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Overview

First-Order Differential Equation

Throughout Chapter 2, we focus on solving the first-order ODE:

Find y = ¢(x) satisfying

dy

= f(z, y), subject to y(z) = %o (1)
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Overview

Methods of Solving First-Order ODE

Graphical Method (2-1)

Numerical Method (2-6, 9)

Analytic Method

Take antiderivative (Calculus I, 1)

Separable Equations (2-2)

Solving Linear Equations (2-3)

Solving Exact Equations (2-4)

Solutions by Substitutions (2-5):

homogeneous equations, Bernoulli's equation, 4 = Az + By + C.

Series Solution (6)
Transformation

m Laplace Transform (7)
m Fourier Series (11)
m Fourier Transform (14)
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Overview

Organization of Lectures in Chapter 2 and 3

We will not follow the order in the textbook. Instead,

BRATY
Separable
DE (2-2)
E): 3N 42 MEDE Linear
(2-1) (2-3) Models (3-1)
HERE Exact DE Nonlinear
(2-6) (2-4) Models (3-2)
(2-5)
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Solution Curves without a Solution

Example 1 (Zill&Wright p.36, Fig. 2.1.1.)
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Solution Curves without a Solution

Direction Fields

Key Observation
On the zy-plane, at a point (z,, y,), the first-order derivative

ay
dx

=

is the slope of the tangent line of the curve y(z) at (z,, yn).

Hence, at every point on the xy-plane, one can in principle sketch an
arrow indicating the direction of the tangent line.

From the initial point (2o, yo), one can connect all the arrows one by one
and then sketch the solution curve. (L7&kR4H | )
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Solution Curves without a Solution

Example 1 (Zill&Wright p.37

. Fig. 2.1.3))
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Solution Curves without a Solution

Example 2 (Zill&Wright p.37-38, Fig. 2.1.4.)
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A Numerical Method

A Numerical Method
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A Numerical Method

Euler's Method

The graphical method of “connecting arrows” on the directional field can
be mathematically thought of as follows:

Initial Point: (70, yo)

z Increment: rn=xz9+h
dy

y Increment: m=v+h = = yo + hf(z0, %0)
z T=To

Second Point: (z1,91)
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A Numerical Method

Euler's Method

Recursive Formula

Let h > 0 be the recursive step size,

Tntl = Tp + h, Yntl = Yn + hf(xm yn)v Vn>0
Tp—1 — Zp)— b} Yn—1 = Yn — hf(xm yn)v Vn<0
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A Numerical Method

[llustration
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A Numerical Method

[llustration
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A Numerical Method

[llustration
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A Numerical Method

Remarks

m The approximate numerical solution converges to the actual solution
as h— 0.

m Euler's method is just one simple numerical method for solving
differential equations. Chapter 9 of the textbook introduces more
advanced methods.
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Separable Equations

B Separable Equations
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Separable Equations

Solving (1) Analytically

Recall the first-order ODE (1) we would like to solve

Problem
Find y = ¢(x) satisfying
dy .
o = f(#:y), subject to y(z) = yo (1)

We start by inspecting the equation and see if we can identify some
special structure of it.
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Separable Equations

When f(z, y) depends only on z

If f(z,y) = g(x), then by what we learn in Calculus | & II,

V@) = o) = [ aide+m

0

Method: Direct Integration

In the first-order ODE (1), if f(z, y) = g(x) only depends on z, it can be
solved by directly integrating the function g(z).
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Separable Equations

When f(z, y) depends only on z

Solve

dy 1
i + ¢, subject to y(—1) =0

A: From calculus we know that the

1
/fd:c:ln\xh /ezdxzez
T

Plugging in the initial condition, we have

1
ylz) =In|z|+ ¢ — -, z<0.
e

EX 3] DE Lecture 2



Separable Equations

When f(z, y) depends only on y

If f(z, y) = h(y), then

@ o h(y) — dy _ dIintegratgth sides /y dy —z— 1
Yo

do h(y) h(y)
Assume that the antiderivative (R £ % ~ R ¥ &%) of 1/h(y) is H(y).
That is,

1
/@dy: H(y).

Then, we have

H(y) — H(yo) = v~ 10 = y(a) = H ' (z— 20 + H())
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Separable Equations

When f(z, y) depends only on y

dy
Solve -2 = (y—1)%.
olve — (y—1)
A: Use the same principle, we have

W:dw, y#1

1
T2 T+ ¢, for some constant ¢
-y

dy 2
_——= _ 1
T (y—1)° =

1
= y=1— ——, for some constant ¢, or y=1
T+ c

Note: How about the constant function y =17
—> y =1 is called a singular solution.
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Separable Equations

Table of Integrals

Function

sin u
COos u
tan u

cot u
a? + u?

2 — w2

#

Antiderivative

un+ 1

n+1
In|u| + C

a¥

E"‘C
—cosu+ C
sinu+ C
—In|cosu|l + C
In|sinu| + C

+ C, n# -1

1 L u
7tan17+C
a a

1 U

sin -+ C
a
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Separable Equations

Separable Equations

Definition (Separable Equations)

If in (1) the function f(z, y) on the right hand side takes the form
Az, y) = g(x)h(y),, we call the first-order ODE separable, or to have
separable variables.

Example (Are the following equations separable?)
dy _
m o =2+ y No.
m % = Y Yes.

m E=atytay+lYes, cotytay+l=(a+1)(y+1).

[ %:x—i—y—i—xyNo.
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Separable Equations

Separable Equations

General Procedure of Solving a Separable DE

L2 R by _ ﬁ % m#& %%, check singular solutions!
h(y) — 9(z)
R PO /ﬂ:/ﬁ = H(y) = G(z) + c.
h(y) 9(z)

RAMEAE: ¢ = H(yo) — G(a0).
RREH: y— H(G(0) + Hiyo) — Glao)).

Don't forget to check singular solutions!
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Separable Equations

Example

Solve %’ = k2 subject to (i) k= —1,y(—1) = —1; (i) k= 1, y(0) = 1.
r

'd—m—k = /ydy—/kxd:r — P =k’+c
Note that we require y # 0 so that the derivate an; is well-defined.
(i) Plug in the initial condition, we have: ¢c=1+4+1=2.

Hence y = —v2 — 22, for z € (—v/2,/2).
(ii) Plug in the initial condition, we have: ¢=0+1=1.
Hence y = v22 + 1, for z € R.
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Separable Equations

Example

Example

d
Solve ¥ — y subject to y(0) = 0.
dx
d
A:d—y: yio/_1/2dy—/xdx:>2\[ fm2+c
x
Plug in the initial condition, we have c =0 — y=2 /16

Check the singular solution y =0
= y =0 is also a solution (trivial, singular).

Both y = 2*/16 and y = 0 are solutions to the initial-value problem.
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Separable Equations

More Examples

Example

i: e*TY, subject to y(0) = 0.

Solve

Example

|
<

Solve = z+ y+ zy+ 1, subject to y(0) = —1.
T

SENE

d
Solve d_z = ¢ + 1, subject to y(0) = 0.
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by Integrals

Linear Equations

Linear Equations
m Method
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Method

Linear Equations

Linear Equations

Linear First-Order ODE: such an ODE takes the following general form:

The Standard Form of a Linear First-Order ODE

Find y = ¢(x) satisfying

Z_z + P(z)y = flx), subject to y(z0) = o (2)
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Linear Equations

Useful Observations

Consider the derivative of the product of y(x) and some function pu(x):
dpy)  dy | du
de a dx ty dx
d .
= u{~P(a)y+f)} +y=  (Plugin (2))

dr
= () f(z) + {(Z - P(ﬂ?)u}y

dp
dx

can solve u(z)y(z) by directly integrating p(z)f(z)!

Observation: If we can force the term { — P(.’[})/L} to zero, then we

= We need to solve an auxiliary (#4581 85) DE first: % = P(z)p.
z
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Linear Equations

Example

Example (A Linear First-Order ODE, part 1)

dy
Solve -2 = 0) = 2.
olve — =z+y, y(0)

Deriving the Auxiliary DE:

d(py) _ dy  du
&  FutVm
=pf{z+y}+ du (Plu in@*$+ )
=plotyb+y gin o =ty

_ du
—px—&-{dx —Ht}y (3)

q
= Auxiliary DE: find some p(z) such that d—u +u=0.
T
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Linear Equations

Solving an Auxiliary DE to Find an Integrating Factor

Auxiliary DE

Find an u(z) satisfying

dp
T _p
7 = D@n
Note that we only need to find one such p (called an integrating factor)

A: This is easy to solve by Separation of Variables:

d
o P(z)de = In|u| = /P(m)da:+ c
I
We shall pick ¢ = 0 and restrict 11 to be positive to get one solution:

H(I) _ ef P(z)dm.
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Linear Equations

Example (continued)

Example (A Linear First-Order ODE, part 2)

dy
lve —= = =92
Solve e z+y, y(0)

d
Solving the Auxiliary DE: Find some p(z) such that d—'u +p=0.
z

This is easy to solve by Separation of Variables:
d =
e In|pul=—-z+c¢ 20 w(z) =e "
H
Solving the Original DE: Plugging u(z) = e~ into (3), we have

d —T

(ey) _ o
dz

= e "y=—ze

= y=—z—1+3€" z€R

EX 3] DE Lecture 2

T—e+3 Plgin y(0) = 2 to find the constant 3



Linear Equations

Singular Points

Consider a general linear first-order ODE:

dy
a1 (z)— + ao(z)y = g(x).
1(2)—- + ao(2)y = 9(2)
When rewriting the original linear equation into its standard form, that is,
when we what to figure out how to represent % in terms of linear
combinations of y and functions of x, we need to divide everything by the
coefficient agp(z):

dy  ao(x)  g(2)
dx al(x)y_ '

Here we implicitly impose the condition that a1 (z) # 0.
The points at which a;(z) = 0 are called singular points.
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Linear Equations

Solving the Linear First-Order ODE

General Procedure of Solving a Linear First-Order ODE

B A% % A Rewrite the give ODE into the form (jl—z + P(z)y = f(z).

% =0, exclude the singular points from the interval of solutions.

o ##HB) X Introduce an integrating factor y(z) and derive the

d
auxiliary equation of y to find p such that (5y) = p(z)f(z).
T

]

. . d,
#3458 A.: Find one p satisfying the auxiliary DE d—u = P(z)p.
7
#% )8 A.: Plug in the integrating factor p(z) we found and solve

wu(x)y by directly integrating u(z)f(z).
Check if the singular points can be included into the interval of solutions.
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Method

Linear Equations

Example

Example (A Linear First-Order ODE, part 1)

Solve (2 — 9)% +2y=0, y(0) =2.

Deriving the Auxilary DE:

d(py dy  dp
() _ dy  dn

dr — "dz dzr
:M{x;fyg} + y% (Plug in % = x;fyg x# £3)
={Cf]i—um2x9}y (4)
= Auxiliary DE: find some p(z) such that du 1] RE—)
dz 2 -9
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Method

Linear Equations

Example (continued)

Example (A Linear First-Order ODE, part 2)
d
Solve (2% — 9)d—Z +zy=10, y(0) = 2.

q
Solving the Auxiliary DE: Find some () such that a ‘

L ~0.
dr P29

d 1 1

@z dr = 2 _ 4 2 dz

w2 —9 z—3 zx+3

1 1
= ln\,u|:§1n|x—3|+§ln|x+3|

= u(z) =vV9—22, —3<ax<3 (Because initial point is z = 0!)
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Method

Linear Equations

Example (continued)

Example (A Linear First-Order ODE, part 3)
d
Solve (2% — 9)% +zy=0, y(0)=2.

Solving the Original DE: Plugging u(z) = v9 — 22 into (4), we have

d (V9 — 22y) _0
dx

— 9 — Izy =6 Plugin y(0) = 2 to find the constant 6

9 — g2
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Linear Equations

A Remark on Singular Points

In the above example, the solution is undefined at the singular points
= +3. However, it is possible that the final solution can be define at
the excluded singular points. See Example 3 in Section 2-3 on Page 57.

This becomes important if the initial point is a singular point.

Example

|

Solve ngzl: =4y +25%¢%, y(0) =0.

Using the same method, we have y = 2*(ze® — e + ¢). But the interval
of solution cannot contain z = 0. However, one can check that the
function and its derivative are both continuous at z = 0. Hence we can
include it and find that y = 7*(ze® — €* + ¢) is a solution to the
initial-value problem for any ¢ € R.
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Method

Linear Equations

A Trick

When a first-order ODE (1) is not linear in terms of 3 = % and y but
linear in terms of z and Z—Z = y,, we can first solve x as a function of y
and then take the inverse function to find y(z).

dy = L
Solve prrrd
A: We already know that the solution to @ =x+yis

r=—y—1+ce’,

which is an implicit solution.
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Method
Discontinuous Coefficients
Solutions/Functions Defined by Integrals

Linear Equations

Linear Equations

m Discontinuous Coefficients
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d
tinuous Coefficients
ns/Functions Defined by Integrals

Linear Equations

Discontinuous Coefficients

What if coefficients are discontinuous?

Example

dy B . 1, z<1
Solve%+y—f($)7 y1)=1-e ,f(x)—{07 z>1

If they are piecewise continuous and only discontinuous at finitely many
points, we can solve the equations on each interval and “stitch” them
together.

See Example 6 in Section 2-3 on Page 59.
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ns Defined by Integrals

Linear Equations

Linear Equations

m Solutions/Functions Defined by Integrals
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ients

Linear Equations unctions Defined by Integrals

Solutions Defined by Integrals

What if we cannot find a closed-form antiderivative?
2
For example, [ e~ dt.

We can express the solution in terms of integrals.
Some classes of these integrals are defined as special functions, and
many properties are derived. For example, error functions, Bessel

functions, Gamma functions, etc.

See Example 7 in Section 2-3 on Page 60.
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Summary

@ Summary
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Summary

Short Recap

m First-Order ODE

m Graphical Methods: solution curves without a solution

m A Numerical Method: Euler's method

m Separable Equations: solve by separation of variables

m Linear Equations: solve an auxiliary DE to find an integrating factor

m Watch out: singular solutions and interval of the solution
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Summary

Self-Practice Exercises

2-2: 1,9, 13, 19, 25, 27, 31, 39, 41, 49

2-3: 3,9, 13, 17, 25, 29, 35, 39
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