Chapter 2: First-Order Differential Equations – Part 2

王奕翔

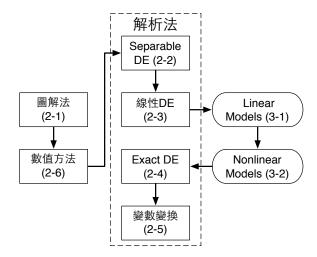
Department of Electrical Engineering National Taiwan University

ihwang@ntu.edu.tw

September 26, 2013

Organization of Lectures in Chapter 2 and 3

We will not follow the order in the textbook. Instead,



1 Exact Equations

今天,我要出一道微分方程的考題,我可以從哪邊下手?

One proposal: reverse engineering - 先寫下解答,再反推回去方程式

- Set up the solution curve: G(x, y) = 0 (can be an implicit solution) and an initial point (x_0, y_0) .
- **2** Compute the **differential** of G(x, y):

$$d(G(x, y)) = \frac{\partial G}{\partial x}dx + \frac{\partial G}{\partial y}dy$$

3 Since G(x, y) = 0, we have

$$0 = d(G(x, y)) = \frac{\partial G}{\partial x}dx + \frac{\partial G}{\partial y}dy$$

4 Let $\frac{\partial G}{\partial x} = M(x, y)$ and $\frac{\partial G}{\partial y} = N(x, y)$. Then, we have a DE:

$$M(x, y) dx + N(x, y) dy = 0 \implies \frac{dy}{dx} = -\frac{M(x, y)}{N(x, y)}$$

解題者觀點:看到一個一階常微分方程,若能將其化為

$$\frac{\partial F}{\partial x}dx + \frac{\partial F}{\partial y}dy = 0$$

We can get the solution: F(x, y) = c, where $c = F(x_0, y_0)$.

Note: the function F(x, y) you get may not be the same as the designer's choice G(x, y).

Because the designer chose G(x, y) = 0 as his/her solution, while what you get is $F(x, y) = F(x_0, y_0)$.

Nevertheless, $G(x, y) = F(x, y) - F(x_0, y_0)$.

We shall develop a general method of solving this kind of DE based on the above observation.

Exact Differential and Exact Equation

Definition (Exact Equation)

A differential expression M(x, y) dx + N(x, y) dy is an **Exact Differential** if it is the differential of some function z = F(x, y), that is,

$$dz = M(x, y) dx + N(x, y) dy.$$

A first-order DE of the form M(x, y)dx + N(x, y)dy = 0 is said to be an **Exact Equation** if the LHS is an exact differential.

Question: How to check if a differential expression is an exact differential?

Hint:
$$\frac{\partial}{\partial y} \left(\frac{\partial F}{\partial x} \right) = \frac{\partial}{\partial x} \left(\frac{\partial F}{\partial y} \right).$$

Criterion for an Exact Differential

Theorem

Let M(x, y) and N(x, y) be continuous and have continuous first partial derivatives. Then,

$$M(x,y)dx + N(x,y)dy$$
 is an exact differential $\iff rac{\partial M}{\partial y} = rac{\partial N}{\partial x}$

Proof.

"
$$\Rightarrow$$
": Simply because $\frac{\partial}{\partial y} \left(\frac{\partial F}{\partial x} \right) = \frac{\partial}{\partial x} \left(\frac{\partial F}{\partial y} \right).$

" \Leftarrow ": We just need to construct a function z = F(x, y) such that

$$dz = M(x, y) dx + N(x, y) dy.$$

In fact, this is the procedure of solving an exact DE. We will outline the procedure later.

Solving an Exact DE

Example

Solve
$$(e^{2y} - y\cos(xy)) dx + (2xe^{2y} - x\cos(xy) + 2y) dy = 0.$$

A: Let $M(x, y) = e^{2y} - y\cos(xy)$ and $N(x, y) = 2xe^{2y} - x\cos(xy) + 2y$.

Check if the DE is exact:

$$\frac{\partial M}{\partial y} = \frac{\partial}{\partial y} \left(e^{2y} - y\cos(xy) \right) = 2e^{2y} - \cos(xy) + xy\cos(xy)$$
$$\frac{\partial N}{\partial x} = \frac{\partial}{\partial x} \left(2xe^{2y} - x\cos(xy) + 2y \right) = 2e^{2y} - \cos(xy) + xy\cos(xy)$$

Since $M = \frac{\partial F}{\partial x}$ and we want to find F, why not integrate M with respect to x?

$$F(x,y) = \int \left\{ e^{2y} - y\cos(xy) \right\} dx + g(y) = e^{2y}x - \sin(xy) + g(y).$$

Solving an Exact DE

Example

Solve
$$(e^{2y} - y\cos(xy)) dx + (2xe^{2y} - x\cos(xy) + 2y) dy = 0.$$

A: Let $M(x, y) = e^{2y} - y\cos(xy)$ and $N(x, y) = 2xe^{2y} - x\cos(xy) + 2y$. So far we found that $F(x, y) = e^{2y}x - \sin(xy) + g(y)$ where g(y) is yet to be determined.

• To find g(y), we use the fact that $N = \frac{\partial F}{\partial y}$:

$$2xe^{2y} - x\cos(xy) + 2y = \frac{\partial F}{\partial y} = \frac{\partial}{\partial y} \left(e^{2y}x - \sin(xy) + g(y) \right)$$
$$= 2xe^{2y} - x\cos(xy) + g'(y) \implies \frac{dg}{dy} = 2y \implies g(y) = y^2$$

Hence, $F(x,y) = xe^{2y} - \sin(xy) + y^2$, and the implicit solution is $xe^{2y} - \sin(xy) + y^2 = c.$

Solving an Exact DE M(x, y) dx + N(x, y) dy = 0

Goal: Find z = F(x, y) such that dz = M(x, y)dx + N(x, y)dy = 0.

General Procedure of Solving an DE

- **1** Transform DE into the differential form: M(x, y)dx + N(x, y)dy = 0. **2** Verify if it is exact: $\frac{\partial M}{\partial y} \stackrel{?}{=} \frac{\partial N}{\partial x}$
- 3 Integrate M with respect to x (or N with respect to y): $F(x, y) = \int M dx + g(y) \text{ (or } F(x, y) = \int N dy + h(x))$
- **4** Take partial derivative with respect to y (or x):

$$\frac{\partial F}{\partial y} = \frac{\partial}{\partial y} \left(\int M dx \right) + g'(y) = N(x, y) \quad \frac{\partial F}{\partial x} = \frac{\partial}{\partial x} \left(\int N dy \right) + h'(x) = M(x, y)$$
$$\implies g(y) = \int \left(N - \frac{\partial}{\partial y} \int M dx \right) dy \quad \implies h(x) = \int \left(M - \frac{\partial}{\partial x} \int N dy \right) dx$$

Example

Solve
$$\frac{dy}{dx} = \frac{20}{xy} - \frac{2y}{x} - \frac{3x}{y}, \ y(1) = -1$$

A:

$$\frac{dy}{dx} = \frac{20}{xy} - \frac{2y}{x} - \frac{3x}{y} = \frac{20 - 2y^2 - 3x^2}{xy}$$
$$\implies \underbrace{(3x^2 + 2y^2 - 20)}_{M(x,y)} dx + \underbrace{(xy)}_{(xy)} dy = 0$$

Check if this equation is exact: $\frac{\partial M}{\partial y} = 4y \neq \frac{\partial N}{\partial x} = y.$

Can we make it exact, by multiplying both M and N with some $\mu(x, y)$?

Example

Solve
$$\frac{dy}{dx} = \frac{20}{xy} - \frac{2y}{x} - \frac{3x}{y} \implies \overbrace{(3x^2 + 2y^2 - 20)}^{M(x,y)} dx + \overbrace{(xy)}^{N(x,y)} dy = 0$$

Goal: find
$$\mu(x, y)$$
 such that $\frac{\partial(\mu M)}{\partial y} = \frac{\partial(\mu N)}{\partial x}$. Let $\mu_x := \frac{\partial \mu}{\partial x}$, $\mu_y := \frac{\partial \mu}{\partial y}$.

$$\begin{aligned} \frac{\partial(\mu M)}{\partial y} &= \mu_y M + M_y \mu = (3x^2 + 2y^2 - 20)\mu_y + 4y\mu \\ \frac{\partial(\mu N)}{\partial x} &= \mu_x N + N_x \mu = (xy)\mu_x + y\mu \\ \frac{\partial(\mu M)}{\partial y} &= \frac{\partial(\mu N)}{\partial x} \iff (3x^2 + 2y^2 - 20)\mu_y + 4y\mu = (xy)\mu_x + y\mu \end{aligned}$$

This is a **PDE**?! How to solve it?

Example
Solve
$$\frac{dy}{dx} = \frac{20}{xy} - \frac{2y}{x} - \frac{3x}{y} \implies \overbrace{(3x^2 + 2y^2 - 20)}^{M(x,y)} dx + \overbrace{(xy)}^{N(x,y)} dy = 0$$

Focus on finding a function $\mu(\textbf{x}, \textbf{y})$ such that

$$(3x^2 + 2y^2 - 20)\mu_y + 4y\mu = (xy)\mu_x + y\mu$$

Let's make some restriction: how about finding μ that only depends on x?

$$4y\mu = (xy)\mu_x + y\mu \implies xy\frac{d\mu}{dx} = 3y\mu \implies \frac{d\mu}{dx} = \frac{3\mu}{x} \implies \mu = x^3 \quad (\text{works!})$$

How about finding μ that only depends on y?

$$(3x^2 + 2y^2 - 20)\mu_y + 4y\mu = y\mu \implies \frac{d\mu}{dy} = -\frac{3y}{3x^2 + 2y^2 - 20}\mu \quad (\text{still hard!})$$

Example
Solve
$$\frac{dy}{dx} = \frac{20}{xy} - \frac{2y}{x} - \frac{3x}{y} \implies \widetilde{x^3(3x^2 + 2y^2 - 20)} dx + \widetilde{(x^4y)} dy = 0$$

Finally we multiply both M(x, y) and N(x, y) with $\mu(x) = x^3$ (see above). We then solve it by the procedures discussed before:

$$\begin{split} \widetilde{N} &= \frac{\partial F}{\partial y} \implies F(x,y) = \int \widetilde{N} dy = \frac{1}{2} x^4 y^2 + h(x) \\ \widetilde{M} &= \frac{\partial F}{\partial x} \implies x^3 (3x^2 + 2y^2 - 20) = \frac{\partial}{\partial x} \left(\frac{1}{2} x^4 y^2\right) + \frac{dh}{dx} = 2x^3 y^2 + \frac{dh}{dx} \\ \implies \frac{dh}{dx} = 3x^5 - 20x^3 \implies h(x) = \frac{1}{2} x^6 - 5x^4 \\ \implies F(x,y) = \frac{1}{2} x^4 y^2 + \frac{1}{2} x^6 - 5x^4 \end{split}$$

Example

Solve
$$\frac{dy}{dx} = \frac{20}{xy} - \frac{2y}{x} - \frac{3x}{y}, \ y(1) = -1$$

We arrive at an implicit solution: $F(x, y) = \frac{1}{2}x^4y^2 + \frac{1}{2}x^6 - 5x^4 = c$. Plug in the initial condition, we get $\frac{1}{2}x^4y^2 + \frac{1}{2}x^6 - 5x^4 = c = -4$.

To get an explicit solution, we see that

$$\frac{1}{2}x^4y^2 + \frac{1}{2}x^6 - 5x^4 = -4 \implies y^2 = 10 - x^2 - 8x^{-4}$$
$$\implies y = \pm\sqrt{10 - x^2 - 8x^{-4}}$$
$$\implies y = -\sqrt{10 - x^2 - 8x^{-4}}$$

Exercise. Find an interval of definition for the above solution.

Nonexact DE M(x, y) dx + N(x, y) dy = 0 Made Exact

Nonexact DE: $M_y - N_x := \Delta(x, y) \neq 0$

Key Idea 1: Introduce a function $\mu(x, y)$ (integrating factor) to ensure

$$\frac{\partial(\mu M)}{\partial y} = \frac{\partial(\mu N)}{\partial x} \iff \mu_y M + \mu M_y = \mu_x N + \mu N_x$$

However in general this is a PDE which may be hard to solve.

Key Idea 2: Restrict $\mu(x, y)$ to be $\mu(x)$ or $\mu(y)$.

Nonexact DE M(x, y) dx + N(x, y) dy = 0 Made Exact

Nonexact DE: $M_y - N_x := \Delta(x, y) \neq 0$

Plan A:
$$\mu(x, y) = \mu(x) \implies \frac{d\mu}{dx} = \frac{\Delta}{N}\mu$$

Plan B: $\mu(x, y) = \mu(y) \implies \frac{d\mu}{dy} = -\frac{\Delta}{M}\mu$

Key Idea 3: Which plan should we choose? Choose it based on $\Delta(x, y)$:

• If
$$\frac{\Delta}{N}$$
 only depends on x , then $\frac{d\mu}{dx} = \frac{\Delta}{N}\mu$ is separable. Plan A!
• If $\frac{\Delta}{M}$ only depends on y , then $\frac{d\mu}{dy} = -\frac{\Delta}{N}\mu$ is separable. Plan B!

Short Recap

- Exact Differential
- Exact Equation
- Nonexact Equation made Exact: Integrating Factor

Exact Equations Summary

Self-Practice Exercises

2-4: 1, 7, 9, 11, 13, 15, 17, 27, 33, 35, 39