
Homework 2 (10/25 Due) Differential Equations I-Hsiang Wang

Homework 2
Due: 10/25, 18:00

1. (Substitution and Nonexact Differential Equation Made Exact) [10]
Solve

dy

dx
= 2− 2ey + 3e2x+y, y(0) = 0.

Bonus. Solve dy
dx

= 2− 2ey + 3ex+y, y(0) = 0. [10]

2. (Method of Substitution) [20]
Solve

(a) [10]

dy

dx
=

2

x
+

(
3− 1

x

)
y + xy2.

(b) [10]

dy

dx
= 2ex

2

+ (2x+ 3)y + e−x2

y2, y(0) = 1.

Hint: Choose appropriate f(x) and use the substitution u = f(x)y to convert the
equation to the form u′ = P (u), where P (u) is a polynomial of u.

3. (General Solution of Homogenous Linear Differential Equations) [10]
Find the general solutions of the following:

(a) [5]

y(4) − 6y′′′ + 15y′′ − 18y′ + 10y = 0.

(b) [5]

(x− 1)2y′′ + (x− 1)y′ + 4y = 0.

4. (An IVP of Homogeneous Linear DE with Constant Coefficients) [15]
Consider the following IVP:

Solve y(4) + 4y = 0

subject to y(x0) = 1, y′(x0) = r, y′′(x0) = r2, y(x0) = r3
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(a) Find the 4 complex roots for the polynomial D4 + 4: m1,m2,m3,m4, where
m2 = m∗

1, m4 = m∗
3. [5]

(b) From the lecture we know that {em1x, em2x, em3x, em4x} is a fundamental set of
solutions in the complex domain C. Hence the general solution in the complex
domain can be represented as

y = C1e
m1x + C2e

m2x + C3e
m3x + C4e

m4x, Ci ∈ C, i = 1, 2, 3, 4. (1)

Please give the necessary and sufficient condition for y being a real-valued function,
in terms of the relationships among {C1, C2, C3, C4}. [5]

(c) Use the form in (1) to find out the unique solution of the IVP. [5]
Hint: Use Cramer’s Rule to solve {C1, C2, C3, C4}, and use the following fact:∣∣∣∣∣∣∣∣∣∣∣

1 1 · · · 1
a1 a2 · · · an
a21 a22 · · · a2n
... ... ...

an−1
1 an−1

2 · · · an−1
n

∣∣∣∣∣∣∣∣∣∣∣
=

∏
1≤i<j≤n

(aj − ai).

5. (Method of Undetermined Coefficients) [10]

where the minus sign indicates that V is decreasing. Note here that we are ignoring
the possibility of friction at the hole that might cause a reduction of the rate of flow
there. Now if the tank is such that the volume of water in it at time t can be written
V(t) ! Awh, where Aw (in ft2) is the constant area of the upper surface of the water
(see Figure 1.3.3), then dV!dt ! Aw dh!dt. Substituting this last expression into (9)
gives us the desired differential equation for the height of the water at time t:

. (10)

It is interesting to note that (10) remains valid even when Aw is not constant. In this
case we must express the upper surface area of the water as a function of h—that is,
Aw ! A(h). See Problem 14 in Exercises 1.3.

Series Circuits Consider the single-loop LRC-series circuit shown in Fig-
ure 1.3.4(a), containing an inductor, resistor, and capacitor. The current in a circuit
after a switch is closed is denoted by i(t); the charge on a capacitor at time t is de-
noted by q(t). The letters L, R, and C are known as inductance, resistance, and capac-
itance, respectively, and are generally constants. Now according to Kirchhoff’s
second law, the impressed voltage E(t) on a closed loop must equal the sum of the
voltage drops in the loop. Figure 1.3.4(b) shows the symbols and the formulas for the
respective voltage drops across an inductor, a capacitor, and a resistor. Since current
i(t) is related to charge q(t) on the capacitor by i ! dq!dt, adding the three voltages

inductor resistor capacitor

and equating the sum to the impressed voltage yields a second-order differential
equation

(11)

We will examine a differential equation analogous to (11) in great detail in
Section 5.1.

Falling Bodies To construct a mathematical model of the motion of a body
moving in a force field, one often starts with the laws of motion formulated by the
English mathematician Isaac Newton (1643–1727). Recall from elementary physics
that Newton’s first law of motion states that a body either will remain at rest or will
continue to move with a constant velocity unless acted on by an external force. In
each case this is equivalent to saying that when the sum of the forces —
that is, the net or resultant force—acting on the body is zero, then the acceleration
a of the body is zero. Newton’s second law of motion indicates that when the net
force acting on a body is not zero, then the net force is proportional to its accelera-
tion a or, more precisely, F ! ma, where m is the mass of the body.

Now suppose a rock is tossed upward from the roof of a building as illustrated
in Figure 1.3.5. What is the position s(t) of the rock relative to the ground at time t?
The acceleration of the rock is the second derivative d2s!dt2. If we assume that the
upward direction is positive and that no force acts on the rock other than the force of
gravity, then Newton’s second law gives

. (12)

In other words, the net force is simply the weight F ! F1 ! "W of the rock near the
surface of the Earth. Recall that the magnitude of the weight is W ! mg, where m is

m 
d 2s
dt2 ! "mg    or    

d 2s
dt2 ! "g

F ! " Fk

L 
d 2q
dt2 # R 

dq
dt

#
1
C

 q ! E(t).

L 
di
dt

! L 
d 2q
dt2 ,    iR ! R 

dq
dt

,    and    
1
C

 q

dh
dt

! "
Ah

Aw
 12gh
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(b)
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L

C

R

(a) LRC-series circuit

(b)

L

R

Inductor
inductance L: henries (h)

voltage drop across: L
di
dt

i

Capacitor
capacitance C: farads (f)

voltage drop across:
1
C

i

Resistor
resistance R: ohms (Ω)
voltage drop across: iR

i

q

C

FIGURE 1.3.4 Symbols, units, and
voltages. Current i(t) and charge q(t) are
measured in amperes (A) and coulombs
(C), respectively

ground
building

rock

s(t)
s0

v0

FIGURE 1.3.5 Position of rock
measured from ground level
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Consider the above LRC series circuit. Recall from Chapter 1 that the voltage drop
across the three elements are LdI

dt
, IR, and q

C
respectively. Using the fact that I = dq

dt

and Kirchhoff’s Law, we have

Lq′′ +Rq′ + q/C = E(t).

Suppose L = 0.25, R = 1, C = 0.8, E(t) = e−t sin 10t+ 2e−2t cos t, q(0) = q0, I(0) = 0.
Find the current I(t).

6. (Variation of Parameters) [10]
Find the general solution of the following DE:

y′′ + y′ − 2y = xex
2

.

Bonus. (Reduction of Order Two Times) [10]
Consider a homogeneous linear third-order differential equation

(x3 + 3x2 − 3x+ 1)y′′′ − 3(x2 + 2x− 1)y′′ + 6(x+ 1)y′ − 6y = 0.
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(a) Verify that f1(x) = x+ 1 and f2(x) = x2 + 1 are both solutions to the above DE.

(b) Use the substitution y = f1(x)u1(x) to convert the original DE into a second-order
DE of v1 := u′

1. Write down this DE, and verify that
(

f2(x)
f1(x)

)′
is a solution to it.

(c) Use reduction of order to find another linearly independent solution to the derived
second-order DE.

(d) From (c) derive a third solution f3(x) of the original third-order DE so that
{f1, f2, f2} are linearly independent.
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