Chapter 2: First-Order Differential Equations – Part 1

王奕翔

Department of Electrical Engineering National Taiwan University

ihwang@ntu.edu.tw

September 12, 2013

1 Overview

2 Solution Curves without a Solution

- 3 A Numerical Method
- 4 Separable Equations

- 1 Overview
- 2 Solution Curves without a Solution
- 3 A Numerical Method

4 Separable Equations

First-Order Differential Equation

Throughout Chapter 2, we focus on solving the first-order ODE:

Problem

Find $y = \phi(x)$ satisfying

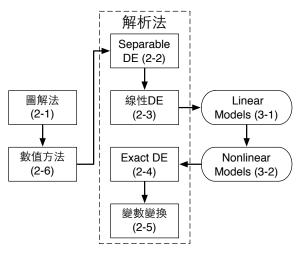
$$\frac{dy}{dx} = f(x, y), \text{ subject to } y(x_0) = y_0 \tag{1}$$

Methods of Solving First-Order ODE

- **1** Graphical Method (2-1)
- Numerical Method (2-6, 9)
- 3 Analytic Method
 - Take antiderivative (Calculus I, II)
 - Separable Equations (2-2)
 - Solving Linear Equations (2-3)
 - Solving Exact Equations (2-4)
 - Solutions by Substitutions (2-5): homogeneous equations, Bernoulli's equation, y' = Ax + By + C.
- Series Solution (6)
- **5** Transformation
 - Laplace Transform (7)
 - Fourier Series (11)
 - Fourier Transform (14)

Organization of Lectures in Chapter 2 and 3

We will not follow the order in the textbook. Instead,

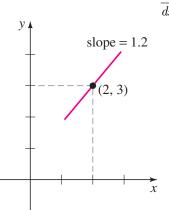


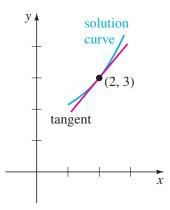
- 1 Overview
- 2 Solution Curves without a Solution

3 A Numerical Method

4 Separable Equations

Example 1 (Zill&Wright p.36, Fig. 2.1.1.)





Direction Fields

Key Observation

On the xy-plane, at a point (x_n, y_n) , the first-order derivative

$$\left. \frac{dy}{dx} \right|_{x=x_n}$$

is the slope of the tangent line of the curve y(x) at (x_n, y_n) .

Hence, at every point on the xy-plane, one can *in principle* sketch an arrow indicating the direction of the tangent line.

From the initial point (x_0, y_0) , one can connect all the arrows one by one and then sketch the solution curve. (土法煉鋼!)

Example 1 (Zill&Wright p.37, Fig. 2.1.3.)

$$\frac{dy}{dx} = 0.2xy$$

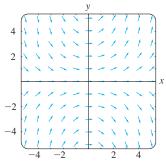


Figure: Direction Field

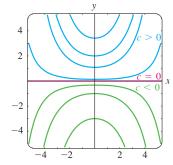
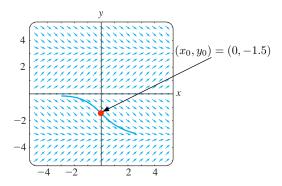


Figure: Family of Solution Curves

Example 2 (Zill&Wright p.37-38, Fig. 2.1.4.)

$$\frac{dy}{dx} = \sin y, \ y(0) = -1.5$$



- 1 Overview
- 2 Solution Curves without a Solution

3 A Numerical Method

4 Separable Equations

Euler's Method

The graphical method of "connecting arrows" on the directional field can be mathematically thought of as follows:

Initial Point:
$$(x_0,y_0)$$
 x Increment:
$$x_1 = x_0 + h$$
 y Increment:
$$y_1 = y_0 + h \left(\frac{dy}{dx} \Big|_{x=x_0} \right) = y_0 + h f(x_0,y_0)$$
 Second Point:
$$(x_1,y_1)$$
 \vdots \vdots

Euler's Method

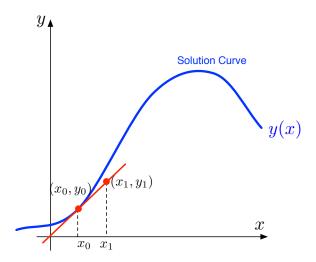
Recursive Formula

Let h > 0 be the recursive step size,

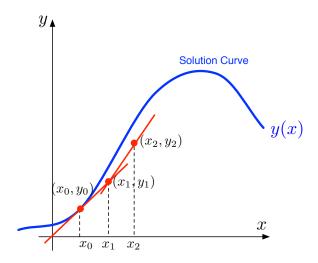
$$x_{n+1} = x_n + h,$$
 $y_{n+1} = y_n + hf(x_n, y_n),$ $\forall n \ge 0$

$$x_{n-1} = x_n - h,$$
 $y_{n-1} = y_n - hf(x_n, y_n),$ $\forall n \le 0$

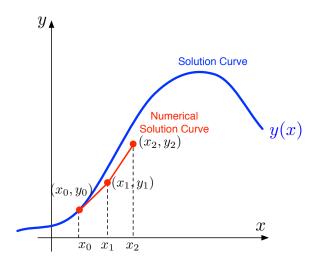
Illustration



Illustration



Illustration



Remarks

- The approximate numerical solution converges to the actual solution as $h \rightarrow 0$.
- Euler's method is just one simple numerical method for solving differential equations. Chapter 9 of the textbook introduces more advanced methods.

- 1 Overview
- 2 Solution Curves without a Solution
- 3 A Numerical Method

4 Separable Equations

Solving (1) Analytically

Recall the first-order ODE (1) we would like to solve

Problem

Find $y = \phi(x)$ satisfying

$$\frac{dy}{dx} = f(x, y), \text{ subject to } y(x_0) = y_0$$
 (1)

We start by inspecting the equation and see if we can identify some special structure of it.

When f(x, y) depends only on x

If f(x, y) = g(x), then by what we learn in Calculus I & II,

$$\frac{dy}{dx} = g(x) \implies y(x) = \int_{x_0}^x g(t) dt + y_0$$

Method: Direct Integration

In the first-order ODE (1), if f(x,y)=g(x) only depends on x, it can be solved by directly integrating the function g(x).

When f(x, y) depends only on x

Example

Solve

$$\frac{dy}{dx} = \frac{1}{x} + e^x$$
, subject to $y(-1) = 0$.

A: From calculus we know that the

$$\int \frac{1}{x} dx = \ln|x|, \int e^x dx = e^x$$

Plugging in the initial condition, we have

$$y(x) = \ln|x| + e^x - \frac{1}{e}, \ x < 0.$$

When f(x, y) depends only on y

If f(x, y) = h(y), then

$$\frac{dy}{dx} = h(y) \implies \frac{dy}{h(y)} = dx \stackrel{\text{integrate both sides}}{\Longrightarrow} \int_{y_0}^y \frac{dy}{h(y)} = x - x_0$$

Assume that the antiderivative (不定積分、反導函數) of 1/h(y) is H(y). That is,

$$\int \frac{1}{h(y)} \, dy = H(y).$$

Then, we have

$$H(y) - H(y_0) = x - x_0 \implies y(x) = H^{-1}(x - x_0 + H(y_0))$$

When f(x, y) depends only on y

Example

Solve

$$\frac{dy}{dx} = (y-1)^2$$

A: Use the same principle, we have

$$\frac{dy}{dx} = (y-1)^2 \implies \frac{dy}{(y-1)^2} = dx$$

$$\implies \frac{1}{1-y} = x+c, \text{ for some constant } c$$

$$\implies y = 1 - \frac{1}{x+c}, \text{ for some constant } c$$

Separable Equations

Definition (Separable Equations)

If in (1) the function f(x,y) on the right hand side takes the form f(x,y)=g(x)h(y),, we call the first-order ODE **separable**, or to have **separable variables**.

General Procedure of Solving a Separable DE

1 分別移項:
$$\frac{dy}{h(y)} = \frac{dx}{g(x)}$$
.

② 雨邊積分:
$$\int \frac{dy}{h(y)} = \int \frac{dx}{g(x)} \implies H(y) = G(x) + c$$
.

3 代入條件:
$$c = H(y_0) - G(x_0)$$
.

4 取反函數:
$$y = H^{-1}(G(x) + H(y_0) - G(x_0)).$$