Homework 2

Due: 10/25, 18:00

1. (Substitution and Nonexact Differential Equation Made Exact)

Solve

$$
\begin{equation*}
\frac{d y}{d x}=2-2 e^{y}+3 e^{2 x+y}, y(0)=0 \tag{10}
\end{equation*}
$$

Bonus. Solve $\frac{d y}{d x}=2-2 e^{y}+3 e^{x+y}, y(0)=0$.
2. (Method of Substitution)

Solve
(a)

$$
\frac{d y}{d x}=\frac{2}{x}+\left(3-\frac{1}{x}\right) y+x y^{2}
$$

(b)

$$
\frac{d y}{d x}=2 e^{x^{2}}+(2 x+3) y+e^{-x^{2}} y^{2}, y(0)=1
$$

Hint: Choose appropriate $f(x)$ and use the substitution $u=f(x) y$ to convert the equation to the form $u^{\prime}=P(u)$, where $P(u)$ is a polynomial of u.

3. (General Solution of Homogenous Linear Differential Equations)

Find the general solutions of the following:
(a)

$$
y^{(4)}-6 y^{\prime \prime \prime}+15 y^{\prime \prime}-18 y^{\prime}+10 y=0
$$

(b)

$$
(x-1)^{2} y^{\prime \prime}+(x-1) y^{\prime}+4 y=0
$$

4. (An IVP of Homogeneous Linear DE with Constant Coefficients)

Consider the following IVP:
Solve

$$
y^{(4)}+4 y=0
$$

subject to

$$
y\left(x_{0}\right)=1, y^{\prime}\left(x_{0}\right)=r, y^{\prime \prime}\left(x_{0}\right)=r^{2}, y\left(x_{0}\right)=r^{3}
$$

(a) Find the 4 complex roots for the polynomial $D^{4}+4: m_{1}, m_{2}, m_{3}, m_{4}$, where $m_{2}=m_{1}^{*}, m_{4}=m_{3}^{*}$.
(b) From the lecture we know that $\left\{e^{m_{1} x}, e^{m_{2} x}, e^{m_{3} x}, e^{m_{4} x}\right\}$ is a fundamental set of solutions in the complex domain \mathbb{C}. Hence the general solution in the complex domain can be represented as

$$
\begin{equation*}
y=C_{1} e^{m_{1} x}+C_{2} e^{m_{2} x}+C_{3} e^{m_{3} x}+C_{4} e^{m_{4} x}, C_{i} \in \mathbb{C}, i=1,2,3,4 . \tag{1}
\end{equation*}
$$

Please give the necessary and sufficient condition for y being a real-valued function, in terms of the relationships among $\left\{C_{1}, C_{2}, C_{3}, C_{4}\right\}$.
(c) Use the form in (1) to find out the unique solution of the IVP.

Hint: Use Cramer's Rule to solve $\left\{C_{1}, C_{2}, C_{3}, C_{4}\right\}$, and use the following fact:

$$
\left|\begin{array}{cccc}
1 & 1 & \cdots & 1 \\
a_{1} & a_{2} & \cdots & a_{n} \\
a_{1}^{2} & a_{2}^{2} & \cdots & a_{n}^{2} \\
\vdots & \vdots & & \vdots \\
a_{1}^{n-1} & a_{2}^{n-1} & \cdots & a_{n}^{n-1}
\end{array}\right|=\prod_{1 \leq i<j \leq n}\left(a_{j}-a_{i}\right)
$$

5. (Method of Undetermined Coefficients)

Consider the above $L R C$ series circuit. Recall from Chapter 1 that the voltage drop across the three elements are $L \frac{d I}{d t}, I R$, and $\frac{q}{C}$ respectively. Using the fact that $I=\frac{d q}{d t}$ and Kirchhoff's Law, we have

$$
L q^{\prime \prime}+R q^{\prime}+q / C=E(t)
$$

Suppose $L=0.25, R=1, C=0.8, E(t)=e^{-t} \sin 10 t+2 e^{-2 t} \cos t, q(0)=q_{0}, I(0)=0$. Find the current $I(t)$.

6. (Variation of Parameters)

Find the general solution of the following DE:

$$
y^{\prime \prime}+y^{\prime}-2 y=x e^{x^{2}}
$$

Bonus. (Reduction of Order Two Times)

Consider a homogeneous linear third-order differential equation

$$
\left(x^{3}+3 x^{2}-3 x+1\right) y^{\prime \prime \prime}-3\left(x^{2}+2 x-1\right) y^{\prime \prime}+6(x+1) y^{\prime}-6 y=0 .
$$

(a) Verify that $f_{1}(x)=x+1$ and $f_{2}(x)=x^{2}+1$ are both solutions to the above DE.
(b) Use the substitution $y=f_{1}(x) u_{1}(x)$ to convert the original DE into a second-order DE of $v_{1}:=u_{1}^{\prime}$. Write down this DE, and verify that $\left(\frac{f_{2}(x)}{f_{1}(x)}\right)^{\prime}$ is a solution to it.
(c) Use reduction of order to find another linearly independent solution to the derived second-order DE.
(d) From (c) derive a third solution $f_{3}(x)$ of the original third-order DE so that $\left\{f_{1}, f_{2}, f_{2}\right\}$ are linearly independent.

