y)} d x+\overbrace{(x y)}^{N(x, y)} d y=0
\end{aligned}
$$

Check if this equation is exact：$\frac{\partial M}{\partial y}=4 y \neq \frac{\partial N}{\partial x}=y$ ．
Can we make it exact，by multiplying both M and N with some $\mu(x, y)$ ？

Nonexact DE Made Exact

Example

Solve $\frac{d y}{d x}=\frac{20}{x y}-\frac{2 y}{x}-\frac{3 x}{y} \Longrightarrow \overbrace{\left(3 x^{2}+2 y^{2}-20\right)}^{M(x, y)} d x+\overbrace{(x y)}^{N(x, y)} d y=0$
Goal：find $\mu(x, y)$ such that $\frac{\partial(\mu M)}{\partial y}=\frac{\partial(\mu N)}{\partial x}$ ．Let $\mu_{x}:=\frac{\partial \mu}{\partial x}, \mu_{y}:=\frac{\partial \mu}{\partial y}$ ．

$$
\begin{aligned}
& \frac{\partial(\mu M)}{\partial y}=\mu_{y} M+M_{y} \mu=\left(3 x^{2}+2 y^{2}-20\right) \mu_{y}+4 y \mu \\
& \frac{\partial(\mu N)}{\partial x}=\mu_{x} N+N_{x} \mu=(x y) \mu_{x}+y \mu \\
& \frac{\partial(\mu M)}{\partial y}=\frac{\partial(\mu N)}{\partial x} \Longleftrightarrow\left(3 x^{2}+2 y^{2}-20\right) \mu_{y}+4 y \mu=(x y) \mu_{x}+y \mu
\end{aligned}
$$

This is a PDE？！How to solve it？

Nonexact DE Made Exact

Example

Solve $\frac{d y}{d x}=\frac{20}{x y}-\frac{2 y}{x}-\frac{3 x}{y} \Longrightarrow \overbrace{\left(3 x^{2}+2 y^{2}-20\right)}^{M(x, y)} d x+\overbrace{(x y)}^{N(x, y)} d y=0$
Focus on finding a function $\mu(x, y)$ such that

$$
\left(3 x^{2}+2 y^{2}-20\right) \mu_{y}+4 y \mu=(x y) \mu_{x}+y \mu
$$

Let＇s make some restriction：how about finding μ that only depends on x ？

$$
4 y \mu=(x y) \mu_{x}+y \mu \Longrightarrow x y \frac{d \mu}{d x}=3 y \mu \Longrightarrow \frac{d \mu}{d x}=\frac{3 \mu}{x} \Longrightarrow \mu=x^{3} \quad \text { (works!) }
$$

How about finding μ that only depends on y ？

$$
\left(3 x^{2}+2 y^{2}-20\right) \mu_{y}+4 y \mu=y \mu \Longrightarrow \frac{d \mu}{d y}=-\frac{3 y}{3 x^{2}+2 y^{2}-20} \mu \quad \text { (still hard!) }
$$

Nonexact DE Made Exact

Example

Solve $\frac{d y}{d x}=\frac{20}{x y}-\frac{2 y}{x}-\frac{3 x}{y} \Longrightarrow \overbrace{x^{3}\left(3 x^{2}+2 y^{2}-20\right)}^{\widetilde{M}(x, y)} d x+\overbrace{\left(x^{4} y\right)}^{\widetilde{N}(x, y)} d y=0$
Finally we multiply both $M(x, y)$ and $N(x, y)$ with $\mu(x)=x^{3}$（see above）．
We then solve it by the procedures discussed before：

$$
\begin{aligned}
\widetilde{N} & =\frac{\partial F}{\partial y} \Longrightarrow F(x, y)=\int \widetilde{N} d y=\frac{1}{2} x^{4} y^{2}+h(x) \\
\widetilde{M} & =\frac{\partial F}{\partial x} \Longrightarrow x^{3}\left(3 x^{2}+2 y^{2}-20\right)=\frac{\partial}{\partial x}\left(\frac{1}{2} x^{4} y^{2}\right)+\frac{d h}{d x}=2 x^{3} y^{2}+\frac{d h}{d x} \\
& \Longrightarrow \frac{d h}{d x}=3 x^{5}-20 x^{3} \Longrightarrow h(x)=\frac{1}{2} x^{6}-5 x^{4} \\
& \Longrightarrow F(x, y)=\frac{1}{2} x^{4} y^{2}+\frac{1}{2} x^{6}-5 x^{4}
\end{aligned}
$$

Nonexact DE Made Exact

Example

Solve $\frac{d y}{d x}=\frac{20}{x y}-\frac{2 y}{x}-\frac{3 x}{y}, y(1)=-1$
We arrive at an implicit solution：$F(x, y)=\frac{1}{2} x^{4} y^{2}+\frac{1}{2} x^{6}-5 x^{4}=c$ ．
Plug in the initial condition，we get $\frac{1}{2} x^{4} y^{2}+\frac{1}{2} x^{6}-5 x^{4}=c=-4$ ．
To get an explicit solution，we see that

$$
\begin{aligned}
\frac{1}{2} x^{4} y^{2}+\frac{1}{2} x^{6}-5 x^{4}=-4 & \Longrightarrow y^{2}=10-x^{2}-8 x^{-4} \\
& \Longrightarrow y= \pm \sqrt{10-x^{2}-8 x^{-4}} \\
& \Longrightarrow y=-\sqrt{10-x^{2}-8 x^{-4}}
\end{aligned}
$$

Exercise．Find an interval of definition for the above solution．

Nonexact DE $M(x, y) d x+N(x, y) d y=0$ Made Exact

Nonexact DE：$M_{y}-N_{x}:=\Delta(x, y) \neq 0$
Key Idea 1：Introduce a function $\mu(x, y)$（integrating factor）to ensure

$$
\frac{\partial(\mu M)}{\partial y}=\frac{\partial(\mu N)}{\partial x} \Longleftrightarrow \mu_{y} M+\mu M_{y}=\mu_{x} N+\mu N_{x}
$$

However in general this is a PDE which may be hard to solve．
Key Idea 2：Restrict $\mu(x, y)$ to be $\mu(x)$ or $\mu(y)$ ．

$$
\begin{aligned}
\text { Plan A: } \mu(x, y)=\mu(x) & \Longrightarrow \mu_{y}=0 \Longrightarrow \mu M_{y}=\mu_{x} N+\mu N_{x} \\
& \Longrightarrow \frac{d \mu}{d x}=\frac{M_{y}-N_{x}}{N} \mu=\frac{\Delta}{N} \mu \\
\text { Plan B: } \mu(x, y)=\mu(y) & \Longrightarrow \mu_{x}=0 \Longrightarrow \mu_{y} M+\mu M_{y}=\mu N_{x} \\
& \Longrightarrow \frac{d \mu}{d y}=\frac{N_{x}-M_{y}}{M} \mu=-\frac{\Delta}{M} \mu
\end{aligned}
$$

Nonexact DE $M(x, y) d x+N(x, y) d y=0$ Made Exact

Nonexact DE：$M_{y}-N_{x}:=\Delta(x, y) \neq 0$

$$
\begin{aligned}
& \text { Plan A: } \mu(x, y)=\mu(x) \Longrightarrow \frac{d \mu}{d x}=\frac{\Delta}{N} \mu \\
& \text { Plan B: } \mu(x, y)=\mu(y) \Longrightarrow \frac{d \mu}{d y}=-\frac{\Delta}{M} \mu
\end{aligned}
$$

Key Idea 3：Which plan should we choose？Choose it based on $\Delta(x, y)$ ：
－If $\frac{\Delta}{N}$ only depends on x ，then $\frac{d \mu}{d x}=\frac{\Delta}{N} \mu$ is separable．Plan A！
－If $\frac{\Delta}{M}$ only depends on y ，then $\frac{d \mu}{d y}=-\frac{\Delta}{N} \mu$ is separable．Plan B！

1 Exact Equations

2 Solutions by Substitutions
－Homogeneous Equations
－Bernoulli＇s Equation

3 Summary

今天，我要出一道微分方程的考題，我可以從哪邊下手？
One proposal：reverse engineering－先寫下解答，再反推回去方程式

Another proposal：substitution of variables－先寫下簡單的方程式，再把其中的 x 與 y 代換成 x, y 的函數

1 Write down a simple DE：$\frac{d u}{d x}=f(u, x)$ ．
2 Replace u by $G(x, y)$ ：

$$
\frac{d(G(x, y))}{d x}=f(G(x, y), x) \Longrightarrow \frac{\partial G}{\partial x}+\frac{\partial G}{\partial y} \frac{d y}{d x}=f(G(x, y), x)
$$

3 We get a new DE：$\frac{d y}{d x}=\frac{f(G(x, y), x)-G_{x}(x, y)}{G_{y}(x, y)}$ ．

解題者觀點：將上述方程式化為 u 和 x 的方程式－

$$
\frac{d y}{d x}=\frac{f(G(x, y), x)-G_{x}(x, y)}{G_{y}(x, y)} \Longrightarrow \frac{d u}{d x}=f(u, x)
$$

Key：setting $u:=G(x, y)$ ．但，要找到合適的 G ，非常困難！
We can only＂guess＂based on inspection and experience．

In this lecture we cover 3 classes of DE where we know how to pick G ：
■ $\frac{d y}{d x}=f(A x+B y+C)$ and some other special equations
－Homogeneous Equations
－Bernoulli＇s Equation

Solve $\frac{d y}{d x}=f(A x+B y+C)$

Obviously，we shall set $u:=A x+B y+C$ ．We have：

$$
u=A x+B y+C \Longrightarrow \frac{d u}{d x}=A+B \frac{d y}{d x}=A+B f(u) .
$$

The new DE is easy to solve by separation of variables，since

$$
\frac{d u}{d x}=A+B f(u)
$$

is separable．

Example

Example

Solve $\frac{d y}{d x}=(-2 x+y)^{2}-7, y(0)=0$ ．
A：Set $u=-2 x+y \Longrightarrow \frac{d u}{d x}=-2+\frac{d y}{d x}=u^{2}-9=(u-3)(u+3)$ ．
We solve u as follows：

$$
\begin{aligned}
& \frac{d u}{(u-3)(u+3)}=d x, u \neq \pm 3 \Longrightarrow \int \frac{1}{6}\left(\frac{1}{u-3}-\frac{1}{u+3}\right) d u=x+c \\
& \Longrightarrow \frac{1}{6} \ln |u-3|-\frac{1}{6} \ln |u+3|=x+c
\end{aligned}
$$

Plug in the initial condition $y(0)=0 \Longrightarrow u(0)=0$ ，we get $c=0$ and

$$
\frac{3-u}{3+u}=e^{6 x} \Longrightarrow u=3 \frac{1-e^{6 x}}{1+e^{6 x}} \Longrightarrow y=2 x+3 \frac{1-e^{6 x}}{1+e^{6 x}}
$$

1 Exact Equations

2 Solutions by Substitutions
■ Homogeneous Equations
－Bernoulli＇s Equation

3 Summary

Homogeneous Functions

Definition（Homogeneous Function）

A function $f(x, y)$ is homogeneous of degree α if for all x, y ，

$$
f(t x, t y)=t^{\alpha} f(x, y) \text { for some } \alpha
$$

Example（Determine if a function is homogeneous and its degree α ）

$$
\begin{array}{lll}
f(x, y)=x^{3}+y^{3}+x y^{2} & f(t x, t y)=t^{3} f(x, y) & \text { Yes, } \alpha=3 . \\
f(x, y)=x^{3}+y^{3}+x^{2} & f(t x, t y)=t^{3}\left(x^{3}+y^{3}\right)+t^{2} x^{2} & \text { No. } \\
f(x, y)=\sqrt{x^{5}+x^{2} y^{3}} & f(t x, t y)=t^{2.5} f(x, y) & \text { Yes, } \alpha=2.5 . \\
f(x, y)=e^{x+y} & f(t x, t y)=e^{t} f(x, y) & \text { No. } \\
f(x, y)=(x+\sqrt{x y}) e^{\frac{2 y}{x}} & f(t x, t y)=t f(x, y) & \text { Yes, } \alpha=1 .
\end{array}
$$

Homogeneous Functions

Definition（Homogeneous Function）

A function $f(x, y)$ is homogeneous of degree α if for all x, y ，

$$
f(t x, t y)=t^{\alpha} f(x, y) \text { for some } \alpha
$$

Lemma

If a function $f(x, y)$ is homogeneous of degree α ，then

$$
f(x, y)=x^{\alpha} f(1, y / x)=y^{\alpha} f(x / y, 1) .
$$

Proof．The first equality is proved by setting $t=1 / x$ and hence $f(1, y / x)=(1 / x)^{\alpha} f(x, y) \Longrightarrow f(x, y)=x^{\alpha} f(1, y / x)$ ．The second equality is proved similarly by setting $t=1 / y$ ．

Homogeneous Equations

Definition（Homogeneous Equation）

Consider a DE in the differential form：$M(x, y) d x+N(x, y) d y=0$ ． If both M and N are homogeneous of the same degree α ，we called this DE homogeneous．

From the previous Lemma，we get

$$
\begin{aligned}
M(x, y) & =x^{\alpha} M(1, y / x) & N(x, y) & =x^{\alpha} N(1, y / x) \\
& =y^{\alpha} M(x / y, 1) & & =y^{\alpha} N(x / y, 1)
\end{aligned}
$$

Hence，$M(x, y) d x+N(x, y) d y=0$ implies

$$
M(1, y / x) d x+N(1, y / x) d y=M(x / y, 1) d x+N(x / y, 1) d y=0
$$

A natural substitution：Set $u:=y / x$ or $v:=x / y$ ．

Solving a Homogeneous Equation

To solve a homogeneous equation $M(x, y) d x+N(x, y) d y=0$ ，first we set $u:=y / x$ and we get

$$
\begin{aligned}
M(x, y) d x+N(x, y) d y=0 & \Longrightarrow M(1, y / x) d x+N(1, y / x) d y=0 \\
& \Longrightarrow M(1, u) d x+N(1, u) d y=0 \\
\text { 移項 } & \Longrightarrow \frac{d y}{d x}=\frac{-M(1, u)}{N(1, u)} \\
& \Longrightarrow x \frac{d u}{d x}+u=\frac{-M(1, u)}{N(1, u)} \\
\frac{d y}{d x}=\frac{d(u x)}{d x}=x \frac{d u}{d x}+u & \Longrightarrow \frac{d u}{d x}=-\frac{1}{x}\left\{u+\frac{M(1, u)}{N(1, u)}\right\}
\end{aligned}
$$

This new equation is separable and hence easy to solve．
Note：we can also begin with setting $v:=x / y$ ，depending on which will lead to a simpler from．

Example

Example

Solve $\left(x^{2}+y^{2}\right) d x+\left(x^{2}-x y\right) d y=0, y(1)=0$
A：Note that this equation is not exact，$\Delta=M_{y}-N_{x}=y-2 x$ ，and hence both $\frac{\Delta}{N}$ and $\frac{\Delta}{M}$ will depend on x and y ．2－4 technique won＇t work！ Instead，we see that this equation is homogeneous．Hence we set $u:=y / x$ ，i．e．，$y=u x$ ，and get

$$
\begin{aligned}
& x^{2}\left(1+u^{2}\right) d x+x^{2}(1-u) d(u x)=0 \\
& d(u x)=u d x+x d u \Longrightarrow\left(1+u^{2}\right) d x+(1-u)(u d x+x d u)=0 \\
& \Longrightarrow(1+u) d x+(1-u) x d u=0 \Longrightarrow \frac{d x}{x}+\frac{1-u}{1+u} d u \\
& u(1)=y(1) / 1=0 \Longrightarrow \ln |x|-u+2 \ln |1+u|=c=0 \\
& \Longrightarrow \frac{x(1+y / x)^{2}}{e^{y / x}}=1 \Longrightarrow x^{2}+y^{2}=x e^{\frac{y}{x}}
\end{aligned}
$$

1 Exact Equations

2 Solutions by Substitutions

－Homogeneous Equations

－Bernoulli＇s Equation

3 Summary

Bernoulli＇s Equation

Definition（Bernoulli＇s Equation）

The DE $\frac{d y}{d x}+P(x) y=f(x) y^{r}$ where $r \in \mathbb{R}$ is any real number．
For $r=0,1$ ，the equation is linear．
For $r \neq 0,1$ ，we shall use the substitution $u:=y^{1-r}$ to make it linear：

$$
\begin{aligned}
& u=y^{1-r} \Longrightarrow y=u^{\frac{1}{1-r}} \Longrightarrow\left\{\begin{array}{l}
\frac{d y}{d x}=\frac{1}{1-r} u^{\frac{r}{1-r}} \frac{d u}{d x} \\
P(x) y=P(x) u^{\frac{1}{1-r}} \\
f(x) y^{r}=f(x) u^{\frac{r}{1-r}}
\end{array}\right. \\
& \frac{d y}{d x}+P(x) y=f(x) y^{r} \Longrightarrow \frac{1}{1-r} u^{\frac{r}{1-r}} \frac{d u}{d x}+P(x) u^{\frac{1}{1-r}}=f(x) u^{\frac{r}{1-r}} \\
& \Longrightarrow \frac{d u}{d x}+(1-r) P(x) u=(1-r) f(x): \text { Linear! }
\end{aligned}
$$

Example

Example

Solve $x \frac{d y}{d x}+y=x^{2} y^{2}, y(1)=1$
A：Rewrite the equation into $\frac{d y}{d x}+\frac{y}{x}=x y^{2} \Longrightarrow$ Bernoulli，$r=2$ ．
Hence，we set $u=y^{1-r}=1 / y:(y \neq 0)$

$$
\frac{d y}{d x}=\frac{d\left(u^{-1}\right)}{d x}=-\frac{1}{u^{2}} \frac{d u}{d x} \Longrightarrow \frac{1}{u^{2}} \frac{d u}{d x}+\frac{1}{u x}=\frac{x}{u^{2}} \Longrightarrow \frac{d u}{d x}+x^{-1} u=x
$$

Solve u（exercise！）and we get $u=2 x-x^{2}$ ，

$$
\Longrightarrow y=\frac{1}{2 x-x^{2}}, 0<x<2 .
$$

Alternative Substitution

Example

Solve $x \frac{d y}{d x}+y=x^{2} y^{2}, y(1)=1$
There is actually a much simpler approach，if you find a better substitution！

Can you find it？（exercise！）

1 Exact Equations

2 Solutions by Substitutions
－Homogeneous Equations
－Bernoulli＇s Equation

3 Summary

Short Recap

－Exact differential and exact equation
－Nonexact equation made exact：integrating factor
－Substitution of variables－simplify your equation
－$\frac{d y}{d x}=f(A x+B y+C)$
－Homogeneous equations
■ Bernoulli＇s equation

Self－Practice Exercises

2－4： $1,7,9,11,13,15,17,27,33,35,39$
$2-5: 1,7,9,13,17,19,21,25,27,35$

