Chapter 2：First－Order Differential Equations－ Part 1

王奕翔
Department of Electrical Engineering National Taiwan University
ihwang＠ntu．edu．tw

September 13， 2013

1 Overview

2 Solution Curves without a Solution

3 A Numerical Method

4 Separable Equations

1 Overview

2 Solution Curves without a Solution

3 A Numerical Method

4 Separable Equations

First－Order Differential Equation

Throughout Chapter 2，we focus on solving the first－order ODE：

Problem

Find $y=\phi(x)$ satisfying

$$
\begin{equation*}
\frac{d y}{d x}=f(x, y), \text { subject to } y\left(x_{0}\right)=y_{0} \tag{1}
\end{equation*}
$$

Methods of Solving First－Order ODE

1 Graphical Method（2－1）
\simeq Numerical Method（2－6，9）
3 Analytic Method
－Take antiderivative（Calculus I，II）
－Separable Equations（2－2）
－Solving Linear Equations（2－3）
－Solving Exact Equations（2－4）
－Solutions by Substitutions（2－5）： homogeneous equations，Bernoulli＇s equation，$y^{\prime}=A x+B y+C$ ．

4 Series Solution（6）
5 Transformation
－Laplace Transform（7）
－Fourier Series（11）
－Fourier Transform（14）

Organization of Lectures in Chapter 2 and 3

We will not follow the order in the textbook．Instead，

1 Overview

2 Solution Curves without a Solution

3 A Numerical Method

4 Separable Equations

Example 1 （Zill\＆Wright p．36，Fig．2．1．1．）

$$
\frac{d y}{d x}=0.2 x y
$$

Direction Fields

Key Observation

On the $x y$－plane，at a point $\left(x_{n}, y_{n}\right)$ ，the first－order derivative

$$
\left.\frac{d y}{d x}\right|_{x=x_{n}}
$$

is the slope of the tangent line of the curve $y(x)$ at $\left(x_{n}, y_{n}\right)$ ．

Hence，at every point on the $x y$－plane，one can in principle sketch an arrow indicating the direction of the tangent line．

From the initial point $\left(x_{0}, y_{0}\right)$ ，one can connect all the arrows one by one and then sketch the solution curve．（土法煉銅！）

Example 1 （Zill\＆Wright p．37，Fig．2．1．3．）

$$
\frac{d y}{d x}=0.2 x y
$$

Figure ：Direction Field

Figure：Family of Solution Curves

Example 2 （Zill\＆Wright p．37－38，Fig．2．1．4．）

$$
\frac{d y}{d x}=\sin y, y(0)=-1.5
$$

2 Solution Curves without a Solution

3 A Numerical Method

4 Separable Equations

Euler＇s Method

The graphical method of＂connecting arrows＂on the directional field can be mathematically thought of as follows：

Initial Point：$\quad\left(x_{0}, y_{0}\right)$
x Increment：$\quad x_{1}=x_{0}+h$
y Increment：
$y_{1}=y_{0}+h\left(\left.\frac{d y}{d x}\right|_{x=x_{0}}\right)=y_{0}+h f\left(x_{0}, y_{0}\right)$
Second Point：$\quad\left(x_{1}, y_{1}\right)$

Euler＇s Method

Recursive Formula

Let $h>0$ be the recursive step size，

$$
\begin{array}{lll}
x_{n+1}=x_{n}+h, & y_{n+1}=y_{n}+h f\left(x_{n}, y_{n}\right), & \forall n \geq 0 \\
x_{n-1}=x_{n}-h, & y_{n-1}=y_{n}-h f\left(x_{n}, y_{n}\right), & \forall n \leq 0
\end{array}
$$

Illustration

Illustration

Illustration

Remarks

－The approximate numerical solution converges to the actual solution as $h \rightarrow 0$ ．
－Euler＇s method is just one simple numerical method for solving differential equations．Chapter 9 of the textbook introduces more advanced methods．

1 Overview

2 Solution Curves without a Solution

3 A Numerical Method

4 Separable Equations

Solving（1）Analytically

Recall the first－order ODE（1）we would like to solve

Problem

Find $y=\phi(x)$ satisfying

$$
\begin{equation*}
\frac{d y}{d x}=f(x, y), \text { subject to } y\left(x_{0}\right)=y_{0} \tag{1}
\end{equation*}
$$

We start by inspecting the equation and see if we can identify some special structure of it．

When $f(x, y)$ depends only on x

If $f(x, y)=g(x)$ ，then by what we learn in Calculus I \＆II，

$$
\frac{d y}{d x}=g(x) \Longrightarrow y(x)=\int_{x_{0}}^{x} g(t) d t+y_{0}
$$

Method：Direct Integration
In the first－order ODE（1），if $f(x, y)=g(x)$ only depends on x ，it can be solved by directly integrating the function $g(x)$ ．

When $f(x, y)$ depends only on x

Example

Solve

$$
\frac{d y}{d x}=\frac{1}{x}+e^{x}, \text { subject to } y(-1)=0 .
$$

A：From calculus we know that the

$$
\int \frac{1}{x} d x=\ln |x|, \quad \int e^{x} d x=e^{x}
$$

Plugging in the initial condition，we have

$$
y(x)=\ln |x|+e^{x}-\frac{1}{e}, x<0 .
$$

When $f(x, y)$ depends only on y

If $f(x, y)=h(y)$ ，then

$$
\frac{d y}{d x}=h(y) \Longrightarrow \frac{d y}{h(y)}=d x \stackrel{\text { integrate both sides }}{\Longrightarrow} \int_{y_{0}}^{y} \frac{d y}{h(y)}=x-x_{0}
$$

Assume that the antiderivative（不定積分，反導函數）of $1 / h(y)$ is $H(y)$ ． That is，

$$
\int \frac{1}{h(y)} d y=H(y)
$$

Then，we have

$$
H(y)-H\left(y_{0}\right)=x-x_{0} \Longrightarrow y(x)=H^{-1}\left(x-x_{0}+H\left(y_{0}\right)\right)
$$

When $f(x, y)$ depends only on y

Example

Solve $\frac{d y}{d x}=(y-1)^{2}$ ．
A：Use the same principle，we have

$$
\begin{aligned}
\frac{d y}{d x}=(y-1)^{2} & \Longrightarrow \frac{d y}{(y-1)^{2}}=d x, y \neq 1 \\
& \Longrightarrow \frac{1}{1-y}=x+c, \text { for some constant } c \\
& \Longrightarrow y=1-\frac{1}{x+c}, \text { for some constant } c, \text { or } y=1
\end{aligned}
$$

Note：How about the constant function $y=1$ ？
$\Longrightarrow y=1$ is called a singular solution．

Table of Integrals

$$
\begin{aligned}
& \text { Function } \\
& u^{n} \\
& u^{-1} \\
& a^{u} \\
& \sin u \\
& \cos u \\
& \tan u \\
& \cot u \\
& \frac{1}{a^{2}+u^{2}} \\
& \frac{1}{\sqrt{a^{2}-u^{2}}}
\end{aligned}
$$

Antiderivative

$$
\begin{aligned}
& \frac{u^{n+1}}{n+1}+C, n \neq-1 \\
& \ln |u|+C \\
& \frac{a^{u}}{\ln a}+C \\
& -\cos u+C \\
& \sin u+C \\
& -\ln |\cos u|+C \\
& \ln |\sin u|+C \\
& \frac{1}{a} \tan ^{-1} \frac{u}{a}+C \\
& \sin ^{-1} \frac{u}{a}+C
\end{aligned}
$$

Separable Equations

Definition（Separable Equations）

If in（1）the function $f(x, y)$ on the right hand side takes the form $f(x, y)=g(x) h(y)$ ，we call the first－order ODE separable，or to have separable variables．

Example（Are the following equations separable？）

－$\frac{d y}{d x}=x+y$ No．
－$\frac{d y}{d x}=e^{x+y}$ Yes．
■ $\frac{d y}{d x}=x+y+x y+1$ Yes，$\because x+y+x y+1=(x+1)(y+1)$ ．
－$\frac{d y}{d x}=x+y+x y$ No．

Separable Equations

General Procedure of Solving a Separable DE

1 分別移項：$\frac{d y}{h(y)}=\frac{d x}{g(x)}$ ．若分母會為零，check singular solutions！
2 雨邊積分： $\int \frac{d y}{h(y)}=\int \frac{d x}{g(x)} \Longrightarrow H(y)=G(x)+c$ ．
3 代入條件：$c=H\left(y_{0}\right)-G\left(x_{0}\right)$ ．
4 取反函數：$y=H^{-1}\left(G(x)+H\left(y_{0}\right)-G\left(x_{0}\right)\right)$ ．
Don＇t forget to check singular solutions！

