Homework 3

Due: $12 / 6,18: 00$

1. (Solving a System of Linear Differential Equations)

Solve $x(t), y(t)$ in the following system of linear differential equations.

$$
\left\{\begin{array}{l}
t^{2}\left(x^{\prime \prime}+y^{\prime \prime}\right)+t\left(x^{\prime}+y^{\prime}\right)+4 x=t \\
t\left(x^{\prime}+y^{\prime}\right)+y=\frac{1}{t^{2}}
\end{array}\right.
$$

2. (Solving a Nonlinear Differential Equation)

Solve $y(t)$ in the following initial value problem:

$$
y^{\prime \prime}=-\frac{g R^{2}}{y^{2}}, y(0)=R, y^{\prime}(0)=2 \sqrt{g R} .
$$

Hint. $2 \sinh ^{2} x=\cosh 2 x-1$.

3. (Power Series Solution about an Ordinary Point)

Solve the DE below using power series centered at $x=0$.

$$
\left(x^{2}+x-2\right) y^{\prime \prime}-2(2 x+1) y^{\prime}+6 y=0 .
$$

4. (Method of Frobenius)

Use the method of Frobenius, find two linearly independent solutions of the following DE about the singular point $x=0$.

$$
x y^{\prime \prime}+y=0 .
$$

Hint. Recall that if $r_{1}>r_{2}$ are the two roots of the indicial equation and $r_{1}-r_{2} \in \mathbb{Z}$,

$$
y_{1}(x)=\sum_{n=0}^{\infty} c_{n} x^{n+r_{1}}, c_{0} \neq 0, \quad y_{2}(x)=\underbrace{C}_{\text {can be } 0} y_{1}(x) \ln x+\sum_{n=0}^{\infty} d_{n} x^{n+r_{2}}, d_{0} \neq 0 .
$$

5. (Laplace Transform and its Inverse Transform)

Evaluate the following:
(a) $\mathscr{L}\{(t+\cos t) \sinh 2 t\}$
(b) $\mathscr{L}\left\{\left(t^{3}-3 t^{2}+3 t-1\right) \mathcal{U}(t-2)\right\}$
(c) $\mathscr{L}^{-1}\left\{\frac{3 e^{-s}}{\left(s^{3}-1\right)}\right\}$
(d) $\mathscr{L}^{-1}\left\{\frac{6 s^{2}-14}{(s-3)^{2}\left(s^{2}+2 s+5\right)}\right\}$

6. (Solving IVP with Laplace Transform)

Solve the following initial value problem: $y(\pi)=1, y^{\prime}(\pi)=-1$,

$$
y^{\prime \prime}+4 y^{\prime}+4 y=g(t)= \begin{cases}\cos 2 t & t<2 \pi \\ e^{-(t-2 \pi)} \cos 2 t & t \geq 2 \pi\end{cases}
$$

7. (What Laplace Transform does not Take Care of)

Solve the following initial value problem: $y(0)=1, y^{\prime}(0)=3$,

$$
y^{\prime \prime}-y=g(t)= \begin{cases}0 & t<0 \\ t^{3} & t \geq 0\end{cases}
$$

Hint. Be careful at the solution you found: it has to satisfy $y^{\prime \prime}-y=0$ for $t<0$.

