Homework 4

Due: 1/3, 18:00

1. (Laplace Transform of Periodic Extension) [10] A function $f(t) = e^{at}$ for $0 \le t < T$, and f(t) = f(t - T) for $t \ge T$. Evaluate $\mathscr{L} \{f(t)\}$. 2. (Inverse Laplace Transform) [15] Evaluate $\mathscr{L}^{-1} \left\{ \frac{1}{s^2} \tanh\left(\frac{s}{2}\right) \right\}$. Hint 1: $\tanh\left(\frac{s}{2}\right) = \frac{1 - e^{-s}}{1 + e^{-s}} = \frac{(1 - e^{-s})^2}{1 - e^{-2s}}$. Hint 2: $\mathscr{L} \{(f * f)(t)\} = \{F(s)\}^2$.

3. (Fourier Series Expansion) [15]

Expand $f(x) = xe^{-x}, 0 < x < \pi$,

- (a) in a Fourier cosine series. [5]
- (b) in a Fourier sine series. [5]
- (c) in a Fourier series.

4. (Wave Equation)

Solve the following boundary-value problem:

Solve
$$u(x,t)$$
: $a^2 u_{xx} = u_{tt}$, $0 < x < \frac{\pi}{2}$, $t > 0$
subject to: $u(0,t) = 0$, $u_x\left(\frac{\pi}{2},t\right) = 0$, $t > 0$
 $u(x,0) = 1$, $u_t(x,0) = 0$, $0 < x < \frac{\pi}{2}$

Hint. See Example 2 on Page 434 of the textbook. There is a reason why we pick u(x,0) = 1.

5. (Laplace's Equation)

Solve the following boundary-value problem:

Solve u(x, y): $u_{xx} + u_{yy} = 0$, 0 < x < a, 0 < y < bsubject to: $u_x(0, y) = u(0, y)$, $u_x(a, y) = G(y)$, 0 < y < bu(x, 0) = 0, u(x, b) = 0, 0 < x < a [10]

[5]

[10]

6. (Wave Equation on an Infinite String)

Solve the following boundary-value problem:

Solve u(x,t): $a^2 u_{xx} = u_{tt}$, $-\infty < x < \infty$, t > 0subject to: $u(\pm \infty, t) = u_x (\pm \infty, t) = 0$, t > 0 $u(x,0) = e^{-|x|}$, $u_t(\underline{x},0) = 0$, $-\infty < x < \infty$

7. (Laplace's Equation on a Semi-Infinite Plate)

Solve the following boundary-value problem:

Solve $u(x,y)$:	$u_{xx} + u_{yy} = 0,$	$0 < x < \pi, y > 0$	
subject to :	$u(0,y) = ye^{-y},$	$u(\pi, y) = 0, y > 0$	
	$u(x,0) = xe^{-x},$	$u(x,\infty) = u_y(x,\infty) = 0,$	$0 < x < \pi$

[10]

[15]

I-Hsiang Wang

2