Homework 4

Due: $1 / 3,18: 00$

1. (Laplace Transform of Periodic Extension)

A function $f(t)=e^{a t}$ for $0 \leq t<T$, and $f(t)=f(t-T)$ for $t \geq T$.
Evaluate $\mathscr{L}\{f(t)\}$.
2. (Inverse Laplace Transform)

Evaluate

$$
\mathscr{L}^{-1}\left\{\frac{1}{s^{2}} \tanh \left(\frac{s}{2}\right)\right\} .
$$

Hint 1: $\tanh \left(\frac{s}{2}\right)=\frac{1-e^{-s}}{1+e^{-s}}=\frac{\left(1-e^{-s}\right)^{2}}{1-e^{-2 s}}$.
Hint 2: $\mathscr{L}\{(f * f)(t)\}=\{F(s)\}^{2}$.
3. (Fourier Series Expansion)

Expand $f(x)=x e^{-x}, 0<x<\pi$,
(a) in a Fourier cosine series.
(b) in a Fourier sine series.
(c) in a Fourier series.

4. (Wave Equation)

Solve the following boundary-value problem:

$$
\begin{array}{rll}
\hline \text { Solve } u(x, t): & a^{2} u_{x x}=u_{t t}, \quad 0<x<\frac{\pi}{2}, \quad t>0 \\
\text { subject to : } & u(0, t)=0, \quad u_{x}\left(\frac{\pi}{2}, t\right)=0, \quad t>0 \\
& u(x, 0)=1, \quad u_{t}(x, 0)=0, \quad 0<x<\frac{\pi}{2} \\
\hline
\end{array}
$$

Hint. See Example 2 on Page 434 of the textbook. There is a reason why we pick $u(x, 0)=1$.

5. (Laplace's Equation)

Solve the following boundary-value problem:

$$
\begin{array}{|rl|}
\hline \text { Solve } u(x, y): & u_{x x}+u_{y y}=0, \quad 0<x<a, \quad 0<y<b \\
\text { subject to }: & u_{x}(0, y)=u(0, y), \quad u_{x}(a, y)=G(y), \quad 0<y<b \\
& u(x, 0)=0, \quad u(x, b)=0, \quad 0<x<a \\
\hline
\end{array}
$$

6. (Wave Equation on an Infinite String)

Solve the following boundary-value problem:

$$
\begin{aligned}
\hline \text { Solve } u(x, t): & a^{2} u_{x x}=u_{t t}, \quad-\infty<x<\infty, \quad t>0 \\
\text { subject to }: & u(\pm \infty, t)=u_{x}(\pm \infty, t)=0, \quad t>0 \\
& u(x, 0)=e^{-|x|}, \quad u_{t}(x, 0)=0, \quad-\infty<x<\infty
\end{aligned}
$$

7. (Laplace's Equation on a Semi-Infinite Plate)

Solve the following boundary-value problem:

$$
\begin{array}{|lll}
\hline \text { Solve } u(x, y): & u_{x x}+u_{y y}=0, \quad 0<x<\pi, \quad y>0 \\
\text { subject to }: & u(0, y)=y e^{-y}, \quad u(\pi, y)=0, \quad y>0 \\
& u(x, 0)=x e^{-x}, \quad u(x, \infty)=u_{y}(x, \infty)=0, \quad 0<x<\pi \\
\hline
\end{array}
$$

