
Solution to Homework 2 Differential Equations I-Hsiang Wang

Solution to Homework 2

1. (Substitution and Nonexact Differential Equation Made Exact) [10]
Solve

dy

dx
= 2− 2ey + 3e2x+y, y(0) = 0.

Solution.
Let u := e2x, v = ey, and hence

dy = (2− 2v + 3uv) dx, du = (2u)dx, dv = (v)dy

=⇒ (2u)dv = v (2− 2v + 3uv) du

=⇒ v (2− 2v + 3uv) du+ (−2u)dv

Let M(u, v) := v(2− 2v + 3uv), N(u, v) := −2u. Then,
Mv = 2− 2v + 3uv + v(3u− 2) = 2− 4v + 6uv, Nu = −2

=⇒ ∆ = Mv −Nu = 4− 4v + 6uv ̸= 0,
∆

M
=

2

v
only depends on v

Hence, we can solve the following to find a function µ(v) such that µMdu+ µNdv is an
exact differential:

dµ

dv
= −∆

M
µ =

−2

v
µ =⇒ ln |µ| = −2 ln |v|.

Note that v = ey > 0, and hence we can pick µ = 1
v2

, and get an exact equation(
2

v
− 2 + 3u

)
du+

(
−2u

v2

)
dv = 0.

To solve this exact equation, we find

F (u, v) =

∫ (
2

v
− 2 + 3u

)
du =

(
2

v
− 2

)
u+

3

2
u2 + g(v).

To determine g(v), take the partial derivative w.r.t. v:
∂F

∂v
=

(
−2

v2

)
u+ g′(v) =

−2u

v2
=⇒ g′(v) = 0 =⇒ g(v) = constant.

Hence, we have
(
2
v
− 2

)
u+ 3

2
u2 = c. Plug in the initial condition u = e0 = 1, v = e0 = 1,

we get c = 3
2
, and(

2

v
− 2

)
u+

3

2
u2 =

3

2
=⇒ v−1 =

3

4
u−1 − 3

4
u+ 1 =⇒ e−y = 1 +

3

4

(
e−2x − e2x

)
=⇒ y = − ln

(
1 +

3

4

(
e−2x − e2x

))
= − ln

(
1− 3

2
sinh 2x

)
.
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Bonus. Solve dy
dx

= 2− 2ey + 3ex+y, y(0) = 0. [10]

Solution.
Let u := ex, v = ey, and hence

dy = (2− 2v + 3uv) dx, du = (u)dx, dv = (v)dy

=⇒ (u)dv = v (2− 2v + 3uv) du

=⇒ dv

du
=

v (2− 2v + 3uv)

u
=

2

u
v +

(
3− 2

u

)
v2

Above is a Bernoulli’s equation, and can be easily solved by substituting w := v−1:

dv

du
=

2

u
v +

(
3− 2

u

)
v2 =⇒ −1

w2

dw

du
=

2

u

1

w
+

(
3− 2

u

)
1

w2

=⇒ dw

du
= −2

u
w +

(
2

u
− 3

)
To solve the above linear first-order DE, we first find an integrating factor by solving the
following:

dµ

du
=

2

u
µ =⇒ dµ

µ
=

2du

u
=⇒ ln |µ| = 2 ln |u|.

We pick µ = u2, and we get

w =
1

u2

∫
u2

(
2

u
− 3

)
du =

1

u2

(
u2 − u3 + c

)
.

Plug in the initial condition w = v−1 = e0 = 1, u = e0 = 1, and we get c = 1. Therefore,
w = 1− u+ u−2, and hence

e−y = 1− ex + e−2x =⇒ y = − ln
(
1− ex + e−2x

)
.
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2. (Method of Substitution) [20]
Solve

(a) [10]

dy

dx
=

2

x
+

(
3− 1

x

)
y + xy2.

(b) [10]

dy

dx
= 2ex

2

+ (2x+ 3)y + e−x2

y2, y(0) = 1.

Hint: Choose appropriate f(x) and use the substitution u = f(x)y to convert the
equation to the form u′ = P (u), where P (u) is a polynomial of u.

Solution.

(a) We manipulate the original equation as follows:

dy

dx
=

2

x
+

(
3− 1

x

)
y + xy2 =⇒ x

dy

dx
= 2 + (3x− 1) y + x2y2

=⇒ y + x
dy

dx
= 2 + 3xy + x2y2

=⇒ d(xy)

dx
= 2 + 3xy + x2y2

Hence, use the substitution u = xy, we get

du

dx
= 2 + 3u+ u2 = (u+ 1)(u+ 2) =⇒ du

(
1

u+ 1
− 1

u+ 2

)
= dx

=⇒ ln |u+ 1| − ln |u+ 2| = x+ c =⇒ u+ 1

u+ 2
= 1− 1

u+ 2
= Cex, C ̸= 0

=⇒ u = xy =
1

1− Cex
− 2 =⇒ y =

1

x− Cxex
− 2

x
, C ̸= 0 .

(b) We manipulate the original equation as follows:

dy

dx
= 2ex

2

+ (2x+ 3)y + e−x2

y2 =⇒ e−x2 dy

dx
= 2 + 2xe−x2

y + 3e−x2

y + e−2x2

y2

=⇒ e−x2 dy

dx
− 2xe−x2

y = 2 + 3e−x2

y + e−2x2

y2

=⇒
d
(
e−x2

y
)

dx
= 2 + 3e−x2

y + e−2x2

y2

Hence, use the substitution u = e−x2
y, we get

du

dx
= 2 + 3u+ u2 = (u+ 1)(u+ 2) =⇒ du

(
1

u+ 1
− 1

u+ 2

)
= dx
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=⇒ ln |u+ 1| − ln |u+ 2| = x+ c

Plug in the initial condition x = 0, y = 1, u = 1, we get c = ln(2/3). Hence,

u+ 1

u+ 2
= 1− 1

u+ 2
=

2

3
ex =⇒ u = e−x2

y =
1

1− 2
3
ex

− 2

=⇒ y =
3ex

2

3− 2ex
− 2ex

2

, x ∈ (−∞, ln(3/2)) .
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3. (General Solution of Homogenous Linear Differential Equations) [10]
Find the general solutions of the following:

(a) [5]

y(4) − 6y′′′ + 15y′′ − 18y′ + 10y = 0.

(b) [5]

(x− 1)2y′′ + (x− 1)y′ + 4y = 0.

Solution.

(a) The corresponding polynomial is

D4 − 6D3 + 15D2 − 18D + 10 =
(
D2 − 2D + 2

) (
D2 − 4D + 5

)
,

and it has four complex roots: 1± i, 2± i. Hence, the general solution is

y = c1e
x cosx+ c2e

x sinx+ c3e
2x cosx+ c4e

2x sinx, c1, c2, c3, c4 ∈ R .

(b) First let x > 1. With the substation x− 1 = et, we convert the original DE into

(Dt(Dt − 1) +Dt + 4) {y} =
(
D2

t + 4
)
{y} = 0.

The polynomial D2
t + 4 has two roots ±2i. Hence, the general solution is

y = c1 cos 2t+ c2 sin 2t = c1 cos (2 ln(x− 1)) + c2 sin (2 ln(x− 1)) , c1, c2 ∈ R, x > 1 .

If we let x < 1, then use the substation x− 1 = −et, we convert the original DE into

(Dt(Dt − 1) +Dt + 4) {y} =
(
D2

t + 4
)
{y} = 0,

the same as above. Hence, the general solution is

y = c1 cos 2t+ c2 sin 2t = c1 cos (2 ln(1− x)) + c2 sin (2 ln(1− x)) , c1, c2 ∈ R, x < 1 .
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4. (An IVP of Homogeneous Linear DE with Constant Coefficients) [15]
Consider the following IVP:

Solve y(4) + 4y = 0

subject to y(x0) = 1, y′(x0) = r, y′′(x0) = r2, y′′′(x0) = r3

(a) Find the 4 complex roots for the polynomial D4 + 4: m1,m2,m3,m4, where
m2 = m∗

1, m4 = m∗
3. [5]

(b) From the lecture we know that {em1x, em2x, em3x, em4x} is a fundamental set of
solutions in the complex domain C. Hence the general solution in the complex
domain can be represented as

y = C1e
m1x + C2e

m2x + C3e
m3x + C4e

m4x, Ci ∈ C, i = 1, 2, 3, 4. (1)

Please give the necessary and sufficient condition for y being a real-valued function,
in terms of the relationships among {C1, C2, C3, C4}. [5]

(c) Use the form in (1) to find out the unique solution of the IVP. [5]
Hint: Use Cramer’s Rule to solve {C1, C2, C3, C4}, and use the following fact:∣∣∣∣∣∣∣∣∣∣∣

1 1 · · · 1
a1 a2 · · · an
a21 a22 · · · a2n
... ... ...

an−1
1 an−1

2 · · · an−1
n

∣∣∣∣∣∣∣∣∣∣∣
=

∏
1≤i<j≤n

(aj − ai).

Solution.

(a) D4 + 4 = D4 + 4D2 + 4− 4D2 = (D2 + 2)
2 − (2D)2 = (D2 + 2D + 2) (D2 − 2D + 2),

and hence the four roots are:

m1 = −1 + i, m2 = m∗
1 = −1− i, m3 = 1 + i, m4 = m∗

3 = 1− i .

(b) Note that since x ∈ R, em2x = em
∗
1x = (em1x)∗ and em4x = em

∗
3x = (em3x)∗. Therefore,

y = C1e
m1x + C2 (e

m1x)∗ + C3e
m3x + C4 (e

m3x)∗ ,

y∗ = C∗
2e

m1x + C∗
1 (e

m1x)∗ + C∗
4e

m3x + C∗
3 (e

m3x)∗ .

With the above observation, we have y ∈ R ⇐⇒ y − y∗ = 0

⇐⇒ (C1 − C∗
2) e

m1x + (C2 − C∗
1) (e

m1x)∗ + (C3 − C∗
4) e

m3x + (C4 − C∗
3) (e

m3x)∗

= (C1 − C∗
2) e

m1x + (C2 − C∗
1) e

m2x + (C3 − C∗
4) e

m3x + (C4 − C∗
3) e

m4x = 0

⇐⇒ C1 = C∗
2 , C3 = C∗

4 since {em1x, em2x, em3x, em4x} are linearly independent.
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(c) Plug in the initial condition, we have the following system of linear equations:
C1e

m1x0 + C2e
m2x0 + C3e

m3x0 + C4e
m4x0 = 1

C1m1e
m1x0 + C2m2e

m2x0 + C3m3e
m3x0 + C4m4e

m4x0 = r

C1m
2
1e

m1x0 + C2m
2
2e

m2x0 + C3m
2
3e

m3x0 + C4m
2
4e

m4x0 = r2

C1m
3
1e

m1x0 + C2m
3
2e

m2x0 + C3m
3
3e

m3x0 + C4m
3
4e

m4x0 = r3

=⇒ Cj =
∆j

∆
, j = 1, 2, 3, 4,

where

∆ =

∣∣∣∣∣∣∣∣
em1x0 em2x0 em3x0 em4x0

m1e
m1x0 m2e

m2x0 m3e
m3x0 m4e

m4x0

m2
1e

m1x0 m2
2e

m2x0 m2
3e

m3x0 m2
4e

m4x0

m3
1e

m1x0 m3
2e

m2x0 m3
3e

m3x0 m3
4e

m4x0

∣∣∣∣∣∣∣∣ = e(
∑4

i=1 mi)x0

∣∣∣∣∣∣∣∣
1 1 1 1
m1 m2 m3 m4

m2
1 m2

2 m2
3 m2

4

m3
1 m3

2 m3
3 m3

4

∣∣∣∣∣∣∣∣
= e(

∑4
i=1 mi)x0(m2 −m1)(m3 −m1)(m4 −m1)(m3 −m2)(m4 −m2)(m4 −m3)

∆1 =

∣∣∣∣∣∣∣∣
1 em2x0 em3x0 em4x0

r m2e
m2x0 m3e

m3x0 m4e
m4x0

r2 m2
2e

m2x0 m2
3e

m3x0 m2
4e

m4x0

r3 m3
2e

m2x0 m3
3e

m3x0 m3
4e

m4x0

∣∣∣∣∣∣∣∣ = e(
∑4

i=2 mi)x0

∣∣∣∣∣∣∣∣
1 1 1 1
r m2 m3 m4

r2 m2
2 m2

3 m2
4

r3 m3
2 m3

3 m3
4

∣∣∣∣∣∣∣∣
= e(

∑4
i=2 mi)x0(m2 − r)(m3 − r)(m4 − r)(m3 −m2)(m4 −m2)(m4 −m3)

∆3 =

∣∣∣∣∣∣∣∣
em1x0 em2x0 1 em4x0

m1e
m1x0 m2e

m2x0 r m4e
m4x0

m2
1e

m1x0 m2
2e

m2x0 r2 m2
4e

m4x0

m3
1e

m1x0 m3
2e

m2x0 r3 m3
4e

m4x0

∣∣∣∣∣∣∣∣ = e(m1+m2+m4)x0

∣∣∣∣∣∣∣∣
1 1 1 1
m1 m2 r m4

m2
1 m2

2 r2 m2
4

m3
1 m3

2 r3 m3
4

∣∣∣∣∣∣∣∣
= e(m1+m2+m4)x0(m2 −m1)(r −m1)(m4 −m1)(r −m2)(m4 −m2)(m4 − r)

Hence, C2 = C∗
1 , C4 = C∗

3 , and

C1 =
∆1

∆
= e−m1x0

(m2 − r)(m3 − r)(m4 − r)

(m2 −m1)(m3 −m1)(m4 −m1)

= e(1−i)x0
(r4 + 4)

(m1 − r)(2i)(2)(2− 2i)

= e(1−i)x0
(r4 + 4)

8(−1 + i− r)(1 + i)

C3 =
∆3

∆
= e−m3x0

(r −m1)(r −m2)(m4 − r)

(m3 −m1)(m3 −m2)(m4 −m3)

= e(−1−i)x0
(r4 + 4)

(m3 − r)(2)(2 + 2i)(−2i)

= e(−1−i)x0
(r4 + 4)

8(1 + i− r)(1− i)

From here it is then easy to find the real-valued solution of the original IVP, for a
given x0 and r. Below is how to do it, but if you do not manage to work it out since
we do not provide explicit x0 and r here, it is fine.
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Let C1 = α1 + iβ1, C2 = α1 − iβ1, C3 = α2 + iβ2, C4 = α2 − iβ2. Then,

C1e
m1x + C2e

m2x = 2Re {C1e
m1x} = 2Re

{
(α1 + iβ1)e

−x(cos x+ i sinx)
}

= 2e−x (α1 cosx− β1 sinx)

C3e
m3x + C4e

m4x = 2Re {C3e
m3x} = 2Re {(α2 + iβ2)e

x(cos x+ i sin x)}
= 2ex (α2 cos x− β2 sinx)

Hence,
y = 2e−x (α1 cos x− β1 sin x) + 2ex (α2 cosx− β2 sinx) ,

where

α1 = Re
{
e(1−i)x0

(r4 + 4)

8(−1 + i− r)(1 + i)

}
=

r4 + 4

8
ex0Re

{
cosx0 − i sin x0

−(r + 2)− ir

}
=

r4 + 4

8
ex0

−(r + 2) cos x0 + r sinx0

2r2 + 4r + 4

β1 = Im
{
e(1−i)x0

(r4 + 4)

8(−1 + i− r)(1 + i)

}
=

r4 + 4

8
ex0Im

{
cosx0 − i sin x0

−(r + 2)− ir

}
=

r4 + 4

8
ex0

r cos x0 + (r + 2) sinx0

2r2 + 4r + 4

α2 = Re
{
e(−1−i)x0

(r4 + 4)

8(1 + i− r)(1− i)

}
=

r4 + 4

8
e−x0Re

{
cos x0 − i sinx0

−(r − 2)− ir

}
=

r4 + 4

8
e−x0

−(r − 2) cosx0 − r sinx0

2r2 − 4r + 4

β2 = Im
{
e(−1−i)x0

(r4 + 4)

8(1 + i− r)(1− i)

}
=

r4 + 4

8
e−x0Im

{
cosx0 − i sin x0

−(r − 2)− ir

}
=

r4 + 4

8
e−x0

−r cosx0 − (r − 2) sinx0

2r2 − 4r + 4
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5. (Method of Undetermined Coefficients) [10]

where the minus sign indicates that V is decreasing. Note here that we are ignoring
the possibility of friction at the hole that might cause a reduction of the rate of flow
there. Now if the tank is such that the volume of water in it at time t can be written
V(t) ! Awh, where Aw (in ft2) is the constant area of the upper surface of the water
(see Figure 1.3.3), then dV!dt ! Aw dh!dt. Substituting this last expression into (9)
gives us the desired differential equation for the height of the water at time t:

. (10)

It is interesting to note that (10) remains valid even when Aw is not constant. In this
case we must express the upper surface area of the water as a function of h—that is,
Aw ! A(h). See Problem 14 in Exercises 1.3.

Series Circuits Consider the single-loop LRC-series circuit shown in Fig-
ure 1.3.4(a), containing an inductor, resistor, and capacitor. The current in a circuit
after a switch is closed is denoted by i(t); the charge on a capacitor at time t is de-
noted by q(t). The letters L, R, and C are known as inductance, resistance, and capac-
itance, respectively, and are generally constants. Now according to Kirchhoff’s
second law, the impressed voltage E(t) on a closed loop must equal the sum of the
voltage drops in the loop. Figure 1.3.4(b) shows the symbols and the formulas for the
respective voltage drops across an inductor, a capacitor, and a resistor. Since current
i(t) is related to charge q(t) on the capacitor by i ! dq!dt, adding the three voltages

inductor resistor capacitor

and equating the sum to the impressed voltage yields a second-order differential
equation

(11)

We will examine a differential equation analogous to (11) in great detail in
Section 5.1.

Falling Bodies To construct a mathematical model of the motion of a body
moving in a force field, one often starts with the laws of motion formulated by the
English mathematician Isaac Newton (1643–1727). Recall from elementary physics
that Newton’s first law of motion states that a body either will remain at rest or will
continue to move with a constant velocity unless acted on by an external force. In
each case this is equivalent to saying that when the sum of the forces —
that is, the net or resultant force—acting on the body is zero, then the acceleration
a of the body is zero. Newton’s second law of motion indicates that when the net
force acting on a body is not zero, then the net force is proportional to its accelera-
tion a or, more precisely, F ! ma, where m is the mass of the body.

Now suppose a rock is tossed upward from the roof of a building as illustrated
in Figure 1.3.5. What is the position s(t) of the rock relative to the ground at time t?
The acceleration of the rock is the second derivative d2s!dt2. If we assume that the
upward direction is positive and that no force acts on the rock other than the force of
gravity, then Newton’s second law gives

. (12)

In other words, the net force is simply the weight F ! F1 ! "W of the rock near the
surface of the Earth. Recall that the magnitude of the weight is W ! mg, where m is

m 
d 2s
dt2 ! "mg    or    

d 2s
dt2 ! "g

F ! " Fk

L 
d 2q
dt2 # R 

dq
dt

#
1
C

 q ! E(t).

L 
di
dt

! L 
d 2q
dt2 ,    iR ! R 

dq
dt

,    and    
1
C

 q

dh
dt

! "
Ah

Aw
 12gh
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(a)

(b)

E(t)
L

C

R

(a) LRC-series circuit

(b)
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Inductor
inductance L: henries (h)

voltage drop across: L
di
dt

i

Capacitor
capacitance C: farads (f)

voltage drop across:
1
C

i

Resistor
resistance R: ohms (Ω)
voltage drop across: iR

i

q

C
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voltages. Current i(t) and charge q(t) are
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rock

s(t)
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v0
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measured from ground level
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Consider the above LRC series circuit. Recall from Chapter 1 that the voltage drop
across the three elements are LdI

dt
, IR, and q

C
respectively. Using the fact that I = dq

dt

and Kirchhoff’s Law, we have

Lq′′ +Rq′ + q/C = E(t).

Suppose L = 0.25, R = 1, C = 0.8, E(t) = e−t sin 10t+ 2e−2t cos t, q(0) = q0, I(0) = 0.
Find the current I(t).

Solution.
The second order differential equation is shown below:

q′′ + 4q′ + 5q = 4e−t sin 10t+ 8e−2t cos t.

First we solve the complementary solution qc(t). Since the polynomial L := D2 + 4D + 5
has two complex roots −2± i, we know that the complementary solution

qc(t) = C1e
(−2+i)t + C∗

1e
(−2−i)t = 2Re

{
C1e

(−2+i)t
}
.

Next we find the particular solution, using the annihilator approach and the
superposition principle of nonhomogeneous equations. Note that
4e−t sin 10t+ 8e−2t cos t = 4g1(t) + 8g2(t), where

g1(t) = e−t sin 10t = Im
{
e(−1+10i)t

}
, g2(t) = e−2t cos t = Re

{
e(−2+i)t

}
.

Let qp,1 be a particular solution of q′′ + 4q′ + 5q = e(−1+10i)t, and qp,2 be a particular
solution of q′′ + 4q′ + 5q = e(−2+i)t, then a particular solution qp of the original DE is

qp(t) = 4Im {qp,1(t)}+ 8Re {qp,2(t)} .

Solve qp,1(t): q′′ + 4q′ + 5q = e(−1+10i)t, and hence qp,1 = B1e
(−1+10i)t. We find that

B1 =
1

(−1 + 10i)2 + 4(−1 + 10i) + 5
=

1

−99− 20i− 4 + 40i+ 5
=

1

−98 + 20i
.

Solve qp,2(t): q′′ + 4q′ + 5q = e(−2+i)t, and hence qp,2 = B2te
(−2+i)t. We find that

B2 =
1

2(−2 + i) + 4
=

1

2i
.

9
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The general solution of the original DE can then be represented as follows:

q(t) = 4Im
{
B1e

(−1+10i)t
}
+ 8Re

{
B2te

(−2+i)t
}
+ 2Re

{
C1e

(−2+i)t
}
,

where B1 =
1

−98+20i
, B2 =

1
2i

, and C1 will be determined by the initial conditions.
With the initial condition we have

q0 = 4Im {B1}+ 2Re {C1} =
−20

2501
+ 2a

0 = 4Im {B1(−1 + 10i)}+ 8Re {B2}+ 2Re {C1(−2 + i)}

=
−960

2501
− 2(2a+ b),

where a = Re {C1}, b = Im {C1}. Solve the above we get

a =
q0
2
+

10

2501
, b = −q0 −

500

2501
.

Finally,

I(t) = q′(t)

= 4Im
{
B1(−1 + 10i)e(−1+10i)t

}
+ 8Re

{
B2 ((−2 + i)t+ 1) e(−2+i)t

}
+ 2Re

{
C1(−2 + i)e(−2+i)t

}
= 4e−tIm

{
−1 + 10i

−98 + 20i
(cos 10t+ i sin 10t)

}
+ 8e−2tRe

{
(−2 + i)t+ 1

2i
(cos t+ i sin t)

}
+ 2e−2tRe {(a+ ib)(−2 + i) (cos t+ i sin t)}

=
298

2501
e−t sin 10t− 960

2501
e−t cos 10t+ 4te−2t cos t− (8t− 4)e−2t sin t

− 960

2501
e−2t cos t−

(
5q0 +

2020

2501

)
e−2t sin t

=
298

2501
e−t sin 10t− 960

2501
e−t cos 10t+

(
4t+

960

2501

)
e−2t cos t−

(
8t+ 5q0 −

7984

2501

)
e−2t sin t .
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6. (Variation of Parameters) [10]
Find the general solution of the following DE:

y′′ + y′ − 2y = xex
2

.

Solution.
First we solve the complementary solution yc. Since the polynomial
L := D2 +D − 2 = (D + 2)(D − 1) has two roots {−2, 1}, we have

yc(x) = c1e
−2x + c2e

x,

where f1(x) := e−2x and f2(x) := ex are two linearly independent solutions of the linear
homogeneous equation.
To find a particular solution yp, let yp := u1f1 + u2f2. u1

′ = W1

W
, and u2

′ = W2

W
, where

W =

∣∣∣∣f1 f2
f1

′ f2
′

∣∣∣∣ = e−x(1− (−2)) = 3e−x

W1 =

∣∣∣∣ 0 f2
xex

2
f2

′

∣∣∣∣ = −xex
2+x

W2 =

∣∣∣∣f1 0

f1
′ xex

2

∣∣∣∣ = xex
2−2x

Hence,
du1

dx
=

−x

3
ex

2+2x

=⇒ u1 = −1

3

∫
xex

2

e2xdx = −1

6

∫
e2xd

(
ex

2
)
= −1

6

{
ex

2+2x − 2

∫
ex

2+2xdx

}
= −1

6
ex

2+2x +
1

3e

∫
e(x+1)2dx = −1

6
ex

2+2x +
1

3e
F (x+ 1)

du2

dx
=

x

3
ex

2−x

=⇒ u2 =
1

3

∫
xex

2

e−xdx =
1

6

∫
e−xd

(
ex

2
)
=

1

6

{
ex

2−x +

∫
ex

2−xdx

}
=

1

6
ex

2−x +
1

6e
1
4

∫
e(x−

1
2)

2

dx =
1

6
ex

2−x +
1

6e
1
4

F

(
x− 1

2

)
where F (t) :=

∫
et

2
dt.

We obtain a particular solution

yp = u1f1 + u2f2 = −1

6
ex

2

+
1

3
e−2x−1F (x+ 1) +

1

6
ex

2

+
1

6
ex−

1
4F

(
x− 1

2

)
=

1

3
e−2x−1F (x+ 1) +

1

6
ex−

1
4F

(
x− 1

2

)
,

and therefore

y(x) = c1e
−2x + c2e

x +
1

3
e−2x−1F (x+ 1) +

1

6
ex−

1
4F

(
x− 1

2

)
.
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Bonus. (Reduction of Order Two Times) [10]
Consider a homogeneous linear third-order differential equation

(x3 + 3x2 − 3x+ 1)y′′′ − 3(x2 + 2x− 1)y′′ + 6(x+ 1)y′ − 6y = 0.

(a) Verify that f1(x) = x+ 1 and f2(x) = x2 + 1 are both solutions to the above DE.

(b) Use the substitution y = f1(x)u1(x) to convert the original DE into a second-order
DE of v1 := u′

1. Write down this DE, and verify that
(

f2(x)
f1(x)

)′
is a solution to it.

(c) Use reduction of order to find another linearly independent solution to the derived
second-order DE.

(d) From (c) derive a third solution f3(x) of the original third-order DE so that
{f1, f2, f2} are linearly independent.

Solution.

(a)

f1
′ = 1, f1

′′ = 0

=⇒ (x3 + 3x2 − 3x+ 1)f1
′′′ − 3(x2 + 2x− 1)f1

′′ + 6(x+ 1)f1
′ − 6f1

= 6(x+ 1)− 6(x+ 1) = 0

f2
′ = 2x, f2

′′ = 2, f2
′′′ = 0

=⇒ (x3 + 3x2 − 3x+ 1)f2
′′′ − 3(x2 + 2x− 1)f2

′′ + 6(x+ 1)f2
′ − 6f1

= −6(x2 + 2x− 1) + 12x(x+ 1)− 6(x2 + 1) = 0.

(b) Set y = u1(x+ 1), then y′ = u1
′(x+ 1) + u1, y′′ = u1

′′(x+ 1) + 2u1
′,

y′′′ = u1
′′′(x+ 1) + 3u1

′′. Hence, the original DE becomes(
x4 + 4x3 − 2x+ 1

)
u1

′′′ + (6− 12x)u1
′′ + 12u1

′ = 0.

With v1 = u1
′, the above DE is(

x4 + 4x3 − 2x+ 1
)
v1

′′ + (6− 12x)v1
′ + 12v1 = 0 .

Plug in v1 =
(

f2(x)
f1(x)

)′
= 1− 2

(x+1)2
, we get v1

′ = 4
(x+1)3

, v1′′ = −12
(x+1)4

, and(
x4 + 4x3 − 2x+ 1

)
v1

′′ + (6− 12x)v1
′ + 12v1

= −12
x4 + 4x3 − 2x+ 1

(x+ 1)4
+ 24

1− 2x

(x+ 1)3
+ 12− 24

1

(x+ 1)2
= 0.

(c) Set v1 = u2

(
1− 2

(x+1)2

)
, then v1

′ =
(
1− 2

(x+1)2

)
u2

′ + 4
(x+1)3

u2,

v2
′′ =

(
1− 2

(x+1)2

)
u2

′′ + 8
(x+1)3

u2
′ − 12

(x+1)4
u2, and the above DE becomes

(x+ 1)
(
x2 + 2x− 1

) (
x4 + 4x3 − 2x+ 1

)
u2

′′ − 2
(
2x4 − x3 − 3x2 − x− 1

)
u2

′ = 0.
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With v2 = u2
′, the above DE becomes

(x+ 1)
(
x2 + 2x− 1

) (
x4 + 4x3 − 2x+ 1

)
v2

′ − 2
(
2x4 − x3 − 3x2 − x− 1

)
v2 = 0.

Hence
v2 = exp

{∫
2 (2x4 − x3 − 3x2 − x− 1)

(x+ 1) (x2 + 2x− 1) (x4 + 4x3 − 2x+ 1)
dx

}
,

and a second solution is(
1− 2

(x+ 1)2

)∫
exp

{∫
2 (2x4 − x3 − 3x2 − x− 1)

(x+ 1) (x2 + 2x− 1) (x4 + 4x3 − 2x+ 1)
dx

}
dx.

(d) To find f3, we multiply the integral of the solution found above with f1 and get

(x+1)

∫ {(
1− 2

(x+ 1)2

)∫
exp

{∫
2
(
2x4 − x3 − 3x2 − x− 1

)
(x+ 1) (x2 + 2x− 1) (x4 + 4x3 − 2x+ 1)

dx

}
dx

}
dx.
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