
Homework 1 (10/4 Due) Differential Equations I-Hsiang Wang

Homework 1
Due: 10/4, 18:00

1. (Practice of Different Methods)
Solve the following initial-value problems (y: dependent variable)

(a) dy

dx
=

1

x4 − 1
, y(0) = 1.

(b) dy

dx
=

x3

(2y + 1)
, y(2) = 1.

(c) (x2 − 1)
dy

dx
= xy + 1, y(0) = 1.

2. (Discontinuous Coefficients)
Solve

dy

dx
+ P (x)y = x

subject to y(0) = 0, where P (x) =

{
1, x ≥ 0
−1 x < 0

.

3. (Nonlinear ODE Made Linear)
Solve

dy

dx
= 1 + xe−y

subject to y(0) = 0.

4. (Singular Points, Interval of Definition, and Initial Conditions)
(1) Solve

x(x− 1)
dy

dx
= x+ y

subject to

(a) y(2) = 1

(b) y(−1) = 1

(c) y(1/2) = 1

(2) Identify the singular points that cannot be included into the interval of definition.
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5. (LR Circuit with AC Power)

Integrating the last equation and solving for A gives the general solution 
A(t) ! 600 " ce#t/100. When t ! 0, A ! 50, so we find that c ! #550. Thus the
amount of salt in the tank at time t is given by

. (6)

The solution (6) was used to construct the table in Figure 3.1.5(b). Also, it can be
seen from (6) and Figure 3.1.5(a) that A(t) : 600 as t : $. Of course, this is what
we would intuitively expect; over a long time the number of pounds of salt in the
solution must be (300 gal)(2 lb/gal) ! 600 lb.

In Example 5 we assumed that the rate at which the solution was pumped in was
the same as the rate at which the solution was pumped out. However, this need not be
the case; the mixed brine solution could be pumped out at a rate rout that is faster
or slower than the rate rin at which the other brine solution is pumped in. The next
example illustrates the case when the mixture is pumped out at rate that is slower
than the rate at which the brine solution is being pumped into the tank.

A(t) ! 600 # 550e#t/100

88 ! CHAPTER 3 MODELING WITH FIRST-ORDER DIFFERENTIAL EQUATIONS

t

A A = 600

500

(a)

t (min) A (lb)

50 266.41
100 397.67
150 477.27
200 525.57
300 572.62
400 589.93

(b)

FIGURE 3.1.5 Pounds of salt in the
tank in Example 5

FIGURE 3.1.7 LR-series circuit
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FIGURE 3.1.6 Graph of A(t) in
Example 6
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EXAMPLE 6 Example 5 Revisited

If the well-stirred solution in Example 5 is pumped out at a slower rate of, say, 
rout ! 2 gal/min, then liquid will accumulate in the tank at the rate of rin # rout ! 
(3 # 2) gal/min ! 1 gal/min. After t minutes,

(1 gal/min) . (t min) ! t gal

will accumulate, so the tank will contain 300 " t gallons of brine. The concentration
of the outflow is then c(t) ! A!(300 " t) lb/gal, and the output rate of salt is Rout !
c(t) . rout, or

.

Hence equation (5) becomes

.

The integrating factor for the last equation is 

and so after multiplying by the factor the equation is cast into the form 

Integrating the last equation gives By applying the
initial condition and solving for A yields the solution A(t) ! 600 " 2t #
(4.95 % 107)(300 " t)#2. As Figure 3.1.6 shows, not unexpectedly, salt builds up in
the tank over time, that is, 

Series Circuits For a series circuit containing only a resistor and an inductor,
Kirchhoff’s second law states that the sum of the voltage drop across the inductor
(L(di!dt)) and the voltage drop across the resistor (iR) is the same as the impressed
voltage (E(t)) on the circuit. See Figure 3.1.7.

Thus we obtain the linear differential equation for the current i(t),

, (7)

where L and R are constants known as the inductance and the resistance, respectively.
The current i(t) is also called the response of the system.

L
di
dt

" Ri ! E(t)

A : $  as  t : $.

A(0) ! 50
(300 " t)2A ! 2(300 " t)3 " c.

d
dt

[(300 " t)2 A] ! 6(300 " t)2.

e"2dt>(300" t) ! e2 ln(300" t) ! eln(300" t)2
! (300 " t)2

dA
dt

! 6 #
2A

300 " t
    or    

dA
dt

"
2

300 " t
A ! 6

Rout ! # A
300 " t

 lb/gal$ ! (2 gal/min) !
2A

300 " t
 lb/min
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Consider the above LR circuit, where E(t) = 10 sin(t) volts, R = 10 ohms, L = 0.5
henry, and initial current i(0) = 0.
Find i(t).

6. (Gompertz Differential Equation)
English Mathematician B. Gompertz (1779 – 1865) proposed the following equation to
model population dynamics:

dP

dt
= P (a− b lnP ).

Suppose the initial population P (0) = P0.

(a) Find P (t).

(b) Find the capacity of population, that is, P (∞).

(c) Find the threshold of population beyond which its growth rate decreases as
population grows.

Do not need to turn in with Homework 1 – turn in with Homework 2.
7. (Nonexact Differential Equation Made Exact)
Solve

dy

dx
= 2− 2ey + 3e2x+y, y(0) = 0.
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