Chapter 2: First-Order Differential Equations —
Part 2

EEH

Department of Electrical Engineering
National Taiwan University

ihwang@ntu.edu.tw

September 26, 2013

ERM DE Lecture 4


ihwang@ntu.edu.tw

Organization of Lectures in Chapter 2 and 3

We will not follow the order in the textbook. Instead,
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Exact Equations

One proposal: reverse engineering — %8 F#%4 » BRIEE X H 2K

Set up the solution curve: G(z,y) = 0 (can be an implicit solution)
and an initial point (zo, ¥o)-
Compute the differential of G(z, y):

oG oG

d(G(z,y) = %dx—‘r ﬁTydy

Since G(z,y) = 0, we have

oG 0G
0= d(Glay) = 5o det 5 dy

Let % = M(z,y) and % = N(z,y). Then, we have a DE:

dy _ M(z,y)
N(z, y)

dx:
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Exact Equations

FRRREIES C AR —E-EE M A2 SRFELA

oF OF
%dan 67ydy7 0

We can get the solution: F(z, y) = ¢, where ¢ = F(axp, o).
Note: the function F(z, y) you get may not be the same as the
designer's choice G(z, y).

Because the designer chose G(z,y) = 0 as his/her solution, while what
you get is F(z, y) = F(ao, y0).

Nevertheless, G(x,y) = F(z, y) — F(x0, y0)-

We shall develop a general method of solving this kind of DE based on
the above observation.

ERM DE Lecture 4



Exact Equations

Exact Differential and Exact Equation

Definition (Exact Equation)

A differential expression M(x, y)dx+ N(z, y)dy is an Exact Differential
if it is the differential of some function z = F(z, y), that is,

dz = M(z, y)dz+ N(z, y)dy.
A first-order DE of the form M(z, y)dz + N(z, y)dy = 0 is said to be an
Exact Equation if the LHS is an exact differential.
Question: How to check if a differential expression is an exact differential?

v, O (OF) _ 0 oF
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Exact Equations

Criterion for an Exact Differential

Let M(x,y) and N(z,y) be continuous and have continuous first partial
derivatives. Then,

M N
M(z, y)dz+ N(z, y)dy is an exact differential <= 8_ = 8_
oy oz
Proof.
w_gr. G 9 (oF\ _ 8 (oF
=": Simply because 3. (;) = 5% (87)

“<": We just need to construct a function z = F(z, y) such that
dz = M(z, y)dz+ N(z, y)dy.

In fact, this is the procedure of solving an exact DE. We will outline the
procedure later.
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Exact Equations

Solving an Exact DE

Solve (€2 — ycos(zy)) dz+ (2z€®Y — zcos(zy) + 2y) dy = 0.

A: Let M(x,y) = €Y — ycos(zy) and N(x, y) = 22€*¥ — zcos(zy) + 2¥.
m Check if the DE is exact:

867]\; B 8% (¢* = ycos(ay)) = 2¢* — cos(ay) + wycos(y)
%] = % (2z¢* — zcos(zy) + 2y) = 2€¥ — cos(xy) + zycos(zy)

m Since M = ?‘TI; and we want to find F, why not integrate M with
respect to z?

F(z,y) = / {€ — ycos(zy)} dz+ g(y) = Yz — sin(zy) + g(y).
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Exact Equations

Solving an Exact DE

Example

Solve (62?/ — ycos(:z:y)) dx + (2x62y — zcos(zy) + 2y) dy = 0.

A: Let M(z,y) = €Y — ycos(xy) and N(z, y) = 22€¢*¥ — zcos(zy) + 2¥.
So far we found that F(z,y) = €*¥x — sin(zy) + g(y) where g(y) is yet to
be determined.

m To find ¢(y), we use the fact that N = B—F

oF 0
22€*Y — zcos(ry) + 2y = 7y Ay ( ¢z — sin(zy) + g(y))

d
= 22¢%Y — zcos(zy) + ¢ (y) = =2y = g(y) =

%9
dy
Hence, F(z,y) = ze*¥ — sin(zy) + 2, and the implicit solution is

ze?¥ — sin(zy) + % = ¢
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Exact Equations

Solving an Exact DE M(z, y)dz+ N(z, y)dy = 0

Goal: Find z= F(x,y) such that dz = M(z, y)dz+ N(z, y)dy = 0.

General Procedure of Solving an DE

Transform DE into the differential form: M(x, y)dz+ N(z, y)dy = 0.
M N

Verify if it is exact: a— z 8—
dy ox

Integrate M with respect to = (or IV with respect to y):
F(z,y) = /de—|— 9(y) (or F(z,y) = / Ndy + h(x))

Take partial derivative with respect to y (or )
5F 8 :
OF _ (/ Md:v) + ¢'(y) = N(=, y) (_ . (— ( j\"([;{/) + B (z) = M(z,y)
ay 8y or Oz \.

/
— g(y) / (N— — / de) = h() = / (M— ((T)z Nd;;,) dx
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Exact Equations

Nonexact DE Made Exact

dy

20 2 3
Solve—:———y——x, y(1) = —1
Ty z )
A:
dy 20 2y 3z 20 — 237 — 322
dr  zy x y xy
M(z,y) N(z,y)

= (3% +2¢% —20)dz+ (zy) dy=0

Check if this equation is exact: %—2}4 =4y # %—JZ = .

Can we make it exact, by multiplying both M and N with some p(z, y)?

ERM DE Lecture 4



Exact Equations

Nonexact DE Made Exact

M(z,y) N(z,y)
d 20 2 3 —— PONS
Solve ¢ = =2 28 2T (322 4 242 — 20) dz+ (ay) dy=0
dz zy « Y
Goal: find p(z, y) such that 6(“M) = (g;v). Let pig = %, oy = g—y.
(gM) py M+ Myp = (322 + 217 — 20) 1, + dypt
(gN) paN + Nopp = (2y) e + ypt
(g;‘f) = 7%\0 = (32" + 29" — 20)y + dyp = (2t + Y1

This is a PDE?! How to solve it?
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Exact Equations

Nonexact DE Made Exact

M(z,y) N(z,y)
d 20 2 3 R X
Solve & == 2¥ 2T (322 +2¢% — 20) dz+ (zy) dy=0
dx w©y =z Yy

Focus on finding a function p(z, y) such that

(32% + 2¢° — 20)pay + dyp = (2y) s + ypo

Let's make some restriction: how about finding 1 that only depends on z?

d du 3 f
dyp = (zy)ps + yp = wyﬁ, =3yy = d—‘; = ?“ = p=1" (works!)

How about finding p that only depends on y?

du 3y

2 2 _ —
(327 +2y" — 20)py + dyp = yp = & = 32127 20

(still hard!)
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Exact Equations

Nonexact DE Made Exact

M(z,y) N(z,y)
20 2 3 N
Solve 4 == 28 2T % (322 + 247 — 20) dz + (2*y) dy =0
r xy Ty

Finally we multiply both M(x, y) and N(z,y) with pu(z) = 2° (see above).
We then solve it by the procedures discussed before:

oF

N="7" = Fz,y) = /Ndy—lmy + h(z)
Jdy 2
~  OF 0 (1 42 dh 3.2  dh
== - = = 9 o
M o :>x(3x + 247 20) 8$(2zy)+d :chrdz
:%731—201 :>h():%x6—5x4
= F(z,y) = %x4y2+%x6—5a:4
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Exact Equations

Nonexact DE Made Exact

We arrive at an implicit solution: F(z, y) 2t + 3 146 — 52t =c.

Plug in the initial condition, we get 5 Lot? 4+ :r — 52t = c= —4.

To get an explicit solution, we see that

1 1
S 50 Bt = 4 = P =10 80!

— y=+/10— 22 — 84
= y=—-v10— 22 — 8z~

Exercise. Find an interval of definition for the above solution.
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Exact Equations

Nonexact DE M(z, y)dz+ N(x, y)dy = 0 Made Exact

Nonexact DE: M, — N, := A(z,y) #0
Key Idea 1: Introduce a function u(z, y) (integrating factor) to ensure

O(uM) _ O(uN)

— pu M+ pM, = u;N+ uN,
y o HyM A pp My = pp N+ p

However in general this is a PDE which may be hard to solve.
Key ldea 2: Restrict p(z, y) to be p(z) or p(y).

Plan A: p(z,y) = p(z) = py =0 = uMy = pu N+ pN,
du My — N, A

Az N TN
Plan B: pu(z,y) = u(y) = pa=0 = py,M+ pMy = pN,
dp N, — M, A
= = =
dy M M
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Exact Equations

Nonexact DE M(z, y)dz+ N(x, y)dy = 0 Made Exact

Nonexact DE: M, — N, := A(z,y) # 0

Plan A: = &_c
an A p(z,y) = ple) = —- = Sp
Plan B: p(z,y) = p(y) = - "
Key Idea 3: Which plan should we choose? Choose it based on A(z, y):
dp

A A
m If N only depends on z, then — = N,u is separable. Plan A!

dx

A 17} A
m If i only depends on ¥, then d—/; = —N,u is separable. Plan B!
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Summary

Short Recap

m Exact Differential
m Exact Equation

m Nonexact Equation made Exact: Integrating Factor
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Summary

Self-Practice Exercises

2-4:1,7,9, 11, 13, 15, 17, 27, 33, 35, 39
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