Homework 4

Due: 1/3, 18:00

1. (Laplace Transform of Periodic Extension)

[10]

A function $f(t) = e^{at}$ for $0 \le t < T$, and f(t) = f(t - T) for $t \ge T$. Evaluate $\mathcal{L}\{f(t)\}$.

2. (Inverse Laplace Transform)

[15]

Evaluate

$$\mathscr{L}^{-1}\left\{\frac{1}{s^2}\tanh\left(\frac{s}{2}\right)\right\}.$$

Hint 1: $\tanh\left(\frac{s}{2}\right) = \frac{1 - e^{-s}}{1 + e^{-s}} = \frac{\left(1 - e^{-s}\right)^2}{1 - e^{-2s}}.$ Hint 2: $\mathcal{L}\left\{(f * f)(t)\right\} = \left\{F(s)\right\}^2.$

3. (Fourier Series Expansion)

[15]

Expand $f(x) = xe^{-x}, 0 < x < \pi,$

(a) in a Fourier cosine series.

[5]

(b) in a Fourier sine series.

[5]

[5]

(c) in a Fourier series.

4. (Wave Equation)

[10]

Solve the following boundary value problem:

Solve
$$u(x,t)$$
: $au_{xx} = u_{tt}$, $0 < x < \frac{\pi}{2}$, $t > 0$
subject to: $u(0,t) = 0$, $u_x\left(\frac{\pi}{2},t\right) = 0$, $t > 0$
 $u(x,0) = 1$, $u_t(x,0) = 0$, $0 < x < \frac{\pi}{2}$

5. (Laplace's Equation)

[15]

Solve the following boundary value problem:

Solve
$$u(x, y)$$
: $u_{xx} + u_{yy} = 0$, $0 < x < a$, $0 < y < b$
subject to: $u_x(0, y) = u(0, y)$, $u_x(a, y) = G(y)$, $0 < y < b$
 $u(x, 0) = f(x)$, $u(x, b) = g(x)$, $0 < x < a$