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The problem of community detection in random hyper graphs
is considered. We extend the Stochastic Block Model (SBM)
from graphs to hypergraphs with d-uniform hyperedges, which
we term “d-wise hyper stochastic block model” (d-hSBM), and
consider a homogeneous and approximately equal-sized K com-
munity case. For d = 3, we fully characterize the exponentially
decaying rate of the minimax risk in recovering the underlying
communities, where the loss function is the mis-match ratio
between the true community assignment and the recovered one.
It turns out that the rate function is a weighted combination of
several divergence terms, each of which is the Rényi divergence
of order 1

2
between two Bernoulli distributions. The Bernoulli

distributions involved in the characterization of the rate function
are those governing the random instantiation of hyperedges in
d-hSBM. The lower bound is set by finding a smaller parameter
space where we can analyze the risk, while the upper bound is
achieved with the Maximum Likelihood estimator. The technical
contribution is to show that upper bound has the same decaying
rate as the lower bound, which involves careful bounding of the
various probabilities of errors. Finally, we relate the minimax
risk to the recovery criterion under the Bayesian framework
and derive a threshold condition for exact recovery.

I. INTRODUCTION

The problem of community detection has received great
attention recently across many applications, including social
science, biology, and computer science. A standard way to in-
vestigate this problem is to formulate it in a graph G = {V, E},
where each node i ∈ V = [n] , {1, . . . , n} is assigned a
community (label) σ (i) ∈ [K] , {1, . . . ,K}. The community
assignment σ : [n] → [K] is hidden while the graph G is
revealed. Each edge in the graph models pairwise interaction
between the two nodes. The goal of the community detection
problem is to determine σ from G, by leveraging the fact that
the nodes with the same community are more likely to have
interaction and hence more likely to be connected by an edge.

In a statistical setting, a canonical framework for studying
the community detection problem is the stochastic block model
(SBM) [1] (also known as planted partition model [2]). SBM is
a random graph model generating randomly connected edges
from a set of labeled nodes. The presence of the

(
n
2

)
edges

is governed by
(
n
2

)
Bernoulli random variables, parameter

of each of them depends on the community assignments of
the two nodes in the corresponding edge. Under the SBM

framework, the community detection problem is to reconstruct
the hidden labels of all nodes given a single realization of the

random graph. The fundamental statistical limits of community
detection in SBM have been characterized recently. One line
of work takes a Bayesian perspective, where the unknown
labeling σ of nodes in V is assumed to be distributed according
to certain prior, and one of the most common assumption
is i.i.d. over nodes. Along this line, the fundamental limit
for exact recovery is completed characterized [3] in the full
generality, while partial recovery remains open. See the survey
[4] for more details and references therein. A second line
of work takes a minimax perspective, and the goal is to
characterize the minimax risk in community detection. In [5],
a tight asymptotic characterization of the minimax risk for
community detection in SBM is found.

In this work we explore the fundamental statistical limit
of leveraging beyond-pairwise interactions to recover hidden
community structures. In many applications, interaction among
a group with more than two entities happens frequently, and
it is natural to model such interaction by a hyperedge in
a hypergraph. It can be expected that the recoverability is
enhanced, and we would like to quantify the performance gain
in the statistical setting. In particular, we consider a random
hypergraph model called d-wise hyper stochastic block model
(d-hSBM), which can be thought of as a natural extension of
SBM to the hypergraph setting. In a d-hSBM, the presence of an
order-d hyperedge e ⊆ [n] (where |e| = d) is governed by a
Bernoulli random variable with parameter θe, and the presence
of different hyperedges are mutually independent.

Our main contribution in this conference paper is the char-
acterization of the asymptotic minimax risk for community
detection in 3-hSBM. To the best of our knowledge, this is the
first piece of work that studies community detection in random
hypergraphs. We focus on a homogeneous setting where θe
only depends on the number of communities in e. It turns
out that the minimax risk decays to 0 exponentially fast as
n → ∞, similar to that in SBM [5], while the exponent is
roughly n-times of that in SBM (order-wise). This makes sense
because the total number of hyperedges is also roughly n-
times of SBM (

(
n
3

)
versus

(
n
2

)
). Consequently, to guarantee

strong consistency (exact recovery), in 3-hSBM the connection
probability θ should at least Θ( logn

n2 ) instead of Θ( logn
n ) as

in SBM [3]. For the general d-hSBM, we expect the boost in
the exponent will be nd−2 times over SBM. Furthermore, let
p, q, r denote the connecting probability θe when the number
of communities in the hyperedge e is 1, 2, 3 respectively. It



turns out that the exponent (normalized by n2) is a weighted
combination of Ipq and Iqr, where Ixy denote the Rényi
divergence of order 1

2 between Ber(x) and Ber(y). Hence, the
exponent does not depend on the divergence between Ber(p)
and Ber(r) explicitly. The procedures and techniques in our
proof are mainly inspired by [5]. However, in the derivation of
some technical lemmas, we will use slightly different methods
to make the argument more concise.

II. PROBLEM FORMULATION

Notations: Let |S| denote the cardinality of the set S, [N ] ,
{1, 2, . . . , N} for N ∈ N, and t̄ , 1− t. Sn is the symmetric
group of degree n, which contains all the permutations from
[n] to [n]. dH(x,y) is the Hamming distance between two
vectors x and y. We say that two functions f(n) and g(n)
are asymtotically equal, denoted as f � g (as n → ∞), if
lim
n→∞

f(n)
g(n) = 1. R.V. is to mean ”Random Variable” for short.

A. Hypergraph Model

The 3-hSBM is formulated as follows. Consider a 3-uniform
hypergraph with n nodes, each belonging to one and only one
of the K (K ≥ 2) communities. Denote σ as the community
assignment, and σ(i) is the community assignment of the i-th
node. We observe the connectivity of the network in an order-
3 hyperedge form, which means that the underlying adjacency
relation is an n×n×n random tensor Ai,j,k determined by a
set of i.i.d. Bernoulli random variables with success probability
{θi,j,k}. We denote p = (p, q, r) ∈ (0, 1)3 for the probability
parameter. Let nk = |{i | σ(i) = k}| be the size of the k-th
community for k ∈ [K]. The parameter space we consider is a
homogeneous and approximately equal-sized case where each
nk ≈ b nK c , n′. Formally,

Θ0(n,K,p, η) ,
{

(σ,{θi,j,k}) | σ : [n]→ [K],

nk ∈ [(1− η)n′, (1 + η)n′] ∀k ∈ [K]
}

η is a parameter that determines how much nk could vary.
We assume that η ≥ 1

n′ since it is more interesting when
the sizes of each community are not exactly equal. As for
the success probability {θi,j,k}, we assume that θi,j,k 6= 0
if and only if |{i, j, k}| = 3 (no self-loop). Also, θi,j,k =
θσ(i),σ(j),σ(k) ∀σ ∈ S3 (symmetry). Finally, the block struture
and homogeneity are characterized by

θi,j,k =

 p, if |{σ(i), σ(j), σ(k)}| = 1 (relation all-same)
q, if |{σ(i), σ(j), σ(k)}| = 2 (relation two-one)
r, if |{σ(i), σ(j), σ(k)}| = 3 (relation all-diff )

Interchangeably, we would write (i, j, k)
σ∼ α, (i, j, k)

σ∼ β,
and (i, j, k)

σ∼ γ to indicate the all-same, two-one and all-diff
relation within nodes i, j, k under the assignment σ.

B. Performance Measure

We use the mis-match ratio to measure the performance
of community detection. To tackle the issue of label permu-
taion, we introduce the concept of equivalence class. For any
σ ∈ Θ0 and δ ∈ SK , let δ ◦ σ be a new assignment with

(δ ◦ σ)(i) = δ(σ(i)) ∀i ∈ [n]. The equivalence class of σ is
defined as Γ(σ) = {σ′ | ∃ δ ∈ SK s.t. σ′ = δ ◦ σ}. Then,
for any σ1, σ2 ∈ Θ0, we can define the distance between
σ1 and σ2 as d(σ1, σ2) , infσ′1∈Γ(σ1),σ′2∈Γ(σ2) dH(σ′1, σ

′
2),

the distance between the corresponding equivalence class
Γ(σ1) and Γ(σ2). Note that d(σ1, σ2) is also equivalent
to infσ′2∈Γ(σ2) dH(σ1, σ

′
2), which is the minimum distance

achievable over all relabeling of σ2 only.
The mis-match ratio is the loss function, counting the

proportion of misclassified nodes and minimized over all
possible label permutations, defined as `(σ, σ̂) , d(σ,σ̂)

n . Also,
we use Rσ(σ̂) , Eσ`(σ, σ̂) to denote the corresponding risk
function. Therefore, the minimax risk we try to characterize
for the parameter space Θ0(n,K,p, η) is denoted as

R∗ , inf
σ̂

sup
σ∈Θ0(n,K,p,η)

Rσ(σ̂)

Remark. Since we want to study the asymtotic behavior of the
minimax risk, we view R∗ = R∗(n) as a function of n (i.e. the
number of nodes). In addition, we also couple the parameter
K, p and η with n. The relationship between K and n is
stated as the sufficient condition in our main theorem, while
the interplay between η and n is that η = ηn ↓ 0 as n→∞.
p = (p, q, r) can be a fixed constant or it can scale with n.
It it noteworthy that r < q < p is not required in our work
though a practical assumption as it may be.

III. MAIN RESULTS

A. Contributions

The minimax rate for the parameter space Θ0(n,K,p, η)
under the 3-hSBM is as follows.

Main Theorem: If

(n′)2

2 Ipq + (K − 2)(n′)2Iqr

logK
→∞ (1)

then

log R∗(n) � −
( (n′)2

2
Ipq + (K − 2)(n′)2Iqr

)
(2)

where the key quantity Ixy , −2 log
(√
xy+

√
1− x

√
1− y

)
is the Rényi divergence of order 1

2 between two Bernoulli
distributions Ber(x) and Ber(y).

The lower bound of the minimax risk is depicted as follows.

Theorem 3.1: If (n′)2

2 Ipq + (K − 2)(n′)2Iqr →∞, then

R∗(n) ≥ exp
(
− (1 + o(1))

( (n′)2

2
Ipq + (K − 2)(n′)2Iqr

))
Proof: The main idea is to construct a smaller parameter

space where we can analyze the risk. We pass the global
Bayesian risk to a local one and trasform the local Bayesian
risk into the risk function of a hypothesis testing problem.
With some known results from large deviation, we could get
the desired bound. Detailed proofs are given in section IV.



Let L(σ;A) denote the log-likelihood of an observation A
given that the underlying assignment is σ. For upper bound,
it can be shown that the Maximum Likelihood estimator

σ̂MLE = arg max
σ

L(σ;A)

is a rate-optimal procedure.

Theorem 3.2: If
(n′)2

2 Ipq+(K−2)(n′)2Iqr
logK →∞, then

R∗(n) ≤ exp
(
− (1− o(1))

( (n′)2

2
Ipq + (K − 2)(n′)2Iqr

))
Proof: The key step is to get a tight bound on the prob-

ability of error event for a fixed candidate assignment σ with
d(σ, σ0) = m, i.e., having m different assignments compared
to the truth assignment σ0. First, we bound P{L(σ;A) ≥
L(σ0;A)} using the Chernoff Bound. Then, we demonstrate
that the number of disagreements are at least in the order of
(n′)2

2 Ipq + (K − 2)(n′)2Iqr. In the final part, we apply the
Union Bound and show that Rσ0

(σ̂MLE) would be dominated
by the R.H.S. of (2) no matter what relative order between
−
( (n′)2

2 Ipq+(K−2)(n′)2Iqr
)

and log n. Rigorous arguments
are provided in section V.

B. Improvements with Hyperedge Observation

For ordinary SBM, the main result of [5] under the ho-
mogeneous and approximately equal-sized parameter space
Θ0(n,K, p, q) is as follows.

If
n′Ipq
logK

→∞, then log R∗(n) � −n′Ipq

Compared to (2), we can see that the minimax rate will decay
n-times faster than in [5]. An explanation is that, in pairwise
interaction we could only make use of

(
n
2

)
random edges,

while we have
(
n
3

)
random hyperedges for 3-hSBM. This means

that under the same connection probability, fewer nodes are
needed to guarantee the same risk in 3-hSBM. Equivalently,
given the same number of nodes, using hypergraph allows us
to use a connecting probability p that is n-times smaller while
still achieving the same risk.

C. Implications to Exact Recovery

Here, we want to explore the relationship between our
minimax result and those under the Bayesian criterion. We
will use the definitions in [4]. Besides, we denote π as the
prior distribution for σ and Rπ(σ̂) , Eσ∼πRσ(σ̂) as the
corresponding Bayesian risk.

First, we look at an interesting observation. In our main
theorem, the condition (1) essentially requires that the expo-
nent of the minimax risk R∗ should dominate logK. In light
of (2), this further leads to R∗ < 1

K asymtotically. As noted
in [4], if we assume a uniform prior over the appearance of
each community (i.e. σ(i) ∼ Unif([K]) ∀i ∈ [n]), then the
mis-match ratio is only of interest when it is less than 1

K .
Intuitively, condition (1) restricts us to a more meaningful
“better-than-random-guess” Maximum Likelihood estimator in
the achievability part of the proof.

Next, we show that how the phase transition phenomenon
can be derived from (2). Exact recovery requires

Eσ∼πPσ

{
sup

σ̂′∈Γ(σ̂)

1

n

n∑
i=1

1 {σ(i) = σ̂′(i)} = 1

}
= 1− o(1)

For a homogeneous parameter space (symmetric SBM in [4])
with K communities embedded, [6] shows that the threshold
condition using the Chernoff-Hellinger divergence reduces to

(
√
a−
√
b)2 > K (3)

when a, b,K are constants not scaling with n. In [5], the au-
thors relate the minimax risk R∗ in SBM to (3) by rewriting R∗

in the form of a threshold variable ρ , lim infn→∞
− log R∗

logn .
If ρ > 1, then there exists a small constant c > 0 such that
− log R∗

logn > 1 + c. We can immediately obtain an upper bound
for the error probability.

Eσ∼πPσ

{
inf

σ̂′∈Γ(σ̂)

n⋃
i=1

{σ(i) 6= σ̂(i)}

}
≤ nRπ(σ̂)

≤ nR∗ < n−c

When (p, q) = logn
n (a, b) for connectivity concern, the Rényi

divergence Ipq is equivalent to (1+o(1)(
√
a−
√
b)2 logn

n . Thus,
we can see that the condition ρ > 1 is identical to (3).

Similarly, we can also identify (3) with ρ > 1. Since the
connecting probability required (for the same risk) in 3-hSBM is
now n-times smaller, we could allow the probability parameter
p to be in the Θ( logn

n2 ) regime. Specifically, let p = (p, q, r) =
logn
n2 (a, b, c). Based on the above observation and note that
Ixy = (1 + o(1)(

√
x−√y)2 logn

n2 for x, y = o( logn
n2 ), we have

the following corollary.
Corollary 3.1: Exact recovery is solvable if

1

2K
(
√
a−
√
b)2 +

(
1− 2

K

)
(
√
b−
√
c)2 > K

when a, b, c,K are constants not scaling with n.

Remark. The thershold condition derived from the minimax
result provide only a sufficient condition for exact recovery in
3-hSBM. However, for SBM, the solvability of exact recovery
is fully characterized in [6] by the condition I > 1 (or (3)
for symmetric cases). We expect that ρ > 1 would also be
necessary for exact recovery in 3-hSBM.

IV. MINIMAX LOWER BOUND

Consider a least favorable sub-parameter space of Θ0:

ΘL
1 (n,K,p, η) =

{
(σ, {θi,j,k}) ∈ Θ0(n,K,p, η) | ∀k ∈ [K]

nk ∈ {n′ − 1, n′, n′ + 1}, nσ(1) = n′ + 1
}

That is, each community only takes on one of the three
possible sizes n′ − 1, n′ or n′ + 1. We further require that
the size of the community where the first node lies in is n′.
Compared with Θ0, ΘL

1 is small and specific enough for us
to do the lower bound analysis. On the other hand, it is large
and general enough to match the desired minimax risk order.



To start with, we introduce the notation of local loss which
focuses on only one node. Let Sσ(σ̂) = {σ′ ∈ Γ(σ̂) |
dH(σ, σ′) = d(σ, σ̂)} be the set of all permutations in the
equivalence class of σ̂ that achieve the mimimum distance.
The local loss function for each i ∈ [n] is defined as the
proportion of false labeling of node i in Sσ(σ̂): `(σ(i), σ̂(i)) ,∑
σ′∈Sσ(σ̂)

1{σ(i)6=σ̂(i)}
|Sσ(σ̂)| . It turns out that it is rather easy to

study the local loss. Since ΘL
1 is closed under permutation,

we can apply the global-to-local lemma in [5].
Lemma 4.1 (Lemma 2.1 in [5]): Let Θ be any ho-
mogeneous parameter space that is closed under per-
mutation. Let Unif be the uniform prior over all the
elements in Θ. Define the global Bayesian risk as
Rσ∼Unif(σ̂) = 1

|Θ|
∑
σ∈Θ Eσ`(σ, σ̂) and the local Bayesian

risk Rσ∼Unif(σ̂(1)) = 1
|Θ|
∑
σ∈Θ Eσ`(σ(1), σ̂(1)) for the first

node. Then

inf
σ̂

Rσ∼Unif(σ̂) = inf
σ̂

Rσ∼Unif(σ̂(1))

Second, we relate the local Bayesian risk to a hypothesis
testing problem. The two competing assignments disagreed on
only one node directly translate into the hypothesis candidates
in the testing problem.
Lemma 4.2:

Rσ∼Unif(σ̂(1)) ≥

P

{
npq∑
i=1

Cpq(Xi − Yi) +

nqr∑
i=1

Cqr(Zi −Wi) ≥ 0

}
where npq , 1

2n
′(n′ − 1), nqr , n′(n− 2n′ − 1), f(t) , t/t̄

for Cxy , log f(x)
f(y) , and Xi

i.i.d.∼ Ber(q), Yi
i.i.d.∼ Ber(p), Zi

i.i.d.∼
Ber(r),Wi

i.i.d.∼ Ber(q) are all mutually indepedent R.V.s.

With the aid of the Rozovsky lower bound [7], we are able
to prove the following lemma.
Lemma 4.3: If npqIpq + nqrIqr →∞, then

P

{
npq∑
i=1

Cpq(Xi − Yi) +

nqr∑
i=1

Cqr(Zi −Wi) ≥ 0

}
≥ exp

(
− (1 + o(1))(npqIpq + nqrIqr)

)
(4)

Lemma 4.2 and 4.3 are proved in Appendix A in [8].
Proof of Theorem 3.1: Finally, since the Bayesian risk

always lower bounds the minimax risk, we have

R∗(n) = inf
σ̂

sup
σ∈Θ0

Eσ`(σ, σ̂) ≥ inf
σ̂

sup
σ∈ΘL1

Eσ`(σ, σ̂)

≥ inf
σ̂

Rσ∼Unif(σ̂) = inf
σ̂

Rσ∼Unif(σ̂(1))

≥ P

{
npq∑
i=1

Cpq(Xi − Yi) +

nqr∑
i=1

Cqr(Zi −Wi) ≥ 0

}
≥ exp

(
− (1 + o(1))(npqIpq + nqrIqr)

)
≥ exp

(
− (1 + o(1))

( (n′)2

2
Ipq + (K − 2)(n′)2Iqr

))

V. MINIMAX UPPER BOUND

In this section, we use σ0 to denote the true assignment
while σ is any other competitor in ML estimation. Toward our
goal, we will find a tight bound on the following probability

Pm , P
{
∃σ ∈ Θ0 | d(σ, σ0) = m, L(σ;A) ≥ L(σ0;A)

}
(5)

for m ∈ [n]. First of all, we derive the expression for the log-
likelihood function. To simplify, denote Sα , {(i, j, k) | i <
j < k, (i, j, k)

σ∼ α}. Sβ and Sγ are defined in the same way.
With some manipulations, we have

Claim 5.1:

L(σ;A) =

(
Cpq

∑
(i,j,k)∈Sα

Ai,j,k − λpq
∑

(i,j,k)∈Sα

1

)

−
(
Cqr

∑
(i,j,k)∈Sγ

Ai,j,k − λqr
∑

(i,j,k)∈Sγ

1

)
+ f(σc)

where f(σc) are those terms that are invariant to the choice
of the community assignment σ and λxy , log(x̄/ȳ).

Similarly, we can obtain the expression L(σ0;A). Then,

Claim 5.2: Event {L(σ;A) ≥ L(σ0;A)} is equivalent to

Cpq

( n(α,β0)∑
i=1

Vi −
n(β,α0)∑
i=1

Ui

)

+Cqr

( n(β,γ0)∑
i=1

Wi−
n(β,β0)∑
i=1

Vi

)
+Cpr

( n(α,γ0)∑
i=1

Wi−
n(γ,α0)∑
i=1

Ui

)
≥ Cpqλpq

(
n(α, β0)−n(β, α0)

)
+Cqrλqr

(
n(β, γ0)−n(γ, β0)

)
+ Cprλpr

(
n(α, γ0)− n(γ, α0)

)
where Sα,β0

, {(i, j, k) | (i, j, k)
σ∼ α, (i, j, k)

σ0∼ β} for
n(α, β0) , |Sα,β0

| (other related notations are similarly
defined) and Ui

i.i.d.∼ Ber(p), Vi
i.i.d.∼ Ber(q),Wi

i.i.d.∼ Ber(r)
are all mutually independent R.V.s.

The following diagram may help clarify our definitions:

all-same two-one all-diff
σ α β γ
σ0 α0 β0 γ0

Note that n(α, β0) and n(β, α0) have the same struture and
order by symmetry. We use n(α, β) , 1

2

(
n(α, β0)+n(β, α0)

)
to denote their average. n(β, γ), n(α, γ) are similarly defined.

The next step is to use Chernoff Bound to put a limit on the
probability of error event Pe(σ) , P{L(σ;A) ≥ L(σ0;A)}.
Lemma 5.1:

Pe(σ) ≤ exp
(
−
(
n(α, β)Ipq + n(β, γ)Iqr

))
Third, we apply some knowledge from convex analysis

(see, for example, [9]) to obtain the combinatorial bounds on
n(α, β) and n(β, γ).



Lemma 5.2: Let σ be an assignment with d(σ, σ0) = m where
m ∈ [n]. Then there exists a constant c independent of n such
that η′ = cη and the following holds ∀K ≥ 2: for m ≤ n′

2 ,

n(α, β) ≥ (1− η′)
(

1−
m

1−η′

n′

)(
1−

1
1−η′

n′

) (n′)2

2
m

n(β, γ) ≥ (1− η′)
(

1−
m

1−η′

n′

)2

(K − 2)(n′)2m

and for m > n′

2 ,

n(α, β) ≥ (1− η′)
(K ′)2

(
1−

(K′)2

1−η′

n′

) (n′)2

2
m

n(β, γ) ≥ 7(1− η′)
81

(K − 2)(n′)2m

where K ′ = max{3,K} in case of K = 2.
Lemma 5.2, together with Lemma 5.1, immediately imply

an upper bound on Pe(σ) for each given σ.
Lemma 5.3: Let σ ∈ Θ0 be an arbitrary assignment with
d(σ, σ0) = m. We have the following.

P
{
L(σ;A) ≥ L(σ0;A)

}

≤



exp
(
− (1− η′)

(
1−

m
1−η′

n′

)2( (n′)2

2 Ipq + (K − 2)(n′)2Iqr
)
m
)

, if m ≤ n′

2

exp
(
− (1− η′)

(
1

(K′)2

(
1−

(K′)2

1−η′

n′

) (n′)2

2 Ipq

+ 7
81 (K − 2)(n′)2Iqr

)
m
)

, if m > n′

2

Then, we apply Union Bound on Pm defined in (5). We use
the cardinality of {Γ(σ)} (the equivalence class of σ) rather
than the quite larger counterpart {σ ∈ Θ0 | d(σ, σ0) = m}.
Lemma 5.4 (Proposition 5.2 in [5]): The cardinality of equiv-
alent class that has distance m from σ0 is upper bounded by∣∣{Γ | ∃σ ∈ Γ s.t. d(σ, σ0) = m

}∣∣ ≤ min
{(enK

m

)m
,Kn

}
In light of Lemma 5.4, we further have Pm ≤

∣∣{Γ | ∃σ ∈
Γ s.t. d(σ, σ0) = m

}∣∣ · P{L(σ;A) ≥ L(σ0;A)}. Let η′ =
η′n ↓ 0 in Lemma 5.2 as n → ∞ and recall the requirement
(1) in our main theorem. We can make η′ decay slow enough
and dominate logK and other lower(constant) order terms by
η′
( (n′)2

2 Ipq+(K−2)(n′)2Iqr
)
. Considering the order between

(n′)2

2 Ipq + (K − 2)(n′)2Iqr and log n, we are going to find
different m0s and m′s so that
Lemma 5.5: For the following three different cases:

1) lim inf
n→∞

(n′)2
2 Ipq+(K−2)(n′)2Iqr

logn > 1

2) lim sup
n→∞

(n′)2
2 Ipq+(K−2)(n′)2Iqr

logn < 1

3) lim sup
n→∞

(n′)2
2 Ipq+(K−2)(n′)2Iqr

logn = 1 + o(1)

We have m0

n ≤ exp
(
−(1−o(1))( (n′)2

2 Ipq+(K−2)(n′)2Iqr)
)

, R. Besides, m
n Pm ≤ Qm1 ∀m ∈ (m0,m

′] where Qm0
=

o(R) and m
n Pm ≤ Qm2 ∀m ∈ (m′, n] where Qm′ = o(R) for

some fast decaying geometric series {Qm1} and {Qm2}.

Proof of Theorem 3.1: Combining, we have ∀σ0 ∈ Θ0,

Rσ0
(σ̂MLE) = Eσ0

`(σ0, σ̂MLE) ≤
n∑

m=1

m

n
Pm

=

m0∑
m=1

m

n
Pm +

m′∑
m>m0

m

n
Pm +

n∑
m>m′

m

n
Pm

≤ m0

n
+ c1Qm0

+ c2Qm′ = o(R)

Essentially, we can conclude that R∗(n) = o(R).
Proofs of Claim 5.1, 5.2, Lemma 5.1, 5.2 and 5.5 are rather
involved. We defer the details to Appendix B in [8].

VI. EXTENSIONS

There are still a lot of interesting issues awaiting to be
explored. We list a few possible directions for future work.
• Extension to general parameter space: In [5], the authors

consider a general parameter space Θ beyond the homo-
geneous and approximately equal-sized special case. We
hope to finish this generalization in 3-hSBM soonly after.

• Efficient algorithm: After characterizing the statistical
limit of community detection in 3-hSBM, we are now con-
structing an efficient algorithm that achieves it. Inspired
by [10], we develop a 2-step algorithm which seems to
achieve the statistical limit found in this paper.

• Extension to higher order hypergraph: hSBM of higher
order would definitely be an interest of research for
years to come. We predict that the main difficulty for
higher order extension would still lie in the combinatorial
lower bound (Lemma 5.2). Moreover, we could even
consider hSBM with mixing order of hyperedges. The
mixture model could possibly provides more insight to
the community detection problem in hSBM.
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APPENDIX A
PROOF OF AUXILIARY RESULTS IN LOWER BOUND

A. Proof of Lemma 4.2

First recall that

Rσ∼Unif(σ̂(1)) =
1

|ΘL
1 |
∑
σ∈ΘL1

Eσ`(σ(1), σ̂(1))

In order to connect Rσ∼Unif(σ̂(1)) with the risk function of a hypothesis testing problem, we shall find an equivalent form of
Eσ`(σ(1), σ̂(1)). The idea is to find another assignment σ′ such that d(σ, σ′) = dH(σ(1), σ′(1) = 1 {σ(1) 6= σ′(1)} = 1. σ′

is the most indistinguishable opponent against σ in the sense that their assignments differ by only one node. Specifically, for
each σ0 ∈ ΘL

1 , we construct a new assignment σ[σ0] based on σ0:

σ[σ0](1) = arg min
2≤i≤n

{
nσ0(i) = n′

}
and σ[σ0](i) = σ0(i) for 2 ≤ i ≤ n. Note that {i | nσ0(i) = n′} 6= ∅∀σ0 ∈ ΘL

1 and σ[σ0] ∈ ΘL
1 . In addition, for any

σ1, σ2 ∈ ΘL
1 , we can see that σ1 6= σ2 if and only if σ[σ1] 6= σ[σ2]. Therefore, {σ0 | σ0 ∈ ΘL

1 } = {σ0 | σ0 ∈ ΘL
1 } and thus

Rσ∼Unif(σ̂(1)) =
1

|ΘL
1 |

∑
σ0∈ΘL1

Eσ0`(σ0(1), σ̂(1))

=
1

|ΘL
1 |

∑
σ0∈ΘL1

1

2

(
Eσ0`(σ0(1), σ̂(1)) + Eσ[σ0]`(σ[σ0](1), σ̂(1))

)
In the testing problem, we can use the optimal Bayes risk as a lower bound. Let σ̂Bayes be an assignment that achieves

the minimum Bayes risk inf σ̂
1
2

(
Eσ0

`(σ0(1), σ̂(1)) + Eσ[σ0]`(σ[σ0](1), σ̂(1))
)
. Notice that σ̂Bayes(1) is a Bayes estimator

concerning the 0-1 loss, indicating that σ̂Bayes(1) must to be the mode of the posterior distribution. Roughly speaking, the
team who has a larger value of sum of the supporting R.V.s wins the test. Denote J0 =

{
u ∈ [n]/{1} | σ0(u) = σ0(1)

}
,

J1 =
{
u ∈ [n] | σ0(u) = σ[σ0](1)

}
and J2 =

{
u ∈ [n] | u /∈ J0∪J1

}
. If the underlying assignment is σ0, the set of supporting

random variables is divided into

A1,j,k ∼ Ber(p) : S1 = {(j, k) | j < k; j, k ∈ J0}
A1,j,k ∼ Ber(q) : S2 = {(j, k) | j ∈ J0, k ∈ J1}, S3 = {(j, k) | j ∈ J0, k ∈ J2},

S4 = {(j, k) | j < k; j, k ∈ J1}, S5 = {(j, k) | j < k; j, k ∈ J2, σ(j) = σ(k)}
A1,j,k ∼ Ber(r) : S6 = {(j, k) | j ∈ J1, k ∈ J2}, S7 = {(j, k) | j < k; j, k ∈ J2, σ(j) 6= σ(k)}

Otherwise, if σ = σ[σ0], the situation becomes

A1,j,k ∼ Ber(p) : {(j, k) | j < k; j, k ∈ J1} = S4

A1,j,k ∼ Ber(q) : {(j, k) | j ∈ J1, k ∈ J0} = S′2, {(j, k) | j ∈ J1, k ∈ J2} = S6,

{(j, k) | j < k; j, k ∈ J0} = S4, {(j, k) | j < k; j, k ∈ J2, σ(j) = σ(k)} = S5

A1,j,k ∼ Ber(r) : {(j, k) | j ∈ J0, k ∈ J2} = S6, {(j, k) | j < k; j, k ∈ J2, σ(j) 6= σ(k)} = S7

First of all, observe that |S1| = |S4| = 1
2n
′(n′ − 1) = npq and |S3| = |S6| = n′(n − 2n′ − 1) = nqr. Moreover, S2 = S′2

because of the symmetry of Ai,j,k. Third, S5 and S7 are independent of the hypothesis testing (denoted as σc).
As a result, the posterior probability is

P{A | σ0} =
∏

(j,k)∈S1

pA1,j,k p̄Ā1,j,k

∏
(j,k)∈S3

qA1,j,k q̄Ā1,j,k

∏
(j,k)∈S4

qA1,j,k q̄Ā1,j,k

∏
(j,k)∈S6

rA1,j,k r̄Ā1,j,k · f(σc)

and the log-likelihood function becomes

L(σ0;A) = logP{A | σ0} =
∑

(j,k)∈S1

(
A1,j,k log

p

p̄
+ log p̄

)
+

∑
(j,k)∈S3

(
A1,j,k log

q

q̄
+ log q̄

)

+
∑

(j,k)∈S4

(
A1,j,k log

q

q̄
+ log q̄

)
+

∑
(j,k)∈S6

(
A1,j,k log

r

r̄
+ log r̄

)
+ log f(σc)



Similarly, by interchanging the role of J0 and J1, we can obtain L(σ[σ0];A). Hence,

Eσ0
`(σ0(1), σ̂Bayes(1)) = Pσ0

{L(σ[σ0];A) ≥ L(σ0;A)}

= P

{
npq∑
i=1

Cpq(Xi − Yi) +

nqr∑
i=1

Cqr(Zi −Wi) ≥ 0

}
(6)

after some manipulations. By symmetry, the situation is exactly the same for Eσ[σ0]`(σ[σ0](1), σ̂Bayes(1)). Finally, since (6)
holds for all σ0 ∈ ΘL

1 and inf(·) is a concave function, we have

Rσ∼Unif(σ̂(1)) ≥ inf
σ̂

Rσ∼Unif(σ̂(1))

= inf
σ̂

1

|ΘL
1 |

∑
σ0∈ΘL1

1

2

(
Eσ0

`(σ0(1), σ̂(1)) + Eσ[σ0]`(σ[σ0](1), σ̂(1))
)

≥ 1

|ΘL
1 |

∑
σ0∈ΘL1

inf
σ̂

1

2

(
Eσ0

`(σ0(1), σ̂(1)) + Eσ[σ0]`(σ[σ0](1), σ̂(1))
)

=
1

|ΘL
1 |

∑
σ0∈ΘL1

P

{
npq∑
i=1

Cpq(Xi − Yi) +

nqr∑
i=1

Cqr(Zi −Wi) ≥ 0

}

= P

{
npq∑
i=1

Cpq(Xi − Yi) +

nqr∑
i=1

Cqr(Zi −Wi) ≥ 0

}
B. Proof of Lemma 4.3

We can break the L.H.S of (4) dirctly into

P

{
npq∑
i=1

Cpq(Xi − Yi) +

nqr∑
i=1

Cqr(Zi −Wi) ≥ 0

}
≥ P

{
npq∑
i=1

Cpq(Xi − Yi) ≥ 0

}
· P

{
nqr∑
i=1

Cqr(Zi −Wi) ≥ 0

}
Though naı̈ve, we could still arrive at the same order as the minimax rate. By symmetry, it is enough to focus on

P

{
npq∑
i=1

Cpq(Xi − Yi) ≥ 0

}
in (4). Here, we utilize a result from large deviation.

Conseder i.i.d. R.V.s {Xi}ni=1 where each Xi ∼ X . We assume X is nondegenerate and that

EX2eλX <∞ (7)

for some λ > 0. The former condition ensures, for 0 < u ≤ λ, the existence of the functions m(u) ,
(

logLX(u)
)′

,
σ2(u) , m′(u) and Q(u) , um(u) − logLX(u) where LX(u) , EeuX is the Moment Generating Function (MGF) of the
random variable X . Recall some known results:

lim
u↓0

m(u) = m(0) = EX <∞

and
sup

0<u≤λ
(ux− logLX(u)) = Q(u∗) (8)

for m(0) < x ≤ m(λ), where u∗ is the unique solution of the equation

m(u) = x (9)

Note that it is the sup-achieving condition in (8). The main theorem goes as follows.

Theorem 1.1 (Theorem 1 in [7]): ∀x such that m(0) < x ≤ m(λ) and ∀n ≥ 1, the relation

e−nQ(u∗) ≥ P

{
n∑
i=1

Xi ≥ nx

}
≥ e−nQ(u∗)−c

(
1+
√
nQ(u∗)

)

holds, where the constant c does not depend on x and n.

The first inequality is essentially the Chernoff Bound, while here we use the second one, i.e., the lower bound result.



First, we identify that X = Cpq(Xi−Yi) and n = npq for our problem. Besides, since X <∞, we can take λ large enough
so that (7) holds. The MGF now becomes

LX(u) = EeuX = E
[
euCpqXi

]
· E
[
e−uCpqYi

]
Also, since m(0) = EX < 0, we make a trick here to take x = 0. The corresponding optimalilty condition (9) becomes

m(u) = x = 0⇔ L′X(u)

LX(u)
= 0

⇔ L′X(u) = 0

It can be shown that u∗ = 1
2 and the supremum achieved is

Q(u∗) = sup
0<u≤λ

(ux− logLX(u))

= − logLX(u∗)

= Ipq

Combining the expressions for Cpq and Cqr, we can conclude that

P

{
npq∑
i=1

Cpq(Xi − Yi) +

nqr∑
i=1

Cqr(Zi −Wi) ≥ 0

}
≥ P

{
npq∑
i=1

Cpq(Xi − Yi) ≥ 0

}
· P

{
nqr∑
i=1

Cqr(Zi −Wi) ≥ 0

}
≥ e−npqIpq−cpq(1+

√
npqIpq) · e−nqrIqr−cqr(1+

√
nqrIqr)

= exp
(
−
(
npqIpq + nqrIqr + cpq

(
1 +

√
npqIpq

)
+ cqr

(
1 +

√
nqrIqr

)))
≥ exp

(
−
(
npqIpq + nqrIqr + c

(
2 +

√
2(npqIpq + nqrIqr)

)))
where c = max{cpq, cqr} is independent of n′. Finally, since we assume that npqIpq +nqrIqr →∞, the second term with the
constant c in the above equation would be dominated by the first term. We have the desired asymtotic result in consequence.

APPENDIX B
PROOF OF AUXILIARY RESULTS IN UPPER BOUND

A. Proof of Claim 5.1

L(σ;A) = log p
∑
Sα

Ai,j,k + log p̄
∑
Sα

Āi,j,k + log q
∑
Sβ

Ai,j,k + log q̄
∑
Sβ

Āi,j,k + log r
∑
Sγ

Ai,j,k + log r̄
∑
Sγ

Āi,j,k

= log
p

p̄

∑
Sα

Ai,j,k + log p̄
∑
Sα

1 + log
q

q̄

∑
Sβ

Ai,j,k + log q̄
∑
Sβ

+ log
r

r̄

∑
Sγ

Ai,j,k + log r̄
∑
Sγ

1

Write
∑
Sβ
Ai,j,k =

∑
Ai,j,k −

∑
Sα
Ai,j,k −

∑
Sγ
Ai,j,k. After some manipulations, we can arrive at the expression

L(σ;A) =

(
log

f(p)

f(q)

∑
Sα

Ai,j,k − log
q̄

p̄

∑
Sα

1

)
−

log
f(q)

f(r)

∑
Sγ

Ai,j,k − log
r̄

q̄

∑
Sγ

1

+
(

log f(q)
∑

Ai,j,k + log q̄
∑

1
)

where the last term is invariant to the choice of σ or σ0.

B. Proof of Claim 5.2

Recall that the error-event equation we try to simplify is

L(σ;A) ≥ L(σ0;A) (10)

When rearranging terms in (10), we would encouter terms like
∑
Sα
−
∑
Sα0

. Hence, the computaion of the difference of the
cardinality between Sα and Sα0 is required. It is not hard to see that |Sα|− |Sα0 | = n(α, β0)+n(α, γ0)−n(β, α0)−n(γ, α0).



These are the numbers of remaining R.V.s after cancellation in (10). Likewise, we can do the same calculations between Sγ
and Sγ0 . Details out, we have

⇒ Cpq

n(α,β0)∑
i=1

Vi +

n(α,γ0)∑
i=1

Wi −
n(β,α0)+n(γ,α0)∑

i=1

Ui

− Cqr
n(γ,α0)∑

i=1

Ui +

n(γ,β0)∑
i=1

Vi −
n(α,γ0)+n(β,γ0)∑

i=1

Wi


≥ Cpqλpq

(
n(α, β0) + n(α, γ0)− n(β, α0)− n(γ, α0)

)
+ Cqrλqr

(
n(γ, α0) + n(γ, β0)− n(α, γ0)− n(β, γ0)

)
⇒ Cpq

n(α,β0)∑
i=1

Vi −
n(β,α0)∑
i=1

Ui

+ Cqr

n(β,γ0)∑
i=1

Wi −
n(β,β0)∑
i=1

Vi

+ (Cpq + Cqr)

n(α,γ0)∑
i=1

Wi −
n(γ,α0)∑
i=1

Ui


≥ Cpqλpq

(
n(α, β0)− n(β, α0)

)
+ Cqrλqr

(
n(β, γ0)− n(γ, β0)

)
+ (Cpqλpq + Cqrλqr)

(
n(α, γ0)− n(γ, α0)

)
The result follows because Cpq + Cqr = Cpr and Cpqλpq + Cqrλqr = Cprλpr.

C. Proof of Lemma 5.1

Recall the Chernoff Bound states that

P{X ≥ x} ≤ min
u>0

LX(u)

eux
= e−u

∗xLX(u∗)

where LX(u) is again the MGF of the R.V. X , and u∗ = 1
2 for our problem.

It turns out we could separate out the expression to three terms with respect to Cpq , Cqr and Cqr, respectively, due to the
fact that addition in the exponent translates into multiplication in the exponential. Consequently, we can focus on the first term

Epq : Cpq

n(α,β0)∑
i=1

Vi +

n(β,α0)∑
i=1

Ui

 ≥ Cpqλpq(n(α, β0)− n(β, α0)
)

and the result follows by symmetry.

P{Epq} ≤
(
E[eu

∗CpqV ]
)n(α,β0)(

E[e−u
∗CpqU ]

)n(β,α0)

· e−u
∗Cpqλpq

(
n(α,β0)−n(β,α0)

)
=
(
E[eu

∗CpqV ]E[e−u
∗CpqU ]

) 1
2

(
n(α,β0)+n(β,α0)

)
·

(
E[eu

∗CpqV ]
1
2

E[e−u
∗CpqU ]

1
2

e−u
∗Cpqλpq

)n(α,β0)−n(β,α0)

=
(
e−Ipq

) 1
2 (n(α,β0)+n(β,α0)) · 1n(α,β0)−n(β,α0)

= exp
(
− 1

2

(
n(α, β0) + n(β, α0)

)
Ipq

)
Note that we could drop out the term n(α, γ)Ipr in the following derivations.

D. Proof of Lemma 5.2

To derive the order of n(α, β) and n(β, γ), it is equivalent to focus on the order of n(α, β0) and n(β, γ0) by symmetry.
Let n′k = |{i | σ(i) = k}| denote the population in the k-th community under a candidate assignment σ, and n0

k is the
corresponding quantity for the true assignment σ0. From the difinition of Θ0, we have (1 − η)n′ ≤ n′k, n

0
k ≤ (1 + η)n′. In

addition, to study the mis-classification in the k-th community, we use the notations as follows.

mk =
∣∣{i | σ(i) = k, σ0(i) 6= k}

∣∣,∑
k

mk = m

mk,k′ =
∣∣{i | σ(i) = k, σ0(i) = k′}

∣∣, ∑
k′ 6=k

mk,k′ = mk

mk +mk,k = n′k

An important observation is that ∀k′ 6= k, the following holds.

mk,k′ ≤
2

3
(1 + η)n′

Otherwise, if mk,k′ >
2
3 (1+η)n′, then mk′,k′ ≤ n0

k−mk,k′ <
1
3 (1+η)n′. Exchanging the label of k and k′, we could recover

at least mk,k′ − (n′k −mk,k′)−mk′,k′ > 0 node. This contradicts our assumption that d(σ, σ0) = m since we can achieve a
smaller distance after a simple permutation of labels.



Here, we mainly utilize a few techniques from convex analysis to help us find combinatorial lower bounds:
• Maximum Principle: A convex function attains its maximum at the extreme points of the underlying convex set.
• For a convex optimization problem where we try to minimize a convex function, if

– the objective function is separable and isopotric in all the coordinates
– every inequality constraint is affine, separable and isopotric in all the coordinates
– the uniform point (with all its coordinates being equal) lies inside the feasible region

then the uniform point satisfies the corresponding KKT conditions, i.e., it is a primal optimal point.
For either n(α, β0) or n(β, γ0), we will partition out into two cases: m ≤ n′

2 and m > n′

2 .
1) Case m ≤ n′

2 :
• n(α, β0)

Define nk(α, β0) , |{(i, j, k) ∈ Sα,β0
| σ(i) = k}|. Obviously, n(α, β0) =

K∑
k=1

nk(α, β0). We have

nk(α, β0) ≥ |{(i, j) | σ(i) = k, σ0(i) = k; σ(j) = k, σ0(j) = k}| · |{i | σ(i) = k, σ0(i) 6= k}|
+ |{i | σ(i) = k, σ0(i) = k}| · |{(i, j) | σ(i) = k, σ0(i) 6= k; σ(j) = k, σ0(j) 6= k}|

=

(
n′k −mk

2

)
mk + (n′k −mk)

(
mk

2

)
Thus,

n(α, β0) ≥
∑
k

(
n′k −mk

2

)
mk + (n′k −mk)

(
mk

2

)
=
∑
k

(n′k −mk)2mk − (n′k −mk)mk + (n′k −mk)m2
k − (n′k −mk)mk

2

=
∑
k

(n′k)2mk − (n′k)m2
k − 2(n′k −mk)mk

2

=

∑
k

[
(n′k)2 − 2n′k

]
mk − (n′k − 2)

∑
km

2
k

2

≥
[
(n′k)2 − 2n′k

]
m− (n′k − 2)m2

2

=
(n′k − 2)(n′k −m)m

2

≥
(

1− 2

n′k

)(
1− m

n′k

) (n′k)2

2
m

≥ (1− 2η)
(

1−
m

1−η

n′

)(
1−

2
1−η

n′

) (n′)2

2
m

≥ (1− 2η)
(

1−
m

1−2η

n′

)(
1−

1
1−2η

n′

) (n′)2

2
m

= (1− η′)
(

1−
m

1−η′

n′

)(
1−

1
1−η′

n′

) (n′)2

2
m

• n(β, γ0)
Similarly, let nl(β, γ0) , |{(i, j, k) ∈ Sβ,γ0 | σ(Mode{σ(i), σ(j), σ(k)}) = l}| where Mode{{si}ni=1} = sm with m =
arg maxi|{j | sj = si}| is the mode (majority) within a finite set {si}. We have

nk(β, γ0) ≥ |{i | σ(i) = k, σ0(i) = k}| · |{i | σ(i) = k, σ0(i) = k′ for some k′ 6= k}| · |{i | σ(i) 6= k, σ0(i) /∈ {k, k′}}|

= mk,k

∑
k′ 6=k

mk,k′(n− n′k − n0
k − n0

k′ +mk,k′ +mk,k)

≥ (n′k −mk)mk

(
n− n0

k − n0
k′ −mk

)
≥ (n′k −mk)mk

(
K(1− η)n′ − 2(1 + η)n′ −mk

)
= (n′k −mk)mk

(
(K − 2)

(
1− (K + 2)η

K − 2

)
n′ −mk

)
≥ (n′k −mk)mk

(
(K − 2)(1− 5η)n′ −mk

)



Thus,

n(β, γ0) ≥
∑
k

(n′k −mk)mk

(
(K − 2)(1− 5η)n′ −mk

)
= (K − 2)(1− 5η)n′

∑
k

(n′k −mk)mk −
∑
k

(n′k −mk)m2
k

≥ (K − 2)(1− 5η)n′(n′km−m2)− (n′k −m)m2

≥
[
(K − 2)(1− 5η)n′ −m

][
(1− η)n′ −m

]
m

≥ (1− η)(1− 5η)
(
1− m

(K − 2)(1− 5η)n′
)( m

(1− η)n′
)
(K − 2)(n′)2m

≥ (1− 6η)
(

1−
m

1−5η

n′

)(
1−

m
1−η

n′

)
(K − 2)(n′)2m

= (1− η′)
(

1−
m

1−η′

n′

)2

(K − 2)(n′)2m

2) Case m > n′

2 :
• n(α, β0)

nk(α, β0) =
∑
k1 6=k2

(
mk,k1

2

)
mk,k2

=
∑
k1

∑
k2 6=k1

m2
k,k1
−mk,k1

2
mk,k2

=
∑
k1

m2
k,k1
−mk,k1

2
(n′k −mk,k1)

=
1

2

(
(m2

k,k −mk,k)(n′k −mk,k)
)

+
1

2

∑
k1 6=k

(
(m2

k,k1 −mk,k1)(n′k −mk,k1)
)

=
1

2
((n′k −mk)2 − (n′k −mk))mk +

1

2

(
(n′k + 1)

∑
k1 6=k

m2
k,k1 − n

′
kmk −

∑
k1 6=k

m3
k,k1

)
Hence,

nk(α, β0)

mk
=

1

2
(n′k −mk)(n′k −mk − 1) +

1

2

(∑
k′ 6=k(n′k + 1−mk,k′)m

2
k,k′

mk
− n′k

)
If mk ≤ 2(1+η)

3 n′, then

nk(α, β0)

mk
≥ 1

2
(n′k −mk)(n′k −mk − 1)

≥ 1

2

(
(1− η)n′ − 2(1 + η)

3
n′
)(

(1− η)n′ − 2(1 + η)

3
n′ − 1

)
=

1

2

1− 5η

3
n′
(1− 5η

3
n′ − 1

)
≥ 1− 10η

9

(
1−

3
1−5η

n′

) (n′)2

2

≥ 1− η′

9

(
1−

9
1−η′

n′

) (n′)2

2

For 2(1+η)
3 n′ < mk ≤ n′k, we first first look at the case K ≥ 3.

nk(α, β0)

mk
≥ 1

2

(∑
k′ 6=k(n′k + 1−mk,k′)m

2
k,k′

mk
− n′k

)
≥ 1

2

(∑
k′ 6=k(n′k + 1− mk

K−1 )
(
mk
K−1

)2
mk

− n′k
)

≥ 1

2

((
n′k + 1− mk

K − 1

) mk

K − 1
− n′k

)



≥ 1

2

((
(1− η)n′ + 1− (1 + η)n′

K − 1

) (1 + η)n′

K − 1
− (1 + η)n′

)
=

1

2

(1 + η)n′

K − 1

(
(1− η)n′ + 1− (1 + η)n′

K − 1
− (K − 1)

)
≥ 1

2

(1 + η)n′

K − 1

( (K − 2)− (K + 2)η

K − 1
n′ − (K − 2)

)
≥ (1 + η)

K − 1

1− (K + 2)η

K − 1

(
1−

(K−1)(K−2)
1−(K+2)η

n′

) (n′)2

2

≥ 1− (2K + 3)η

(K − 1)2

(
1−

(K−1)(K−2)
1−(K+2)η

n′

) (n′)2

2

≥ (1− η′)
K2

(
1−

K2

1−η′

n′

) (n′)2

2

In the last inequality, we can always make η′ decay fast enough so that (2K + 3)η′ still goes to 0 even though K grwos
without bound. If K = 2, then mk cannot be greater than 1

2n
′
k. Otherwise, we can just exchange the (only two) labels and

get a fewer number of mis-classifications. As a result, mk always falls in the first regime mk ≤ 2(1+η)
3 n′ in two-community

case and the lower bound obtained corresponds to the above expression with K = 3. Writing K ′ = max{3,K}, we have

nk(α, β0)

mk
≥ (1− η′)

(K ′)2

(
1−

(K′)2

1−η′

n′

) (n′)2

2

⇒ nk(α, β0) ≥ (1− η′)
(K ′)2

(
1−

(K′)2

1−η′

n′

) (n′)2

2
mk

⇒ n(α, β0) =
∑
k

nk(α, β0) ≥ (1− η′)
(K ′)2

(
1−

(K′)2

1−η′

n′

) (n′)2

2

∑
k

mk =
(1− η′)
(K ′)2

(
1−

(K′)2

1−η′

n′

) (n′)2

2
m

• n(β, γ0)
Similarly, write

nk(β, γ0) =
∑
l 6=k

1

2!

∑
k1 6=k2 6=k3

mk,k1mk,k2ml,k3

=
∑
l 6=k

1

2

∑
k3

ml,k3

∑
k1 6=k2 6=k3

mk,k1mk,k2

=
∑
l 6=k

1

2

∑
k3

ml,k3

(
(n′k −mk,k3)2 −

∑
k′ 6=k3

(mk,k′)
2
)

=
∑
l 6=k

∑
k3

ml,k3

(1

2

(
(n′k)2 −

∑
k′

(mk,k′)
2
)
−
(
n′kmk,k3 − (mk,k3)2

))
= (1)− (2)

(1)⇒
∑
l 6=k

n′l
1

2

(
(n′k)2 −

∑
k′

(mk,k′)
2
)

=
1

2
(n− n′k)

(
(n′k)2 − (n′k −mk)2 −

∑
k′ 6=k

(mk,k′)
2
)

≥
(
(K − 1)− (K + 1)η

)
n′
(
n′kmk −

1

2

(
m2
k +

∑
k′ 6=k

(mk,k′)
2
))

(2)⇒
∑
k3

(n0
k3 −mk,k3)mk,k3(n′k −mk,k3)

= (n0
k −mk,k)mk,k(n′k −mk,k) +

∑
k3 6=k

(n0
k3 −mk,k3)mk,k3(n′k −mk,k3)

≤ (n′k −mk)mk(mk + 2ηn′) +
∑
k′ 6=k

(n′k −mk,k′)mk,k′(n
′
k −mk,k′ + 2ηn′)



If mk ≤ 2(1+η)
3 n′, we separate out the case K = 3. Note that although we assume K ≥ 2, if there are only two

communities to dichotomize, then n(β, γ) ≡ 0 and is meaningless. For K = 3,

nk(β, γ0)

mk
≥ (2− 4η)n′

(
n′k −

1

2

(
mk +

m2
k

2

mk

))
− (n′k −mk)(mk + 2ηn′)−

(n′k −
mk
2 )mk(n′k −

mk
2 + 2ηn′)

mk

≥ (2− 4η)n′
(

(1− η)n′ − 3

4

2(1 + η)

3
n′
)
−
(

(1 + η)n′ − 2(1 + η)

3
n′
)(2(1 + η)

3
n′ + 2ηn′

)
−
(

(1 + η)n′ − 1

2

2(1 + η)

3
n′
)(

(1 + η)n′ − 1

2

2(1 + η)

3
n′ + 2ηn′

)
= (2− 4η)n′

1− 3η

2
n′ − 1 + η

3

2 + 8η

3
− 2(1 + η)

3

2 + 8η

3

≥ 1− η′

3
(K − 2)(n′)2

∀K ≥ 4, notice that the following expression increases in K, which means that the minimum is attained when K = 4.

nk(β, γ0)

mk
≥ ((K − 1)− (K + 1)η′)n′

(
n′k −

1

2

(
mk +

m2
k

mk

))
− (n′k −mk)(mk + 2η′n′)

−
(n′k −

mk
K−1 )mk(n′k −

mk
K−1 + 2η′n′)

mk

≥ (3− 5η′)n′
(

(1− η′)n′ − 2(1 + η′)

3
n′
)
−
(

(1 + η′)n′ − 2(1 + η′)

3
n′
)(2(1 + η′)

3
n′ + 2η′n′

)
−
(

(1 + η′)n′ − 1

3

2(1 + η′)

3
n′
)(

(1 + η′)n′ − 1

3

2(1 + η′)

3
n′ + 2η′n′

)
= (3− 5η′)n′

1− 5η′

3
n′ − 1 + η′

3

2 + 8η′

3
− 7(1 + η′)

9

7 + 25η′

9

≥ 7(1− η)

81
(K − 2)(n′)2

On the other side, if 2(1+η)
3 n′ < mk ≤ n′k, then

nk(β, γ0)

mk
≥ ((K − 1)− (K + 1)η)n′ ·

(
n′k −

1

2

(
mk +

( 2(1+η)
3 n′

)2
+
(
mk − 2(1+η)

3 n′
)2

mk

))
− (n′k −mk)(mk + 2ηn′)

−
(n′k −

mk
K−1 )mk(n′k −

mk
K−1 + 2ηn′)

mk

≥ (2− 4η)n′
(

(1− η)n′ − 1

2

(
(1 + η)n′ +

(2

3

)2
(1 + η)n′ +

(1

3

)2
(1 + η)n′

))
−
(
(1 + η)n′ − 1

2
(1 + η)n′

)(
(1 + η)n′ − 1

2
(1 + η)n′ + 2ηn′

)
= (2− 4η)n′

2− 16η

9
n′ − 1 + η

2

1 + 5η

2

≥ 7(1− η′)
36

(K − 2)(n′)2

We can see that 7(1−η′)
81 (K − 2)(n′)2 is the overall minimum. The result follows by multiplying back mk and summing

over all k ∈ [K].

E. Proof of Lemma 5.5
We focus on the case with K → ∞. For finite value K, the proof is almost identical but with different values of m0 and

m′ for each of the three scenarios. From Lemma 5.3, we can see that the coefficient of Iqr is always greater than that of Ipq
(order-wise). Therefore, we could focus on the term (n′)2Iqr when analyzing the error probability.

1) Case lim inf
n→∞

(n′)2
2 Ipq+(K−2)(n′)2Iqr

logn > 1: Then there exists small ε > 0 such that

(1− 2η′)
(
1−

ε
3

1−η′
)2( (n′)2

2 Ipq + (K − 2)(n′)2Iqr
)

log n
> 1 +

ε

3

Take m0 = 1, we have

m0

n
=

1

n
≤ exp

(
− (1− 2η′)

(
1−

ε
3

1− η′
)2( (n′)2

2
Ipq + (K − 2)(n′)2Iqr

))
, R



Take m′ = ε
3n
′. Then, for m ∈ (m0,m

′],

m

n
Pm ≤

m

n

(
n

m

)
Km · exp

(
− (1− η′)

(
1−

m
1−η′

n′
)2( (n′)2

2
Ipq + (K − 2)(n′)2Iqr

)
m
)

≤
(
e(n− 1)K

m0 − 1

)m−1

K · exp
(
− (1− η′)

(
1−

m′

1−η′

n′
)2( (n′)2

2
Ipq + (K − 2)(n′)2Iqr

)
m
)

≤ exp
(
− (1− 2η′)

(
1−

ε
3

1− η′
)2( (n′)2

2
Ipq + (K − 2)(n′)2Iqr

))
·
(
enK

2− 1
exp
(
− (1− η′)

(
1−

ε
3

1− η′
)2( (n′)2

2
Ipq + (K − 2)(n′)2Iqr

)))m−1

≤ R
(
nexp

(
− (1− 2η′)

(
1−

ε
3

1− η′
)2( (n′)2

2
Ipq + (K − 2)(n′)2Iqr

)))m−1

≤ R
(
exp
(
− ε

3
log n

))m−1

= Rn−ε
(m−1)

3

For m ∈ (m′, n],

m

n
Pm ≤

enK
m
· exp

(
− (1− η′)

( 1

(K ′)2

(
1−

(K′)2

1−η′

n′
) (n′)2

2
Ipq +

7

81
(K − 2)(n′)2Iqr

))m

≤
(
enK

m′
· exp

(
− (1− η′) 7

81
(K − 2)(n′)2Iqr

))m
=

(
3eK2

ε

)18

exp
(
− (1− η′)

(42

81
(K − 2)(n′)2Iqr +

84

81
(K − 2)(n′)2Iqr

))
·
(

3eK2

ε
exp
(
− (1− η′) 7

81
(K − 2)(n′)2Iqr

))m−18

≤ R
(
exp
(
− (1− 2η′)

7

81
(K − 2)(n′)2Iqr

))m−18

≤ Rn−ε
7(m−12)

81

2) Case lim sup
n→∞

(n′)2
2 Ipq+(K−2)(n′)2Iqr

logn < 1: Then there exists small ε > 0 such that

(1− 2η)
(
1− K−ε

1−η
)2( (n′)2

2 Ipq + (K − 2)(n′)2Iqr
)

log n
< 1− ε

Take m0 = n · exp
(
− (1 −K−ε/2)(1 − 2η)

(
1 − K−ε

1−η
)2( (n′)2

2 Ipq + (K − 2)(n′)2Iqr
))

, which satisfies m0 ≥ (nK)ε/2 and

m0 = o( n
K2 ) = o(n

′

K ). Then

m0

n
= exp

(
− (1−K−ε/2)(1− 2η)

(
1− K−ε

1− η
)2( (n′)2

2
Ipq + (K − 2)(n′)2Iqr

))
, R

Take m′ = K−εn′. Then, for m ∈ (m0,m
′],

m

n
Pm ≤

(
enK

m0
· exp

(
− (1− η)

(
1−

m′

1−η

n′
)2( (n′)2

2
Ipq + (K − 2)(n′)2Iqr

)))m

≤
(
enK

m0
exp
(
− (1− η)

(
1− K−ε

1− η
)2( (n′)2

2
Ipq + (K − 2)(n′)2Iqr

)))m
≤
(
exp
(
− (1− 2η)

(
1− K−ε

1− η
)2( (n′)2

2
Ipq + (K − 2)(n′)2Iqr

)
+(1−K−ε/2)(1− 2η)

(
1− K−ε

1− η
)2( (n′)2

2
Ipq + (K − 2)(n′)2Iqr

)))m



≤ exp
(
− m0

Kε/2
(1− 2η)

(
1− K−ε

1− η
)2( (n′)2

2
Ipq + (K − 2)(n′)2Iqr

))
≤ exp

(
− nε/2(1− 2η)

(
1− K−ε

1− η
)2( (n′)2

2
Ipq + (K − 2)(n′)2Iqr

))
= o(R)

For m ∈ (m′, n],

m

n
Pm ≤

enK
m′

exp
(
− (1− η)

( 1

(K ′)2

(
1−

(K′)2

1−η

n′
) (n′)2

2
Ipq +

7

81
(K − 2)(n′)2Iqr

))m

=

(
eK2Kεexp

(
− (1− η)

7

81
(K − 2)(n′)2Iqr

))m
≤
(
exp
(
− (1− 2η)

7

81
(K − 2)(n′)2Iqr

))m
≤ exp

(
− 6

81
(K − 2)(n′)2Iqrm

)
= exp

(
− 4

81
· 3

2
(K − 2)(n′)2Iqrm

)
= o(R)

3) Case lim sup
n→∞

(n′)2
2 Ipq+(K−2)(n′)2Iqr

logn = 1+o(1): Then there exists a small positive sequence ω = ωn ↓ 0 with ω ≥ 1√
logn

such that ∣∣∣∣∣∣ (1− 2η)
(
1− ω2

1−η
)2( (n′)2

2 Ipq + (K − 2)(n′)2Iqr
)

log n
− 1

∣∣∣∣∣∣� ω

Take m0 = n ·exp
(
−(1−ω)(1−2η)

(
1− ω2

1−η
)2( (n′)2

2 Ipq+(K−2)(n′)2Iqr
))

, which satisfies m0 ≥ nω/2 and m0 = o( n′

logn ).
Then

m0

n
= exp

(
− (1− ω)(1− 2η)

(
1− ω2

1− η
)2( (n′)2

2
Ipq + (K − 2)(n′)2Iqr

))
, R

Take m′ = ω2n′. Then, for m ∈ (m0,m
′],

m

n
Pm ≤

(
enK

m0
· exp

(
− (1− η)

(
1−

m′

1−η

n′
)2( (n′)2

2
Ipq + (K − 2)(n′)2Iqr

)))m

≤
(
enK

m0
exp
(
− (1− η)

(
1− ω2

1− η
)2( (n′)2

2
Ipq + (K − 2)(n′)2Iqr

)))m
≤
(
exp
(
− (1− 2η)

(
1− ω2

1− η
)2( (n′)2

2
Ipq + (K − 2)(n′)2Iqr

)
+(1− ω)(1− 2η)

(
1− ω2

1− η
)2( (n′)2

2
Ipq + (K − 2)(n′)2Iqr

)))m
= exp

(
−m0ω(1− 2η)

(
1− ω2

1− η
)2( (n′)2

2
Ipq + (K − 2)(n′)2Iqr

))
≤ exp

(
− nω/2√

log n
(1− 2η)

(
1− ω2

1− η
)2( (n′)2

2
Ipq + (K − 2)(n′)2Iqr

))
= o(R)

For m ∈ (m′, n],

m

n
Pm ≤

enK
m′

exp
(
− (1− η)

( 1

(K ′)2

(
1−

(K′)2

1−η

n′
) (n′)2

2
Ipq +

7

81
(K − 2)(n′)2Iqr

))m

=

(
eK2 log n · exp

(
− (1− η)

7

81
(K − 2)(n′)2Iqr

))m



≤
(
exp
(
− (1− 2η)

7

81
(K − 2)(n′)2Iqr

))m
≤ exp

(
− 6

81
(K − 2)(n′)2Iqrm

)
= exp

(
− 4

81
· 3

2
(K − 2)(n′)2Iqrm

)
= o(R)


