Homework 1

Due: 10/4, 18:00

1. (Practice of Different Methods)

Solve the following initial-value problems (y : dependent variable)
(a) $\frac{d y}{d x}=\frac{1}{x^{4}-1}, y(0)=1$.
(b) $\frac{d y}{d x}=\frac{x^{3}}{(2 y+1)}, y(2)=1$.
(c) $\left(x^{2}-1\right) \frac{d y}{d x}=x y+1, y(0)=1$.

2. (Discontinuous Coefficients)

Solve

$$
\frac{d y}{d x}+P(x) y=x
$$

subject to $y(0)=0$, where $P(x)=\left\{\begin{array}{ll}1, & x \geq 0 \\ -1 & x<0\end{array}\right.$.

3. (Nonlinear ODE Made Linear)

Solve

$$
\frac{d y}{d x}=1+x e^{-y}
$$

subject to $y(0)=0$.
4. (Singular Points, Interval of Definition, and Initial Conditions)
(1) Solve

$$
x(x-1) \frac{d y}{d x}=x+y
$$

subject to
(a) $y(2)=1$
(b) $y(-1)=1$
(c) $y(1 / 2)=1$
(2) Identify the singular points that cannot be included into the interval of definition.

5. (LR Circuit with AC Power)

Consider the above $L R$ circuit, where $E(t)=10 \sin (t)$ volts, $R=10$ ohms, $L=0.5$ henry, and initial current $i(0)=0$.
Find $i(t)$.

6. (Gompertz Differential Equation)

English Mathematician B. Gompertz (1779-1865) proposed the following equation to model population dynamics:

$$
\frac{d P}{d t}=P(a-b \ln P) .
$$

Suppose the initial population $P(0)=P_{0}$.
(a) Find $P(t)$.
(b) Find the capacity of population, that is, $P(\infty)$.
(c) Find the threshold of population beyond which its growth rate decreases as population grows.

Do not need to turn in with Homework 1 - turn in with Homework 2.
7. (Nonexact Differential Equation Made Exact)

Solve

$$
\frac{d y}{d x}=2-2 e^{y}+3 e^{2 x+y}, y(0)=0 .
$$

