Chapter 2：First－Order Differential Equations－ Part 2

王奕翔

Department of Electrical Engineering
National Taiwan University
ihwang＠ntu．edu．tw

September 26， 2013

Organization of Lectures in Chapter 2 and 3

We will not follow the order in the textbook．Instead，

1 Exact Equations

2 Summary

今天，我要出一道微分方程的考題，我可以從哪邊下手？

One proposal：reverse engineering－先寫下解答，再反推回去方程式
1 Set up the solution curve：$G(x, y)=0$（can be an implicit solution） and an initial point（ x_{0}, y_{0} ）．
\simeq Compute the differential of $G(x, y)$ ：

$$
d(G(x, y))=\frac{\partial G}{\partial x} d x+\frac{\partial G}{\partial y} d y
$$

3．Since $G(x, y)=0$ ，we have

$$
0=d(G(x, y))=\frac{\partial G}{\partial x} d x+\frac{\partial G}{\partial y} d y
$$

4 Let $\frac{\partial G}{\partial x}=M(x, y)$ and $\frac{\partial G}{\partial y}=N(x, y)$ ．Then，we have a DE：

$$
M(x, y) d x+N(x, y) d y=0 \Longrightarrow \frac{d y}{d x}=-\frac{M(x, y)}{N(x, y)}
$$

解題者觀點：看到一個一階常微分方程，若能將其化為

$$
\frac{\partial F}{\partial x} d x+\frac{\partial F}{\partial y} d y=0
$$

We can get the solution：$F(x, y)=c$ ，where $c=F\left(x_{0}, y_{0}\right)$ ．
Note：the function $F(x, y)$ you get may not be the same as the designer＇s choice $G(x, y)$ ．

Because the designer chose $G(x, y)=0$ as his／her solution，while what you get is $F(x, y)=F\left(x_{0}, y_{0}\right)$ ．
Nevertheless，$G(x, y)=F(x, y)-F\left(x_{0}, y_{0}\right)$ ．
We shall develop a general method of solving this kind of DE based on the above observation．

Exact Differential and Exact Equation

Definition（Exact Equation）

A differential expression $M(x, y) d x+N(x, y) d y$ is an Exact Differential if it is the differential of some function $z=F(x, y)$ ，that is，

$$
d z=M(x, y) d x+N(x, y) d y
$$

A first－order DE of the form $M(x, y) d x+N(x, y) d y=0$ is said to be an Exact Equation if the LHS is an exact differential．

Question：How to check if a differential expression is an exact differential？
Hint：$\frac{\partial}{\partial y}\left(\frac{\partial F}{\partial x}\right)=\frac{\partial}{\partial x}\left(\frac{\partial F}{\partial y}\right)$ ．

Criterion for an Exact Differential

Theorem

Let $M(x, y)$ and $N(x, y)$ be continuous and have continuous first partial derivatives．Then，

$$
M(x, y) d x+N(x, y) d y \text { is an exact differential } \Longleftrightarrow \frac{\partial M}{\partial y}=\frac{\partial N}{\partial x}
$$

Proof．

$" \Rightarrow$＂：Simply because $\frac{\partial}{\partial y}\left(\frac{\partial F}{\partial x}\right)=\frac{\partial}{\partial x}\left(\frac{\partial F}{\partial y}\right)$ ．
$" \Leftarrow "$ ：We just need to construct a function $z=F(x, y)$ such that

$$
d z=M(x, y) d x+N(x, y) d y
$$

In fact，this is the procedure of solving an exact DE．We will outline the procedure later．

Solving an Exact DE

Example

Solve $\left(e^{2 y}-y \cos (x y)\right) d x+\left(2 x e^{2 y}-x \cos (x y)+2 y\right) d y=0$ ．
A：Let $M(x, y)=e^{2 y}-y \cos (x y)$ and $N(x, y)=2 x e^{2 y}-x \cos (x y)+2 y$ ．
■ Check if the DE is exact：

$$
\begin{aligned}
& \frac{\partial M}{\partial y}=\frac{\partial}{\partial y}\left(e^{2 y}-y \cos (x y)\right)=2 e^{2 y}-\cos (x y)+x y \cos (x y) \\
& \frac{\partial N}{\partial x}=\frac{\partial}{\partial x}\left(2 x e^{2 y}-x \cos (x y)+2 y\right)=2 e^{2 y}-\cos (x y)+x y \cos (x y)
\end{aligned}
$$

－Since $M=\frac{\partial F}{\partial x}$ and we want to find F ，why not integrate M with respect to x ？

$$
F(x, y)=\int\left\{e^{2 y}-y \cos (x y)\right\} d x+g(y)=e^{2 y} x-\sin (x y)+g(y)
$$

Solving an Exact DE

Example

Solve $\left(e^{2 y}-y \cos (x y)\right) d x+\left(2 x e^{2 y}-x \cos (x y)+2 y\right) d y=0$ ．
A：Let $M(x, y)=e^{2 y}-y \cos (x y)$ and $N(x, y)=2 x e^{2 y}-x \cos (x y)+2 y$ ． So far we found that $F(x, y)=e^{2 y} x-\sin (x y)+g(y)$ where $g(y)$ is yet to be determined．
－To find $g(y)$ ，we use the fact that $N=\frac{\partial F}{\partial y}$ ：

$$
\begin{aligned}
& 2 x e^{2 y}-x \cos (x y)+2 y=\frac{\partial F}{\partial y}=\frac{\partial}{\partial y}\left(e^{2 y} x-\sin (x y)+g(y)\right) \\
& =2 x e^{2 y}-x \cos (x y)+g^{\prime}(y) \Longrightarrow \frac{d g}{d y}=2 y \Longrightarrow g(y)=y^{2}
\end{aligned}
$$

Hence，$F(x, y)=x e^{2 y}-\sin (x y)+y^{2}$ ，and the implicit solution is

$$
x e^{2 y}-\sin (x y)+y^{2}=c
$$

Solving an Exact DE $M(x, y) d x+N(x, y) d y=0$

Goal：Find $z=F(x, y)$ such that $d z=M(x, y) d x+N(x, y) d y=0$ ．

General Procedure of Solving an DE

1 Transform DE into the differential form：$M(x, y) d x+N(x, y) d y=0$ ．
2．Verify if it is exact：$\frac{\partial M}{\partial y} \stackrel{?}{=} \frac{\partial N}{\partial x}$
3 Integrate M with respect to x（or N with respect to y ）：

$$
F(x, y)=\int M d x+g(y)\left(\text { or } F(x, y)=\int N d y+h(x)\right)
$$

4 Take partial derivative with respect to y（or x ）：

$$
\begin{array}{cl}
\frac{\partial F}{\partial y}=\frac{\partial}{\partial y}\left(\int M d x\right)+g^{\prime}(y)=N(x, y) & \frac{\partial F}{\partial x}=\frac{\partial}{\partial x}\left(\int N d y\right)+h^{\prime}(x)=M(x, y) \\
\Longrightarrow g(y)=\int\left(N-\frac{\partial}{\partial y} \int M d x\right) d y & \Longrightarrow h(x)=\int\left(M-\frac{\partial}{\partial x} \int N d y\right) d x
\end{array}
$$

Nonexact DE Made Exact

Example

Solve $\frac{d y}{d x}=\frac{20}{x y}-\frac{2 y}{x}-\frac{3 x}{y}, y(1)=-1$
A：

$$
\begin{aligned}
\frac{d y}{d x} & =\frac{20}{x y}-\frac{2 y}{x}-\frac{3 x}{y}=\frac{20-2 y^{2}-3 x^{2}}{x y} \\
& \Longrightarrow \overbrace{\left(3 x^{2}+2 y^{2}-20\right)}^{M(x, y)} d x+\overbrace{(x y)}^{N(x, y)} d y=0
\end{aligned}
$$

Check if this equation is exact：$\frac{\partial M}{\partial y}=4 y \neq \frac{\partial N}{\partial x}=y$ ．
Can we make it exact，by multiplying both M and N with some $\mu(x, y)$ ？

Nonexact DE Made Exact

Example

Solve $\frac{d y}{d x}=\frac{20}{x y}-\frac{2 y}{x}-\frac{3 x}{y} \Longrightarrow \overbrace{\left(3 x^{2}+2 y^{2}-20\right)}^{M(x, y)} d x+\overbrace{(x y)}^{N(x, y)} d y=0$
Goal：find $\mu(x, y)$ such that $\frac{\partial(\mu M)}{\partial y}=\frac{\partial(\mu N)}{\partial x}$ ．Let $\mu_{x}:=\frac{\partial \mu}{\partial x}, \mu_{y}:=\frac{\partial \mu}{\partial y}$ ．

$$
\begin{aligned}
& \frac{\partial(\mu M)}{\partial y}=\mu_{y} M+M_{y} \mu=\left(3 x^{2}+2 y^{2}-20\right) \mu_{y}+4 y \mu \\
& \frac{\partial(\mu N)}{\partial x}=\mu_{x} N+N_{x} \mu=(x y) \mu_{x}+y \mu \\
& \frac{\partial(\mu M)}{\partial y}=\frac{\partial(\mu N)}{\partial x} \Longleftrightarrow\left(3 x^{2}+2 y^{2}-20\right) \mu_{y}+4 y \mu=(x y) \mu_{x}+y \mu
\end{aligned}
$$

This is a PDE？！How to solve it？

Nonexact DE Made Exact

Example

Solve $\frac{d y}{d x}=\frac{20}{x y}-\frac{2 y}{x}-\frac{3 x}{y} \Longrightarrow \overbrace{\left(3 x^{2}+2 y^{2}-20\right)}^{M(x, y)} d x+\overbrace{(x y)}^{N(x, y)} d y=0$
Focus on finding a function $\mu(x, y)$ such that

$$
\left(3 x^{2}+2 y^{2}-20\right) \mu_{y}+4 y \mu=(x y) \mu_{x}+y \mu
$$

Let＇s make some restriction：how about finding μ that only depends on x ？

$$
4 y \mu=(x y) \mu_{x}+y \mu \Longrightarrow x y \frac{d \mu}{d x}=3 y \mu \Longrightarrow \frac{d \mu}{d x}=\frac{3 \mu}{x} \Longrightarrow \mu=x^{3} \quad \text { (works!) }
$$

How about finding μ that only depends on y ？

$$
\left(3 x^{2}+2 y^{2}-20\right) \mu_{y}+4 y \mu=y \mu \Longrightarrow \frac{d \mu}{d y}=-\frac{3 y}{3 x^{2}+2 y^{2}-20} \mu
$$

（still hard！）

Nonexact DE Made Exact

Example

Solve $\frac{d y}{d x}=\frac{20}{x y}-\frac{2 y}{x}-\frac{3 x}{y} \Longrightarrow \overbrace{x^{3}\left(3 x^{2}+2 y^{2}-20\right)}^{M(x, y)} d x+\overbrace{\left(x^{4} y\right)}^{\tilde{N}(x, y)} d y=0$
Finally we multiply both $M(x, y)$ and $N(x, y)$ with $\mu(x)=x^{3}$（see above）．
We then solve it by the procedures discussed before：

$$
\begin{aligned}
\widetilde{N} & =\frac{\partial F}{\partial y} \Longrightarrow F(x, y)=\int \widetilde{N} d y=\frac{1}{2} x^{4} y^{2}+h(x) \\
\widetilde{M} & =\frac{\partial F}{\partial x} \Longrightarrow x^{3}\left(3 x^{2}+2 y^{2}-20\right)=\frac{\partial}{\partial x}\left(\frac{1}{2} x^{4} y^{2}\right)+\frac{d h}{d x}=2 x^{3} y^{2}+\frac{d h}{d x} \\
& \Longrightarrow \frac{d h}{d x}=3 x^{5}-20 x^{3} \Longrightarrow h(x)=\frac{1}{2} x^{6}-5 x^{4} \\
& \Longrightarrow F(x, y)=\frac{1}{2} x^{4} y^{2}+\frac{1}{2} x^{6}-5 x^{4}
\end{aligned}
$$

Nonexact DE Made Exact

Example

Solve $\frac{d y}{d x}=\frac{20}{x y}-\frac{2 y}{x}-\frac{3 x}{y}, y(1)=-1$
We arrive at an implicit solution：$F(x, y)=\frac{1}{2} x^{4} y^{2}+\frac{1}{2} x^{6}-5 x^{4}=c$ ．
Plug in the initial condition，we get $\frac{1}{2} x^{4} y^{2}+\frac{1}{2} x^{6}-5 x^{4}=c=-4$ ．
To get an explicit solution，we see that

$$
\begin{aligned}
\frac{1}{2} x^{4} y^{2}+\frac{1}{2} x^{6}-5 x^{4}=-4 & \Longrightarrow y^{2}=10-x^{2}-8 x^{-4} \\
& \Longrightarrow y= \pm \sqrt{10-x^{2}-8 x^{-4}} \\
& \Longrightarrow y=-\sqrt{10-x^{2}-8 x^{-4}}
\end{aligned}
$$

Exercise．Find an interval of definition for the above solution．

Nonexact DE $M(x, y) d x+N(x, y) d y=0$ Made Exact

Nonexact DE：$M_{y}-N_{x}:=\Delta(x, y) \neq 0$
Key Idea 1：Introduce a function $\mu(x, y)$（integrating factor）to ensure

$$
\frac{\partial(\mu M)}{\partial y}=\frac{\partial(\mu N)}{\partial x} \Longleftrightarrow \mu_{y} M+\mu M_{y}=\mu_{x} N+\mu N_{x}
$$

However in general this is a PDE which may be hard to solve．
Key Idea 2：Restrict $\mu(x, y)$ to be $\mu(x)$ or $\mu(y)$ ．

$$
\begin{aligned}
\text { Plan A: } \mu(x, y)=\mu(x) & \Longrightarrow \mu_{y}=0 \Longrightarrow \mu M_{y}=\mu_{x} N+\mu N_{x} \\
& \Longrightarrow \frac{d \mu}{d x}=\frac{M_{y}-N_{x}}{N} \mu=\frac{\Delta}{N} \mu \\
\text { Plan B: } \mu(x, y)=\mu(y) & \Longrightarrow \mu_{x}=0 \Longrightarrow \mu_{y} M+\mu M_{y}=\mu N_{x} \\
& \Longrightarrow \frac{d \mu}{d y}=\frac{N_{x}-M_{y}}{M} \mu=-\frac{\Delta}{M} \mu
\end{aligned}
$$

Nonexact DE $M(x, y) d x+N(x, y) d y=0$ Made Exact

Nonexact DE：$M_{y}-N_{x}:=\Delta(x, y) \neq 0$

$$
\begin{aligned}
& \text { Plan A: } \mu(x, y)=\mu(x) \Longrightarrow \frac{d \mu}{d x}=\frac{\Delta}{N} \mu \\
& \text { Plan B: } \mu(x, y)=\mu(y) \Longrightarrow \frac{d \mu}{d y}=-\frac{\Delta}{M} \mu
\end{aligned}
$$

Key Idea 3：Which plan should we choose？Choose it based on $\Delta(x, y)$ ：
－If $\frac{\Delta}{N}$ only depends on x ，then $\frac{d \mu}{d x}=\frac{\Delta}{N} \mu$ is separable．Plan A！
－If $\frac{\Delta}{M}$ only depends on y ，then $\frac{d \mu}{d y}=-\frac{\Delta}{N} \mu$ is separable．Plan B！

1 Exact Equations

2 Summary

Short Recap

－Exact Differential
－Exact Equation
■ Nonexact Equation made Exact：Integrating Factor

Self－Practice Exercises

2－4： $1,7,9,11,13,15,17,27,33,35,39$

