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First-Order Differential Equation

Throughout Chapter 2, we focus on solving the first-order ODE:

Problem
Find y = ϕ(x) satisfying

dy
dx = f(x, y), subject to y(x0) = y0 (1)
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Methods of Solving First-Order ODE

1 Graphical Method (2-1)
2 Numerical Method (2-6, 9)
3 Analytic Method

Take antiderivative (Calculus I, II)
Separable Equations (2-2)
Solving Linear Equations (2-3)
Solving Exact Equations (2-4)
Solutions by Substitutions (2-5):
homogeneous equations, Bernoulli’s equation, y′ = Ax + By + C.

4 Series Solution (6)
5 Transformation

Laplace Transform (7)
Fourier Series (11)
Fourier Transform (14)
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Organization of Lectures in Chapter 2 and 3
We will not follow the order in the textbook. Instead,
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�
�
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	�DE
(2-3)

Exact DE
(2-4)

����
(2-5)

 Linear 
Models (3-1)

Nonlinear 
Models (3-2)
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Example 1 (Zill&Wright p.36, Fig. 2.1.1.)

dy
dx = 0.2xy

36 ! CHAPTER 2 FIRST-ORDER DIFFERENTIAL EQUATIONS
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FIGURE 2.1.1 A solution curve is
tangent to lineal element at (2, 3)

SOLUTION CURVES WITHOUT A SOLUTION

REVIEW MATERIAL
! The first derivative as slope of a tangent line
! The algebraic sign of the first derivative indicates increasing or decreasing

INTRODUCTION Let us imagine for the moment that we have in front of us a first-order differ-
ential equation dy!dx ! f (x, y), and let us further imagine that we can neither find nor invent a
method for solving it analytically. This is not as bad a predicament as one might think, since the dif-
ferential equation itself can sometimes “tell” us specifics about how its solutions “behave.”

We begin our study of first-order differential equations with two ways of analyzing a DE qual-
itatively. Both these ways enable us to determine, in an approximate sense, what a solution curve
must look like without actually solving the equation.

2.1

2.1.1 DIRECTION FIELDS

Some Fundamental Questions We saw in Section 1.2 that whenever f (x, y)
and "f!"y satisfy certain continuity conditions, qualitative questions about existence
and uniqueness of solutions can be answered. In this section we shall see that other
qualitative questions about properties of solutions—How does a solution behave
near a certain point? How does a solution behave as ?—can often be an-
swered when the function f depends solely on the variable y. We begin, however, with
a simple concept from calculus: 

A derivative dy!dx of a differentiable function y ! y(x) gives slopes of tangent
lines at points on its graph.

Slope Because a solution y ! y(x) of a first-order differential equation

(1)

is necessarily a differentiable function on its interval I of definition, it must also be con-
tinuous on I. Thus the corresponding solution curve on I must have no breaks and must
possess a tangent line at each point (x, y(x)). The function f in the normal form (1) is
called the slope function or rate function. The slope of the tangent line at (x, y(x)) on
a solution curve is the value of the first derivative dy!dx at this point, and we know
from (1) that this is the value of the slope function f (x, y(x)). Now suppose that (x, y)
represents any point in a region of the xy-plane over which the function f is defined. The
value f (x, y) that the function f assigns to the point represents the slope of a line or, as
we shall envision it, a line segment called a lineal element. For example, consider the
equation dy!dx ! 0.2xy, where f (x, y) ! 0.2xy. At, say, the point (2, 3) the slope of a
lineal element is f (2, 3) ! 0.2(2)(3) ! 1.2. Figure 2.1.1(a) shows a line segment with
slope 1.2 passing though (2, 3). As shown in Figure 2.1.1(b), if a solution curve also
passes through the point (2, 3), it does so tangent to this line segment; in other words,
the lineal element is a miniature tangent line at that point.

Direction Field If we systematically evaluate f over a rectangular grid of
points in the xy-plane and draw a line element at each point (x, y) of the grid with
slope f (x, y), then the collection of all these line elements is called a direction field
or a slope field of the differential equation dy!dx ! f (x, y). Visually, the direction
field suggests the appearance or shape of a family of solution curves of the
differential equation, and consequently, it may be possible to see at a glance certain
qualitative aspects of the solutions—regions in the plane, for example, in which a

dy
dx

! f (x, y)

x : #
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Direction Fields

Key Observation
On the xy-plane, at a point (xn, yn), the first-order derivative

dy
dx

∣∣∣∣
x=xn

is the slope of the tangent line of the curve y(x) at (xn, yn).

Hence, at every point on the xy-plane, one can in principle sketch an
arrow indicating the direction of the tangent line.

From the initial point (x0, y0), one can connect all the arrows one by one
and then sketch the solution curve. (土法煉鋼！)
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Example 1 (Zill&Wright p.37, Fig. 2.1.3.)

dy
dx = 0.2xy

2.1 SOLUTION CURVES WITHOUT A SOLUTION ! 37

solution exhibits an unusual behavior. A single solution curve that passes through a
direction field must follow the flow pattern of the field; it is tangent to a lineal element
when it intersects a point in the grid. Figure 2.1.2 shows a computer-generated direc-
tion field of the differential equation dy!dx ! sin(x " y) over a region of the xy-plane.
Note how the three solution curves shown in color follow the flow of the field.

EXAMPLE 1 Direction Field

The direction field for the differential equation dy!dx ! 0.2xy shown in Figure 2.1.3(a)
was obtained by using computer software in which a 5 # 5 grid of points (mh, nh),
m and n integers, was defined by letting $5 % m % 5, $5 % n % 5, and h ! 1.
Notice in Figure 2.1.3(a) that at any point along the x-axis (y ! 0) and the
y-axis (x ! 0), the slopes are f (x, 0) ! 0 and f (0, y) ! 0, respectively, so the lineal
elements are horizontal. Moreover, observe in the first quadrant that for a fixed value
of x the values of f (x, y) ! 0.2xy increase as y increases; similarly, for a fixed y the
values of f (x, y) ! 0.2xy increase as x increases. This means that as both x and y
increase, the lineal elements almost become vertical and have positive slope ( f (x, y) !
0.2xy & 0 for x & 0, y & 0). In the second quadrant, " f (x, y)" increases as "x " and y
increase, so the lineal elements again become almost vertical but this time have
negative slope ( f (x, y) ! 0.2xy ' 0 for x ' 0, y & 0). Reading from left to right,
imagine a solution curve that starts at a point in the second quadrant, moves steeply
downward, becomes flat as it passes through the y-axis, and then, as it enters the first
quadrant, moves steeply upward—in other words, its shape would be concave
upward and similar to a horseshoe. From this it could be surmised that y : (
as x : )(. Now in the third and fourth quadrants, since f (x, y) ! 0.2xy & 0 and
f (x, y) ! 0.2xy ' 0, respectively, the situation is reversed: A solution curve increases
and then decreases as we move from left to right. We saw in (1) of Section 1.1 that

is an explicit solution of the differential equation dy!dx ! 0.2xy; you
should verify that a one-parameter family of solutions of the same equation is given
by . For purposes of comparison with Figure 2.1.3(a) some representative
graphs of members of this family are shown in Figure 2.1.3(b).

y ! ce0.1x2

y ! e0.1x2

EXAMPLE 2 Direction Field

Use a direction field to sketch an approximate solution curve for the initial-value
problem dy!dx ! sin y, .

SOLUTION Before proceeding, recall that from the continuity of f (x, y) ! sin y and
*f!*y ! cos y, Theorem 1.2.1 guarantees the existence of a unique solution curve
passing through any specified point (x0, y0) in the plane. Now we set our computer soft-
ware again for a 5 # 5 rectangular region and specify (because of the initial condition)
points in that region with vertical and horizontal separation of unit—that is, at
points (mh, nh), , m and n integers such that $10 % m % 10, $10 % n % 10.
The result is shown in Figure 2.1.4. Because the right-hand side of dy!dx ! sin y is 0
at y ! 0, and at y ! $!, the lineal elements are horizontal at all points whose second
coordinates are y ! 0 or y ! $!. It makes sense then that a solution curve passing
through the initial point (0, has the shape shown in the figure.

Increasing/Decreasing Interpretation of the derivative dy!dx as a function
that gives slope plays the key role in the construction of a direction field. Another
telling property of the first derivative will be used next, namely, if dy!dx & 0 (or
dy!dx ' 0) for all x in an interval I, then a differentiable function y ! y(x) is
increasing (or decreasing) on I.
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Example 2 (Zill&Wright p.37-38, Fig. 2.1.4.)

dy
dx = sin y, y(0) = −1.5
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FIGURE 2.1.4 Direction field in
Example 2 on page 37
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REMARKS
Sketching a direction field by hand is straightforward but time consuming; it is
probably one of those tasks about which an argument can be made for doing it
once or twice in a lifetime, but it is overall most efficiently carried out by means
of computer software. Before calculators, PCs, and software the method of
isoclines was used to facilitate sketching a direction field by hand. For the DE
dy!dx ! f (x, y), any member of the family of curves f (x, y) ! c, c a constant,
is called an isocline. Lineal elements drawn through points on a specific iso-
cline, say, f (x, y) ! c1 all have the same slope c1. In Problem 15 in Exercises 2.1
you have your two opportunities to sketch a direction field by hand.

2.1.2 AUTONOMOUS FIRST-ORDER DEs

Autonomous First-Order DEs In Section 1.1 we divided the class of ordi-
nary differential equations into two types: linear and nonlinear. We now consider
briefly another kind of classification of ordinary differential equations, a classifica-
tion that is of particular importance in the qualitative investigation of differential
equations. An ordinary differential equation in which the independent variable does
not appear explicitly is said to be autonomous. If the symbol x denotes the indepen-
dent variable, then an autonomous first-order differential equation can be written as
f (y, y") ! 0 or in normal form as

. (2)

We shall assume throughout that the function f in (2) and its derivative f " are contin-
uous functions of y on some interval I. The first-order equations

f (y) f (x, y)
p p

are autonomous and nonautonomous, respectively.
Many differential equations encountered in applications or equations that are

models of physical laws that do not change over time are autonomous. As we have
already seen in Section 1.3, in an applied context, symbols other than y and x are rou-
tinely used to represent the dependent and independent variables. For example, if t
represents time then inspection of

,

where k, n, and Tm are constants, shows that each equation is time independent.
Indeed, all of the first-order differential equations introduced in Section 1.3 are time
independent and so are autonomous.

Critical Points The zeros of the function f in (2) are of special importance. We
say that a real number c is a critical point of the autonomous differential equation (2)
if it is a zero of f—that is, f (c) ! 0. A critical point is also called an equilibrium
point or stationary point. Now observe that if we substitute the constant function
y(x) ! c into (2), then both sides of the equation are zero. This means:

If c is a critical point of (2), then y(x) ! c is a constant solution of the
autonomous differential equation.

A constant solution y(x) ! c of (2) is called an equilibrium solution; equilibria are
the only constant solutions of (2).

dA
dt

! kA,    
dx
dt

 ! kx(n # 1 $ x),    
dT
dt

! k(T $ Tm),    
dA
dt

! 6 $
1

100
A

dy
dx

! 1 # y2    and    
dy
dx

! 0.2xy

dy
dx

! f (y)
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Euler’s Method

The graphical method of “connecting arrows” on the directional field can
be mathematically thought of as follows:

Initial Point: (x0, y0)
x Increment: x1 = x0 + h

y Increment: y1 = y0 + h
(

dy
dx

∣∣∣∣
x=x0

)
= y0 + hf(x0, y0)

Second Point: (x1, y1)
...

...
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Euler’s Method

Recursive Formula
Let h > 0 be the recursive step size,

xn+1 = xn + h, yn+1 = yn + hf(xn, yn), ∀ n ≥ 0

xn−1 = xn − h, yn−1 = yn − hf(xn, yn), ∀ n ≤ 0
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Illustration
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Remarks

The approximate numerical solution converges to the actual solution
as h → 0.

Euler’s method is just one simple numerical method for solving
differential equations. Chapter 9 of the textbook introduces more
advanced methods.
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Solving (1) Analytically

Recall the first-order ODE (1) we would like to solve

Problem
Find y = ϕ(x) satisfying

dy
dx = f(x, y), subject to y(x0) = y0 (1)

We start by inspecting the equation and see if we can identify some
special structure of it.
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When f(x, y) depends only on x

If f(x, y) = g(x), then by what we learn in Calculus I & II,

dy
dx = g(x) =⇒ y(x) =

∫ x

x0

g(t)dt + y0

Method: Direct Integration
In the first-order ODE (1), if f(x, y) = g(x) only depends on x, it can be
solved by directly integrating the function g(x).
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When f(x, y) depends only on x

Example
Solve

dy
dx =

1

x + ex, subject to y(−1) = 0.

A: From calculus we know that the∫
1

xdx = ln |x|,
∫

exdx = ex

Plugging in the initial condition, we have

y(x) = ln |x|+ ex − 1

e , x < 0.
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When f(x, y) depends only on y

If f(x, y) = h(y), then

dy
dx = h(y) =⇒ dy

h(y) = dx integrate both sides=⇒
∫ y

y0

dy
h(y) = x − x0

Assume that the antiderivative (不定積分、反導函數) of 1/h(y) is H(y).
That is, ∫

1

h(y)dy = H(y).

Then, we have

H(y)− H(y0) = x − x0 =⇒ y(x) = H−1(x − x0 + H(y0))
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When f(x, y) depends only on y

Example

Solve dy
dx = (y − 1)2.

A: Use the same principle, we have

dy
dx = (y − 1)2 =⇒ dy

(y − 1)2
= dx, y ̸= 1

=⇒ 1

1− y = x + c, for some constant c

=⇒ y = 1− 1

x + c , for some constant c, or y = 1

Note: How about the constant function y = 1?
=⇒ y = 1 is called a singular solution.
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Table of Integrals

Function Antiderivative

un un+1

n + 1
+ C, n ̸= −1

u−1 ln |u| + C

au au

ln a
+ C

sin u − cos u + C
cos u sin u + C
tan u − ln | cos u| + C
cot u ln | sin u| + C

1

a2 + u2

1

a
tan−1 u

a
+ C

1
√

a2 − u2
sin−1 u

a
+ C

...
...
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Separable Equations: dy
dx = f(x, y) = g(x)h(y)

Definition (Separable Equations)
If in (1) the function f(x, y) on the right hand side takes the form
f(x, y) = g(x)h(y),, we call the first-order ODE separable, or to have
separable variables.

Example (Are the following equations separable?)
dy
dx = x + y No.
dy
dx = ex+y Yes.
dy
dx = x + y + xy + 1 Yes, ∵ x + y + xy + 1 = (x + 1)(y + 1).
dy
dx = x + y + xy No.
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Separable Equations: dy
dx = f(x, y) = g(x)h(y)

General Procedure of Solving a Separable DE

1 分別移項: dy
h(y) = g(x)dx. 若分母h(y) = 0, singular solutions!

2 兩邊積分:
∫ dy

h(y) =

∫
g(x)dx =⇒ H(y) = G(x) + c.

3 代入條件: c = H(y0)− G(x0).
4 取反函數: y = H−1(G(x) + H(y0)− G(x0)).

Don’t forget to check singular solutions!
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Example

Example

Solve dy
dx = kx

y subject to (i) k = −1, y(−1) = −1; (ii) k = 1, y(0) = 1.

A: dy
dx = kx

y =⇒
∫

y dy =

∫
kx dx =⇒ y2 = kx2 + c.

Note that we require y ̸= 0 so that the derivate dy
dx is well-defined.

(i) Plug in the initial condition, we have: c = 1 + 1 = 2.
Hence y = −

√
2− x2, for x ∈

(
−
√
2,
√
2
)
.

(ii) Plug in the initial condition, we have: c = 0 + 1 = 1.
Hence y =

√
x2 + 1, for x ∈ R.
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Example

Solve dy
dx = x√y subject to y(0) = 0.

A: dy
dx = x√y y̸=0=⇒

∫
y−1/2 dy =

∫
x dx =⇒ 2

√y =
1

2
x2 + c.

Plug in the initial condition, we have c = 0 =⇒ y = x4/16.

Check the singular solution y = 0
=⇒ y = 0 is also a solution (trivial, singular).

Both y = x4/16 and y = 0 are solutions to the initial-value problem.
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More Examples

Example

Solve dy
dx = ex+y, subject to y(0) = 0.

Example

Solve dy
dx = x + y + xy + 1, subject to y(0) = −1.

Example

Solve dy
dx = y2 + 1, subject to y(0) = 0.
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Linear Equations

Linear First-Order ODE: such an ODE takes the following general form:

a1(x)
dy
dx + a0(x)y = g(x).

The Standard Form of a Linear First-Order ODE
Find y = ϕ(x) satisfying

dy
dx + P(x)y = f(x), subject to y(x0) = y0 (2)
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Useful Observations

Consider the derivative of the product of y(x) and some function µ(x):

d (µy)
dx = µ

dy
dx + ydµ

dx

= µ {−P(x)y + f(x)}+ ydµ
dx (Plug in (2))

= µ(x)f(x) +
{

dµ
dx − P(x)µ

}
y

Observation: If we can force the term
{

dµ
dx − P(x)µ

}
to zero, then we

can solve µ(x)y(x) by directly integrating µ(x)f(x)!

=⇒ We need to solve an auxiliary (輔助的) DE first: dµ
dx = P(x)µ.
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Example

Example (A Linear First-Order ODE, part 1)

Solve dy
dx = x + y, y(0) = 2.

Deriving the Auxiliary DE:

d (µy)
dx = µ

dy
dx + ydµ

dx

= µ {x + y}+ ydµ
dx (Plug in dy

dx = x + y)

= µx +
{

dµ
dx + µ

}
y (3)

=⇒ Auxiliary DE: find some µ(x) such that dµ
dx + µ = 0.
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Solving an Auxiliary DE to Find an Integrating Factor

Auxiliary DE
Find an µ(x) satisfying

dµ
dx = P(x)µ

Note that we only need to find one such µ (called an integrating factor)

A: This is easy to solve by Separation of Variables:
dµ
µ

= P(x)dx =⇒ ln |µ| =
∫

P(x)dx + c

We shall pick c = 0 and restrict µ to be positive to get one solution:

µ(x) = e
∫

P(x)dx.
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Example (continued)
Example (A Linear First-Order ODE, part 2)

Solve dy
dx = x + y, y(0) = 2.

Solving the Auxiliary DE: Find some µ(x) such that dµ
dx + µ = 0.

This is easy to solve by Separation of Variables:
dµ
µ

= −dx =⇒ ln |µ| = −x + c c=0,µ>0=⇒ µ(x) = e−x.

Solving the Original DE: Plugging µ(x) = e−x into (3), we have
d (e−xy)

dx = xe−x

=⇒ e−xy = −xe−x − e−x + 3 Plug in y(0) = 2 to find the constant 3

=⇒ y = −x − 1 + 3ex, x ∈ R
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Singular Points

Consider a general linear first-order ODE:

a1(x)
dy
dx + a0(x)y = g(x).

When rewriting the original linear equation into its standard form, that is,
when we what to figure out how to represent dy

dx in terms of linear
combinations of y and functions of x, we need to divide everything by the
coefficient a1(x):

dy
dx +

a0(x)
a1(x)

y =
g(x)
a1(x)

.

Here we implicitly impose the condition that a1(x) ̸= 0.
The points at which a1(x) = 0 are called singular points.
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Solving the Linear First-Order ODE

General Procedure of Solving a Linear First-Order ODE

1 寫成標準式: Rewrite the give ODE into the form dy
dx +P(x)y = f(x).

若分母= 0, exclude the singular points from the interval of solutions.

2 導出輔助式: Introduce an integrating factor µ(x) and derive the
auxiliary equation of µ to find µ such that d(µy)

dx = µ(x)f(x).

3 解輔助式: Find one µ satisfying the auxiliary DE dµ
dx = P(x)µ.

4 解原式: Plug in the integrating factor µ(x) we found and solve
µ(x)y by directly integrating µ(x)f(x).
Check if the singular points can be included into the interval of solutions.
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Example

Example (A Linear First-Order ODE, part 1)

Solve (x2 − 9)
dy
dx + xy = 0, y(0) = 2.

Deriving the Auxilary DE:

d (µy)
dx = µ

dy
dx + ydµ

dx

= µ

{
−xy

x2 − 9

}
+ ydµ

dx (Plug in dy
dx =

−xy
x2 − 9

, x ̸= ±3)

=

{
dµ
dx − µ

x
x2 − 9

}
y (4)

=⇒ Auxiliary DE: find some µ(x) such that dµ
dx − µ

x
x2 − 9

= 0.
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Example (continued)

Example (A Linear First-Order ODE, part 2)

Solve (x2 − 9)
dy
dx + xy = 0, y(0) = 2.

Solving the Auxiliary DE: Find some µ(x) such that dµ
dx −µ

x
x2 − 9

= 0.

dµ
µ

=
x

x2 − 9
dx =

{ 1
2

x − 3
+

1
2

x + 3

}
dx

=⇒ ln |µ| = 1

2
ln |x − 3|+ 1

2
ln |x + 3|

=⇒ µ(x) =
√
9− x2, −3 < x < 3 (Because initial point is x = 0!)
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Example (continued)

Example (A Linear First-Order ODE, part 3)

Solve (x2 − 9)
dy
dx + xy = 0, y(0) = 2.

Solving the Original DE: Plugging µ(x) =
√
9− x2 into (4), we have

d
(√

9− x2y
)

dx = 0

=⇒
√
9− x2y = 6 Plug in y(0) = 2 to find the constant 6

=⇒ y =
6√

9− x2
, −3 < x < 3
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A Remark on Singular Points

In the above example, the solution is undefined at the singular points
x = ±3. However, it is possible that the final solution can be defined at
the excluded singular points. See Example 3 in Section 2-3 on Page 57.

This becomes important if the initial point is a singular point.

Example

Solve xdy
dx = 4y + x6ex, y(0) = 0.

Using the same method, we have y = x4(xex − ex + c). But the interval
of solution cannot contain x = 0. However, one can check that the
function and its derivative are both continuous at x = 0. Hence we can
include it and find that y = x4(xex − ex + c) is a solution to the
initial-value problem for any c ∈ R.
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A Trick

When a first-order ODE (1) is not linear in terms of y′ = dy
dx and y but

linear in terms of x and dx
dy = 1

y′ , we can first solve x as a function of y
and then take the inverse function to find y(x).

Example
Solve dy

dx = 1
x+y .

A: We already know that the solution to dx
dy = x + y is

x = −y − 1 + cey,

which is an implicit solution.
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Discontinuous Coefficients

What if coefficients are discontinuous?

Example

Solve dy
dx + y = f(x), y(1) = 1− e−1, f(x) =

{
1, x ≤ 1
0, x > 1

If they are piecewise continuous and only discontinuous at finitely many
points, we can solve the equations on each interval and “stitch” them
together.

See Example 6 in Section 2-3 on Page 59.
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Solutions Defined by Integrals

What if we cannot find a closed-form antiderivative?
For example,

∫
e−t2dt.

We can express the solution in terms of integrals.

Some classes of these integrals are defined as special functions, and
many properties are derived. For example, error functions, Bessel
functions, Gamma functions, etc.

See Example 7 in Section 2-3 on Page 60.
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Short Recap

First-Order ODE

Graphical Methods: solution curves without a solution

A Numerical Method: Euler’s method

Separable Equations: solve by separation of variables

Linear Equations: solve an auxiliary DE to find an integrating factor

Watch out: singular solutions and interval of the solution
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Self-Practice Exercises

2-2: 1, 9, 13, 19, 25, 27, 31, 39, 41, 49

2-3: 3, 9, 13, 17, 25, 29, 35, 39
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