
Solution to Homework 1 Differential Equations I-Hsiang Wang

Solution to Homework 1

1. (Practice of Different Methods)
Solve the following initial-value problems (y: dependent variable)

(a) dy

dx
=

1

x4 − 1
, y(0) = 1.

(b) dy

dx
=

x3

(2y + 1)
, y(2) = 1.

(c) (x2 − 1)
dy

dx
= xy + 1, y(0) = 1.

Solution.
(a)

dy

dx
=

1

x4 − 1
=

1

(x2 − 1)(x2 + 1)
=

1

2

{
1

x2 − 1
− 1

x2 + 1

}
=

1
4

x− 1
−

1
4

x+ 1
−

1
2

x2 + 1

Hence,
y =

1

4
ln |x− 1| − 1

4
ln |x+ 1| − 1

2
tan−1 x+ c.

Plug in the initial condition x = 0, y = 1, we get c = 1.

=⇒ y =
1

4
ln(1− x)− 1

4
ln(x+ 1)− 1

2
tan−1 x+ 1 .

Interval of definition: x ∈ (−1, 1) .

(b)
dy

dx
=

x3

(2y + 1)
=⇒ (2y + 1)dy = x3dx =⇒ y2 + y =

1

4
x4 + c

Plug in the initial condition x = 2, y = 1, we get c = −2.

=⇒ y2 + y =
1

4
x4 − 2 =⇒

(
y +

1

2

)2

=
1

4

(
x4 − 7

)
=⇒ y =

1

2

(
−1±

√
x4 − 7

)
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Plug in the initial condition x = 2, y = 1, we know that we have to choose

y =
1

2

(
−1 +

√
x4 − 7

)
.

Interval of definition: x ∈
(
7

1
4 ,∞

)
.

(c)
(x2 − 1)

dy

dx
= xy + 1 =⇒ dy

dx
=

xy + 1

x2 − 1
=

x

x2 − 1
y +

1

x2 − 1
, x ̸= ±1.

We shall introduce an integrating factor µ(x) to solve this linear equation, which has to
satisfy the following auxiliary DE:

dµ

dx
= − x

x2 − 1
µ =⇒ dµ

µ
= − x

x2 − 1
dx = −1

2

d(x2)

x2 − 1
=⇒ ln |µ| = −1

2
ln |x2 − 1|.

Based on the initial condition x = 0, we choose the domain of x to be x ∈ (−1, 1) and
hence we get an integrating factor

µ =
1√

1− x2
.

Finally, plug in the integrating factor and we get

d(µy)

dx
= µ

(
x

x2 − 1
y +

1

x2 − 1

)
+ y

(
− x

x2 − 1
µ

)
=

µ

x2 − 1
= − 1

(
√
1− x2)3

.

To solve µy, we need to compute the following integral:∫
− 1

(
√
1− x2)3

dx
x=sin θ
=

∫
− cos θ
cos3 θ dθ =

∫
− sec2 θdθ = − tan θ + c

= − x√
1− x2

+ c.

Hence,
µy =

1√
1− x2

y = − x√
1− x2

+ c.

Plug in the initial condition x = 0, y = 1 we get c = 1.

=⇒ y = −x+
√
1− x2 .

Singular points x = ±1 cannot be added back to the interval of definition, because

dy

dx
= −1− x√

1− x2

is not defined at the singular points. Interval of definition: x ∈ (−1, 1) .
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2. (Discontinuous Coefficients)
Solve

dy

dx
+ P (x)y = x

subject to y(0) = 0, where P (x) =

{
1, x ≥ 0
−1 x < 0

.

Solution.
We first solve for x ≥ 0:

dy

dx
+ y = x =⇒ dy

dx
= x− y.

Use the following substitution: u := x− y =⇒ y = x− u. We then get

dy

dx
= 1−du

dx
= u =⇒ du

dx
= 1−u =⇒ du

1− u
= dx, u ̸= 1 =⇒ − ln |1−u| = x+c, u ̸= 1.

Plug in the initial condition x = 0, y = 0 =⇒ u = 0, we get c = 0. Hence,

1− u = 1− x+ y = e−x =⇒ y = x+ e−x − 1, x ≥ 0.

For x < 0:
dy

dx
− y = x =⇒ dy

dx
= x+ y.

Use the following substitution: v := x+ y =⇒ y = v − x. We then get

dy

dx
=

dv

dx
−1 = v =⇒ dv

dx
= 1+v =⇒ dv

1 + v
= dx, v ̸= −1 =⇒ ln |1+v| = x+c, v ̸= −1.

Plug in the boundary condition x ↑ 0, y → 0 =⇒ v → 0, we get c = 0. Hence,

1 + v = 1 + x+ y = ex =⇒ y = −x+ ex − 1, x < 0.

Therefore, the final answer

y =

{
x+ e−x − 1, x ≥ 0

−x+ ex − 1, x < 0
= |x|+ e−|x| − 1 .

Interval of definition: x ∈ R .
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3. (Nonlinear ODE Made Linear)
Solve

dy

dx
= 1 + xe−y

subject to y(0) = 0.

Solution.
First we manipulate the original DE as follows:

dy

dx
= 1 + xe−y =⇒ ey

dy

dx
= ey + x =⇒ d

dx
ey = ey + x,

since d(ey) = eydy. Hence, we can use the result in Problem 2 (the solution to
dy
dx

= x+ y is y = −x+ cex − 1) to get

ey = −x+ cex − 1.

Plug in the initial condition x = 0, y = 0, we get c = 2. Hence,

ey = −x+ 2ex − 1 =⇒ y = ln (−x+ 2ex − 1) .

Note that the function 2ex − x− 1 is minimized at x = − ln 2, that is, 2ex − 1 = 0, by
studying its derivative. Hence 2ex − x− 1 ≥ ln 2 > 0, and the interval of definition of
the solution is x ∈ R .
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4. (Singular Points, Interval of Definition, and Initial Conditions)
(1) Solve

x(x− 1)
dy

dx
= x+ y

subject to

(a) y(2) = 1

(b) y(−1) = 1

(c) y(1/2) = 1

(2) Identify the singular points that cannot be included into the interval of definition.

Solution.
(1) First we manipulate the equation as follows:

x(x− 1)
dy

dx
= x+ y =⇒ dy

dx
=

x+ y

x(x− 1)
=

y

x(x− 1)
+

1

x− 1
, x ̸= 0, 1.

We find an integrating factor µ(x) by solving the following auxiliary DE:

dµ

dx
= − µ

x(x− 1)
=⇒ dµ

µ
= − dx

x(x− 1)
=

(
1

x
− 1

x− 1

)
dx =⇒ ln |µ| = ln |x|−ln |x−1|.

Depending on the initial point of x, we shall choose different interval of definition and
consequently influence how we remove the absolute values on the right hand side of the
last equality.

(a) y(2) = 1:
The interval of definition shall lie inside (1,∞). Hence the signs of x and x− 1 are
the same, and we get an integrating factor

µ(x) =
x

x− 1
.

Plug it back, we get

d(µy)

dx
= µ

1

x− 1
=

x

(x− 1)2
=

1

x− 1
+

1

(x− 1)2
=⇒ µy = ln |x− 1| − 1

x− 1
+ c.

Plug in the initial condition, we get c = 3, and hence

y =
x− 1

x

{
ln |x− 1| − 1

x− 1
+ 3

}
=

x− 1

x
ln(x− 1) +

3x− 4

x

The singular point x = 1 cannot be added back to the interval of definition which is
x ∈ (1,∞) .

5



Solution to Homework 1 Differential Equations I-Hsiang Wang

(b) y(−1) = 1:
The interval of definition shall lie inside (−∞, 0). Hence the signs of x and x− 1 are
the same, and we get an integrating factor

µ(x) =
x

x− 1
.

Plug it back, we get

d(µy)

dx
= µ

1

x− 1
=

x

(x− 1)2
=

1

x− 1
+

1

(x− 1)2
=⇒ µy = ln |x− 1| − 1

x− 1
+ c.

Plug in the initial condition, we get c = − ln 2, and hence

y =
x− 1

x

{
ln |x− 1| − 1

x− 1
− ln 2

}
=

x− 1

x
ln
(
1− x

2

)
− 1

x

The singular point x = 0 cannot be added back to the interval of definition which is
x ∈ (−∞, 0) .

(c) y(1/2) = 1:
The interval of definition shall lie inside (0, 1). Hence the signs of x and x− 1 are
different, and we get an integrating factor

µ(x) =
x

1− x
.

Plug it back, we get

d(µy)

dx
= µ

1

x− 1
=

−x

(1− x)2
=

1

1− x
− 1

(1− x)2
=⇒ µy = ln |1− x| − 1

1− x
+ c.

Plug in the initial condition, we get c = 3 + ln 2, and hence

y =
1− x

x

{
ln |1− x| − 1

1− x
+ 3 + ln 2

}
=

1− x

x
ln (2(1− x)) +

2− 3x

x

The singular points x = 0 and x = 1 cannot be added back to the interval of
definition which is x ∈ (0, 1) .

(2) As seen in the above discussion, in all three cases, none of the singular points can be
added back to the interval of definition.
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5. (LR Circuit with AC Power)

Integrating the last equation and solving for A gives the general solution 
A(t) ! 600 " ce#t/100. When t ! 0, A ! 50, so we find that c ! #550. Thus the
amount of salt in the tank at time t is given by

. (6)

The solution (6) was used to construct the table in Figure 3.1.5(b). Also, it can be
seen from (6) and Figure 3.1.5(a) that A(t) : 600 as t : $. Of course, this is what
we would intuitively expect; over a long time the number of pounds of salt in the
solution must be (300 gal)(2 lb/gal) ! 600 lb.

In Example 5 we assumed that the rate at which the solution was pumped in was
the same as the rate at which the solution was pumped out. However, this need not be
the case; the mixed brine solution could be pumped out at a rate rout that is faster
or slower than the rate rin at which the other brine solution is pumped in. The next
example illustrates the case when the mixture is pumped out at rate that is slower
than the rate at which the brine solution is being pumped into the tank.

A(t) ! 600 # 550e#t/100

88 ! CHAPTER 3 MODELING WITH FIRST-ORDER DIFFERENTIAL EQUATIONS

t

A A = 600

500

(a)

t (min) A (lb)

50 266.41
100 397.67
150 477.27
200 525.57
300 572.62
400 589.93

(b)

FIGURE 3.1.5 Pounds of salt in the
tank in Example 5

FIGURE 3.1.7 LR-series circuit

E
L

R

FIGURE 3.1.6 Graph of A(t) in
Example 6

t

A

50

250

500

100

EXAMPLE 6 Example 5 Revisited

If the well-stirred solution in Example 5 is pumped out at a slower rate of, say, 
rout ! 2 gal/min, then liquid will accumulate in the tank at the rate of rin # rout ! 
(3 # 2) gal/min ! 1 gal/min. After t minutes,

(1 gal/min) . (t min) ! t gal

will accumulate, so the tank will contain 300 " t gallons of brine. The concentration
of the outflow is then c(t) ! A!(300 " t) lb/gal, and the output rate of salt is Rout !
c(t) . rout, or

.

Hence equation (5) becomes

.

The integrating factor for the last equation is 

and so after multiplying by the factor the equation is cast into the form 

Integrating the last equation gives By applying the
initial condition and solving for A yields the solution A(t) ! 600 " 2t #
(4.95 % 107)(300 " t)#2. As Figure 3.1.6 shows, not unexpectedly, salt builds up in
the tank over time, that is, 

Series Circuits For a series circuit containing only a resistor and an inductor,
Kirchhoff’s second law states that the sum of the voltage drop across the inductor
(L(di!dt)) and the voltage drop across the resistor (iR) is the same as the impressed
voltage (E(t)) on the circuit. See Figure 3.1.7.

Thus we obtain the linear differential equation for the current i(t),

, (7)

where L and R are constants known as the inductance and the resistance, respectively.
The current i(t) is also called the response of the system.

L
di
dt

" Ri ! E(t)

A : $  as  t : $.

A(0) ! 50
(300 " t)2A ! 2(300 " t)3 " c.

d
dt

[(300 " t)2 A] ! 6(300 " t)2.

e"2dt>(300" t) ! e2 ln(300" t) ! eln(300" t)2
! (300 " t)2

dA
dt

! 6 #
2A

300 " t
    or    

dA
dt

"
2

300 " t
A ! 6

Rout ! # A
300 " t

 lb/gal$ ! (2 gal/min) !
2A

300 " t
 lb/min

92467_03_ch03_p083-115.qxd  2/10/12  2:39 PM  Page 88

Consider the above LR circuit, where E(t) = 10 sin(t) volts, R = 10 ohms, L = 0.5
henry, and initial current i(0) = 0.
Find i(t).

Solution.
Current i(t) satisfies the following DE:

L
di

dt
+Ri = E(t) =⇒ 1

2

di

dt
+ 10i = 10 sin t =⇒ di

dt
+ 20i = 20 sin t

Let µ(t) be the integrating factor to be found, which satisfies

dµ

dt
= 20µ.

We can find one integrating factor µ(t) = e20t. Plug in µ(t) = e20t and i(0) = 0, we get

µi =

∫
20e20t sin t dt =

(
400

401
sin t− 20

401
cos t

)
e20t + c.

Note that in the above we use integration by parts to derive the indefinite integral.
Plug in the initial condition t = 0, i = 0, µ = 1, we get c = 20

401
. Hence the current is

i(t) =
400

401
sin t− 20

401
cos t+ 20

401
e−20t .

Interval of definition: t ∈ [0,∞) or t ∈ R .
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6. (Gompertz Differential Equation)
English Mathematician B. Gompertz (1779 – 1865) proposed the following equation to
model population dynamics:

dP

dt
= P (a− b lnP ).

Suppose the initial population P (0) = P0.
(a) Find P (t).

(b) Find the capacity of population, that is, P (∞).

(c) Find the threshold of population beyond which its growth rate decreases as
population grows.

Solution.
(a) The DE is separable and can be solved as follows:

dP

dt
= P (a− b lnP ) =⇒ dt =

dP

P (a− b lnP )
=

d(lnP )

a− b lnP

=⇒ t = −1

b
ln |a− b lnP |+ c.

Plug in the initial condition P (0) = P0, we get c = 1
b

ln |a− b lnP0|. Hence

t = −1

b
ln |a− b lnP |+ 1

b
ln |a− b lnP0| =

1

b
ln a− b lnP0

a− b lnP

=⇒ lnP (t) =
a

b

(
1− e−bt

)
+ e−bt lnP0

=⇒ P (t) = exp
(a
b

(
1− e−bt

))
P e−bt

0 .

Interval of definition: t ∈ [0,∞) or t ∈ R .
(b)

lim
t→∞

P (t) = lim
t→∞

exp
(a
b

(
1− e−bt

))
P e−bt

0 = e
a
b .

(c) With the assumption that P0 < e
a
b , we can easily see that lnP (t) is an increasing

function, and hence so is P (t), which implies that P (t) < P (∞) = e
a
b .

Therefore,
dP

dt
= P (a− b lnP ) > 0, ∀ t.

To find the saddle point, we focus on the second derivative of P :
d

dt

(
dP

dt

)
=

dP

dt

d

dP
P (a− b lnP ) = P (a− b lnP )

(
a− b lnP − bP

P

)
Note that the saddle point P ∗ ∈ (0, e

a
b ) will make d2P

dt2
= 0. Hence,

0 = a− b lnP ∗ − bP ∗

P ∗ = a− b− b lnP ∗ =⇒ P ∗ = e
a−b
b .
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