Homework 1

Due: 10/4, 18:00

1. (Practice of Different Methods)

Solve the following initial-value problems (y: dependent variable)

(a) $\frac{dy}{dx} = \frac{1}{x^4 - 1}, \ y(0) = 1.$

(b)
$$\frac{dy}{dx} = \frac{x^3}{(2y+1)}, y(2) = 1.$$

(c)
$$(x^2 - 1)\frac{dy}{dx} = xy + 1, y(0) = 1.$$

2. (Discontinuous Coefficients)

Solve

$$\frac{dy}{dx} + P(x)y = x$$

subject to $y(0) = 0$, where $P(x) = \begin{cases} 1, & x \ge 0\\ -1, & x < 0 \end{cases}$.

3. (Nonlinear ODE Made Linear)

Solve

$$\frac{dy}{dx} = 1 + xe^{-y}$$

subject to y(0) = 0.

4. (Singular Points, Interval of Definition, and Initial Conditions) (1) Solve

$$x(x-1)\frac{dy}{dx} = x+y$$

subject to

- (a) y(2) = 1
- (b) y(-1) = 1
- (c) y(1/2) = 1
- (2) Identify the singular points that cannot be included into the interval of definition.

5. (LR Circuit with AC Power)

Consider the above LR circuit, where $E(t) = 10 \sin(t)$ volts, R = 10 ohms, L = 0.5 henry, and initial current i(0) = 0. Find i(t).

6. (Gompertz Differential Equation)

English Mathematician B. Gompertz (1779 - 1865) proposed the following equation to model population dynamics:

$$\frac{dP}{dt} = P(a - b\ln P).$$

Suppose the initial population $P(0) = P_0$.

- (a) Find P(t).
- (b) Find the capacity of population, that is, $P(\infty)$.
- (c) Find the threshold of population beyond which its growth rate decreases as population grows.

Do not need to turn in with Homework 1 – turn in with Homework 2. 7. (Nonexact Differential Equation Made Exact) Solve

$$\frac{dy}{dx} = 2 - 2e^y + 3e^{2x+y}, \ y(0) = 0.$$