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Abstract—The focus of this paper is on binary classification
of a sequentially observed stream of i.i.d. samples, based on
sequentially observed empirical statistics. The decision maker
(classifier) sequentially observes a sequence of testing data i.i.d.
sampled from one of two unknown distributions P0 and P1. In
addition, it receives two sequences of training data which are also
sequentially sampled from the two unknown distributions in an
i.i.d. fashion, respectively. Since the distributions are unknown,
it is natural to put a constraint either on the expected stopping
times or on the error probabilities that has to be satisfied
universally over all possible pairs of distributions (P0, P1). For
both settings, we develop tests that are asymptotically optimal
within the class of tests that satisfy the respective universality
constraints. For expected-stopping-time universality, the optimal
error exponents are shown to be the Rényi divergences of
order α

1+α
, where α is the ratio of the length of a training

data sequence to that of the testing data sequence. For error-
probability universality, the optimal expected stopping times
normalized by the logarithm of the error probability are the
reciprocal of the α-weighted generalized Jensen-Shannon (GJS)
divergences. The proposed sequential tests are both based on
threshold tests of two statistics, each of which is the α-weighted
GJS divergences of the type of the testing sequence from that of a
training sequence. Interestingly, to achieve asymptotic optimality,
the stopping and decision rules in the two different universality
setups take a “matching” and a “discriminating” viewpoint
respectively in designing the threshold tests.

I. INTRODUCTION

For hypothesis testing problems, it is well known that
sequentiality in taking samples for making decisions achieves
significant enhancement in the reliability. For the binary hy-
pothesis testing problem of an i.i.d. sampled sequence from
either P0 (hypothesis H0) or P1 (hypothesis H1), Wald’s Se-
quential Probability Ratio Test (SPRT) [1] has been shown to
be optimal in the sense that among all sequential tests with the
same power, it achieves the smallest expected stopping time
[2]. To clearly see the benefit of sequentiality, alternatively
one could set a constraint on the expected stopping time to
be less than equal to a nominal length n, and investigate the
error exponents, which are the rate functions of the vanishing-
with-n type-I and type-II error probabilities. In sharp contrast
to the non-sequential (fixed-length) binary hypothesis testing
problem where there is a natural trade-off between the two
error exponents [3], in the sequetial setting, such a trade-off
is completely eradicated, and the achievable error exponents
can reach the two extremes, namely, the two KL divergences

D(P1‖P0) and D(P0‖P1), simultaneously. Such observations
have been made in the literature [2], [4], [5].

While P0 and P1 are critical for computing the statistics in
SPRT, in real-world problems such as machine learning and
clinical trials, P0 and P1 may no longer be fully known. An in-
teresting question is whether or not the benefit of sequentiality
carry to the case when the ground truth distributions (P0 and
P1) are unknown. Since P0 and P1 are unknown, the above
question should be addressed under a universal guarantee on
certain performances. The natural choice in this sequential
setup is to lay the universality constraint either on the two
expected stopping times, or on the two error probabilities.

Towards answering this question, the most closely related
work in the literature is [6], in which Haghifam et al. consider
the classification of a sequentially observed stream of i.i.d.
samples (termed the “testing sequence” hereafter) into one of
the multiple unknown hypotheses. Each of the hypotheses cor-
responds to an unknown distribution, based on multiple non-
causally observed fixed-length sequences of i.i.d. “training”
samples (termed the “training sequences” hereafter) respec-
tively drawn from each of these distributions. The problem
formulation can be viewed as a semi-sequential version of
Gutman’s fixed-length setup [7], and the proposed sequential
test was shown to improve the Bayesian error exponent over
the non-sequential case.

However, Haghifam et al. [6] are not concerned about the
universal guarantee on the expected stopping time, and it
turns out that the expected stopping time of the proposed
sequential test in [6] depends implicitly on the unknown pair
of distributions (P0, P1). As a result, sequential tests with a
universal guarantee either on the expected stopping times or
on the error probabilities over all possible pairs of distributions
remain open, let alone the existence of optimal sequential tests
subject to respective universality constraints.

In this work, we make progress in a fully sequential
setup of the binary classification problem with empirically
observed statistics [7], where the testing sequence and the
two training sequences are all sequentially observed. At each
time slot, the number of training samples received so far is
assumed to be linearly scaling with that of the testing samples
received so far, where the ratio is assumed to be α > 0.
Our contributions are summarized as follows. Firstly, for the
setup with expected-stopping-time universality, we propose a



type-based fully sequential test, called the Sequential Type
Matching Test (STMT), and show that its expected stopping
time is not greater than n regardless of the ground-truth
hypothesis and the pair of ground-truth distributions. The
decision rule is inspired by [6], [7], while the main difference
is that the decision is declared whenever the α-weighted GJS
divergence of the type of the testing sequence from the type
of the training sequence drawn from the accepted distribution
is smaller than a time-varying threshold. Furthermore, it is
shown to achieve exponentially vanishing-with-n type-I and
type-II error probabilities, with the largest error exponents
among all sequential tests satisfying the universal expected
stopping time constraint. The optimal error exponents turn out
to be Rényi divergences D α

1+α
(P1‖P0) and D α

1+α
(P0‖P1).

Secondly, for the setup with error-probability universality,
we propose an alternative type-based fully sequential test,
called the Sequential Type Discriminating Test (STDT), and
show that its error probability is universally upper bounded
by a prescribed constant β regardless of the ground-truth
hypothesis and the pair of ground-truth distributions. The de-
cision rule is similar to [6]–[8] where the decision is declared
whenever the α-weighted GJS divergence of the type of the
testing sequence from the type of the training sequence drawn
from the rejected distribution is larger than a time-varying
threshold depending on β. Furthermore, it is shown to achieve
the minimum asymptotical scaling of the expected stopping
times among all sequential tests satisfying the universal error
probability constraint. The optimal expected stopping times
turn out to be asymptotically (GJS(P1, P0, α))−1 log(1/β)
and (GJS(P0, P1, α))−1 log(1/β) as β → 0 under hypotheses
H0 and H1 respectively.

Finally, to see the benefit of sequentiality, we compare
Gutman’s fixed-length test and STMT in terms of their error
exponent regions subject to the same nominal n → ∞,
similar to what we do in comparing fixed-length hypothe-
sis testing and sequential hypothesis testing. We show that
D α

1+α
(P1‖P0) ≥ GJS(P0, P1, α), and hence the error expo-

nent region of STMT subsumes that of Gutman’s test.
Notation: A finite-length sequence (x1, x2, ..., xn) is de-

noted as xn. Logarithms are of base 2 if not specified. P(X )
is the set of all probability distributions over alphabet X . We
denote the support of a distribution P as supp(P ).

II. PROBLEM FORMULATION

Consider a finite alphabet X with |X | = d ≥ 2 and two
distributions P0, P1 ∈ P(X ). We assume

P0 6= P1, supp(P0) = supp(P1) = X (1)

to avoid degenerated cases where the divergences may be-
come 0 or ∞. Furthermore, P0 and P1 are unknown to the
decision maker. The decision maker observes three mutually
independent sequences including a testing sequence and two
training sequences. The testing sequence {Xk}k≥1 consists
of i.i.d. samples following Pθ, where θ equals to either 0 or
1, and Hθ is the ground truth hypothesis. The two training
sequences {T0,k}k≥1 and {T1,k}k≥1 consist of i.i.d. samples

following P0 and P1 respectively. The ratio of the number of
training samples to the number of testing samples converges to
a positive constant α as they tend to infinity. More specifically,
at time k, there are k testing samples and Nk = dαke training
samples from each distribution, denoted as (Xk, TNk0 , TNk1 ).
The objective of the decision maker is to decide whether θ is
0 or 1, based on the observed samples. Here we first give the
formal definition of such tests.

Definition 1 (Sequential Classification Test): A sequential
classification test is a pair Φ = (τ, δ) where
• τ ∈ N is a stopping time with respect to the filtration
{Fk}k≥1, that is, {τ ≤ k} ∈ Fk = σ(Xk, TNk0 , TNk1 ).

• The decision rule δ : (Xτ , TNτ0 , TNτ1 )→ {0, 1} is a Fτ -
measurable function.

To evaluate the performance of a sequential classification
test, we consider the error probability and the expected stop-
ping time of a sequential classification test.
• The type-I and type-II error probabilities are

π1|0(Φ) = P0{δ(Xτ , TNτ0 , TNτ1 ) = 1}
and π0|1(Φ) = P1{δ(Xτ , TNτ0 , TNτ1 ) = 0}

respectively. Pθ is the shorthand notation for the joint
probability law of the testing samples and the training
samples when the ground truth hypothesis is Hθ.

• The expected stopping time is denoted as Eθ[τ ] when the
ground truth hypothesis is Hθ.

Since P0 and P1 are unknown, it is natural to ask for a
universal guarantee on the above performance metrics. We are
also interested in the asymptotic performance of a family of
tests subject to such a universality constraint. The asymptotes
can be compactly described by a pair of error exponents.
The two universality constraints and the corresponding error
exponents are defined as follows.

1) Universality Constraint on the Expected Stopping Time:
Given n ∈ N and a sequential classification test Φ, we say that
Φ satisfies the universality constraint on the expected stopping
time with n if ∀ (P0, P1) satisfying (1),

E0[τ ] ≤ n and E1[τ ] ≤ n. (2)

Definition 2 (Error Exponents subject to Expected-Stopping-
Time Universality Constraint): Consider a family of tests
{Φn} with vanishing error probability for all (P0, P1) sat-
isfying (1). If each Φn satisfies the universality constraint on
the expected stopping time with n, we say that {Φn} satisfy
the expected-stopping-time universality constraint. The error
exponents of {Φn} are defined as

e0 = lim inf
n→∞

− log π1|0(Φn)

n
, e1 = lim inf

n→∞

− log π0|1(Φn)

n
.

2) Universality Constraint on the Error Probability: Given
β ∈ (0, 1) and a sequential classification test Φ, we say that
Φ satisfies the universality constraint on the error probability
with β if ∀ (P0, P1) satisfying (1),

π1|0(Φ) ≤ β and π0|1(Φ) ≤ β. (3)



Definition 3 (Error Exponents subject to Error-Probability
Universality Constraint): For a family of tests {Φβ} where
each Φβ satisfies the universality constraint on the error prob-
ability with β, we say that {Φβ} satisfy the error-probability
universality constraint. The error exponents of {Φβ} are
defined as

ẽ0 = lim inf
β→0

− log β

E0[τ ]
, ẽ1 = lim inf

β→0

− log β

E1[τ ]
.

Remark 1: Definition 2 and 3 consider the limits of error
probabilities in two different asymptotic regimes. Similar
definitions have appeared in the literature of sequential hy-
pothesis testing. For example, [4], [5] consider error exponents
similar to Definition 2, while [6], [8]–[10] adopt asymptotic
performance metrics similar to Definition 3.

III. PRELIMINARIES

In this section, let us first briefly revisit the results in se-
quential hypothesis testing [1], [2] and Gutman’s fixed-length
classification problem from empirically observed statistics [7],
in terms of the error exponents. They serve as the baselines of
our main results. Let us begin with a few necessary definitions
for the exposition of the results.

Definition 4 (Type (Empirical Distribution)): Consider a
sequence xk, where each testing sample xi ∈ X . The type
(empirical distribution) of xk is denoted as Πxk , where

Πxk(a) = 1
k

∑k
i=1 1{xi = a}, a ∈ X .

Definition 5 (Generalized Jensen-Shannon Divergence):
Given α > 0 and P,Q ∈ P(X ), the α-weighted generalized
Jensen-Shannon (GJS) divergence of Q from P is defined as

GJS(P,Q, α) = αD
(
P
∥∥∥αP+Q

α+1

)
+ D

(
Q
∥∥∥αP+Q

α+1

)
.

Definition 6 (Rényi Divergence): Given a ∈ (0, 1) ∪ (1,∞)
and P,Q ∈ P(X ), the Rényi Divergence of order a of P from
Q is defined as

Da (P‖Q) = 1
a−1

∑
x∈X P (x)aQ(x)1−a.

A. Sequential Hypothesis Testing

In the classical sequential hypothesis testing problem where
P0 and P1 are known, the asymptotic performance of SPRT
(the optimal test [2]) could be investigated subject to the
expected-stopping-time constraint as in Definition 2 or the
error-probability constraint as in Definition 3. It turns out that
the corresponding pairs of error exponents are not the same.
The following proposition summarizes this observation.

Proposition 1: A family of SPRT indexed by n ∈ N with
proper selection of the upper and lower threshold so that (2)
is satisfied for all n ∈ N achieve

e0 = D(P1‖P0) , e1 = D(P0‖P1) . (4)

A family of SPRT indexed by β ∈ (0, 1) with proper selection
of the upper and lower threshold so that (3) is satisfied for all
β ∈ (0, 1) achieve

ẽ0 = D(P0‖P1) , ẽ1 = D(P1‖P0) . (5)

For the sake of completeness, the proof of this proposition is
given in Appendix A of the extended version [11].

Proposition 1 tells that for the sequential hypothesis testing
problem, the two pairs of optimal error exponents in the two
different regimes are flipped in the sense that e0 = ẽ1 and
e1 = ẽ0. As shown in our main results, this difference remains
in the sequential classification problem. Moreover, the former
(e0 and e1) change from KL divergences to Rényi divergences,
while the latter (ẽ0 and ẽ1) change from KL divergences to
GJS divergences.

B. Fixed-Length Classification

In the fixed-length setting, the length of the testing sequence
is n, and the length of each training sequence is N = dαne.
Let λ ∈ R+, Gutman’s decision rule [7]

Φ(Gut)
λ (xn, tN0 , t

N
1 ) =

0 if GJS
(

ΠtN0
,Πxn , α

)
≤ λ,

1 if GJS
(

ΠtN0
,Πxn , α

)
> λ,

achieves error exponents e0(Φ(Gut)
λ ) = λ, e1(Φ(Gut)

λ ) = F (α, λ)
where

F (α, λ) = min
(Q0,Q1)∈P(X )2

GJS(Q0,Q1,α)≤λ

αD(Q0‖P0) + D(Q1‖P1) .

Furthermore, Gutman’s test is asymptotically optimal in the
sense that among all (e0, e1)-achievable tests with e0 ≥ λ for
all pairs of distinct distributions (P0, P1), e1 ≤ e1(Φ(Gut)

λ ). In
other words, the universality constraint is set on the type-I
error exponent, and Gutman’s test attains instance-optimality
for the type-II error exponent, that is, different pairs of
(P0, P1) give different optimal type-II error exponents.

One may view
{(
λ, F (α, λ)

)}
as the optimal trade-off

between the two error exponents, reminiscent of that in binary
hypothesis testing [3]. See Figure 1 for an illustration. Note
that as observed in [7], [12], the supremum of λ that allows a
constant type-II error probability less than 1 is GJS(P0, P1, α)
(the square in Figure 1), while the supremum of F (α, λ) over
λ > 0 is D α

1+α
(P0‖P1) (the diamond in Figure 1).

As shown in our main results, Rényi divergences appear
in the instance-optimal error exponents when the universality
constraint is set on the expected stopping times, while GJS
divergences show up when the universality constraint is set
on the error probabilities. It is interesting to note that the α-
weighted GJS divergence has the following variational form:

GJS(P,Q, α) = min
V ∈P(X )

{αD(P‖V ) + D(Q‖V )}. (6)

Meanwhile, in the objective function above, if P, V are
swapped in the first KL divergence and Q,V are swapped
in the second, the Rényi Divergence of order α

1+α emerges:

D α
1+α

(P‖Q) = min
V ∈P(X )

{αD(V ‖P ) + D(V ‖Q)}. (7)

Such duality has been observed in the literature of fixed-length
classification problems [12], [13]. It turns out that GJS(·, ·, α)
and D α

1+α
(·‖·) play a dual role as well in the sequential setup.
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Fig. 1: The error exponents of Gutman’s test under ground
truth distributions P0 = [0.4, 0.6], P1 = [0.9, 0.1], and α = 3.

IV. MAIN RESULTS

Our main result is the characterization of the optimal error
exponents of the sequential classification problem under either
the expected-stopping-time universality as in Definition 2,
or the error-probability universality as in Definition 3. In
particular, two type-based tests (tests that declare stopping
and make decision only based on the testing type and the
training types) are proposed. The two proposed tests satisfy
(2) and (3) respectively, no matter what the ground truth
distributions are. Moreover, they achieve the optimal error
exponents. The converse part (asymptotic optimality) of the
two main theorems are proved in Section V. The proofs of
the achievability parts are based on the method of types [14]
and left in Appendix B and C of the extended version [11].

A. Expected-Stopping-Time Universality

Definition 7 (Sequential Type Matching Test): Given integer
n ≥ 2, define STMT Φ

(M)
n = (τ, δ) as

τ = inf{k ≥ n− 1 : GJS
(

Π
t
Nk
0

,Πxk , α
)
≤ f(k)

or GJS
(

Π
t
Nk
1

,Πxk , α
)
≤ f(k)},

δ(xτ , tNτ0 , tNτ1 ) =

0 if GJS
(

ΠtNτ0
,Πxτ , α

)
≤ f(τ),

1 if GJS
(

ΠtNτ1
,Πxτ , α

)
≤ f(τ),

where f(k) = 2d log(k+1)
k + d log(Nk+1)

k .
Intuitively, STMT declares the decision if the type of the

testing sequence is “close enough” to the type of one of the two
training sequences, where GJS divergence measures “how far”
two distributions are. Note that when the number of samples
is still small, the resolution of a type is too coarse and the
threshold is loose so that the GJS divergences have higher
probability to get below the threshold at the wrong side. To
avoid stopping too early and making wrong decisions, STMT
always first observes a fixed number of samples.

The asymptotic optimality of STMT subject to the expected-
stopping-time universality constraint is summarized in the
following theorem.

Theorem 1: Let (P0, P1) ∈ P(X )2 be the ground truth
distributions satisfying (1). For any family of tests {Φn}
satisfying the expected-stopping-time universality constraint,

e0 ≤ D α
1+α

(P1‖P0) and e1 ≤ D α
1+α

(P0‖P1) .

Moreover, STMT Φ
(M)
n satisfies the universality constraint on

the expected stopping time with n, and {Φ(M)
n }n≥2 achieves

these upper bounds.
Remark 2: As α → ∞, the optimal point converges to

(D(P1‖P0) ,D(P0‖P1)), the same as (4).
Remark 3: It is worth noting that STMT does not stop

earlier than n − 1. Meanwhile, it still satisfies the expected-
stopping-time universality constraint with n and improves the
error exponents comparing to the fixed-length tests. This is
because in the fixed length setting, the instances that result in
error are rare. Spending longer time on these instances would
not add much to the expected stopping time. The details can
be found in Appendix B of the extended version [11].

Remark 4 (Benefit of sequentiality): STMT achieves
e0 = D α

1+α
(P1‖P0) , e1 = D α

1+α
(P0‖P1). Compared with

Gutman’s result in Section III-B, one could assert the gain
in error exponents by sequentiality if D α

1+α
(P1‖P0) ≥

GJS(P0, P1, α). Indeed this is true and proved in Appendix D
of the extended version [11].

B. Error-Probability Universality

Definition 8 (Sequential Type Discriminating Test): Given
β ∈ (0, 1), define STDT Φ

(D)
β = (τ, δ) as

τ = inf{k ∈ N : GJS
(

Π
t
Nk
0

,Πxk , α
)
> g(β, k)

or GJS
(

Π
t
Nk
1

,Πxk , α
)
> g(β, k)},

δ(xτ , tNτ0 , tNτ1 ) =

0 if GJS
(

ΠtNτ1
,Πxτ , α

)
> g(β, τ),

1 if GJS
(

ΠtNτ0
,Πxτ , α

)
> g(β, τ),

where g(β, k) = − log(β(d−1))
k + f(k).

In contrast to STMT, STDT declares the decision if the type
of the testing sequence is “far enough” from the type of the
other training sequence. To decide how far is enough, we use
a threshold g(β, k), which is time-dependent and grows as β
decreases. The threshold is chosen judiciously to achieve the
target error probabilities.

The asymptotic optimality of STDT subject to the error-
probability universality constraint is summarized in the fol-
lowing theorem.

Theorem 2: Let (P0, P1) ∈ P(X )2 be the ground truth
distributions satisfying (1). For any family of tests {Φβ}
satisfying the error-probability universality constraint,

ẽ0 ≤ GJS(P1, P0, α) and ẽ1 ≤ GJS(P0, P1, α) .



Moreover, STDT Φ
(D)
β satisfies the universality constraint on

error probability with β, and {Φ(D)
β }β∈(0,1) achieves these

upper bounds.
Remark 5: As α → ∞, the optimal point converges to

(D(P0‖P1) ,D(P1‖P0)), the same as (5).
Remark 6: STDT is modified from the test proposed in [8],

and the achievability proof is essentially the same. In [8], they
consider an outlier detection problem where the distributions
are unknown. The test plugs in the empirical distribution to the
likelihood ratio test. Through some calculations, the likelihood
ratio in [8] can be written as k times the subtraction of two GJS
divergences between the empirical distributions. Moreover, it
turns out that we can omit the second GJS divergence. The
details are given in Appendix C of the extended version [11].

Figure 2 gives an illustration about how the optimal expo-
nents in the two settings grow as α increases.
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Fig. 2: The error exponents of STMT and STDT with dif-
ferent α under ground truth distributions P0 = [0.4, 0.6],
P1 = [0.9, 0.1]. The error exponents of STMT and STDT
approach the error exponents of SPRT under two constraints
respectively, as α increases from 1.5−10 to 1.519. The two
marked crosses in the middle correspond to α = 1.

V. PROOF OF CONVERSE

We first present two lemmas that will be used in proving
the converse of Theorem 1 and Theorem 2. Proofs of the two
lemmas are given in Appendix E of the extended version [11].

Lemma 1: Let θ ∈ {0, 1} and (P ′0, P
′
1), (P ′′0 , P

′′
1 ) ∈ P(X )2

be two pairs of distributions satisfying (1). Consider a sequen-
tial classification test Φ = (τ, δ). For any E ∈ Fτ ,

d
(
P′θ(E),P′′1−θ(E)

)
≤ E′θ [τ ] D

(
P ′θ
∥∥P ′′1−θ)+ E′θ [Nτ ] (D(P ′0‖P ′′0 ) + D(P ′1‖P ′′1 )) ,

where d(p, q) = p log p
q + (1 − p) log 1−p

1−q is the binary KL-
divergence and E′θ is the expectation taken under ground truth
distributions (P ′0, P

′
1) and hypothesis Hθ.

Lemma 1 is proved by the data processing inequality of KL
divergences and the optional stopping theorem, similar to the
converse part in [15, Theorem 15.3]

Lemma 2: Define the function h : (0, 1)× (0, 1)→ R as

h(p, q) =
d(1− p, q)
− log q

.

Then, lim(p,q)→(0,0) h(p, q) = 1.
Due to the space constraint, here we only sketch the proof

of the upper bound for one error exponent. The other one
can be proved by a similar argument. Details can be found in
Appendix E of the extended version [11].

A. Under Expected-Stopping-Time Universality Constraint

Consider any family of tests {Φn} satisfying the expected-
stopping-time universality constraint. For each Φn = (δn, τn),
let us employ Lemma 1 with θ = 1, P ′′0 = P0, P

′′
1 = P1,

and E = {δn(Xτn , T
Nτn
0 , T

Nτn
1 ) = 1}. By the universality

constraint that E′1 [τ ] ≤ n, we have

d
(

1− π′0|1(Φn), π1|0(Φn)
)

≤ E′1 [τn] D(P ′1‖P0) + E′1 [Nτn ] (D(P ′0‖P0) + D(P ′1‖P1))

≤ n [D(P ′1‖P0) + αD(P ′0‖P0) + αD(P ′1‖P1)] + o(1).

Since π′0|1(Φn)→ 0, π1|0(Φn)→ 0 as n→∞, we can apply
Lemma 2 and get

e0 ≤ D(P ′1‖P0) + αD(P ′0‖P0) + αD(P ′1‖P1) .

Since this is true for all (P ′0, P
′
1) satisfying (1), we can

minimize the RHS with respect to (P ′0, P
′
1) and leverage (7)

to get e0 ≤ D α
1+α

(P1‖P0).

B. Under Error-Probability Universality Constraint

Consider any family of tests {Φβ} satisfying the error-
probability universality constraint. For each Φβ = (δβ , τβ),
let us employ Lemma 1 with θ = 0, P ′0 = P0, P

′
1 = P1, and

E = {δβ(Xτβ , T
Nτβ
0 , T

Nτβ
1 ) = 0}. Then we have

d
(

1− π1|0(Φβ), π′′0|1(Φβ)
)

≤ E0 [τβ ] D(P0‖P ′′1 ) + E0

[
Nτβ

]
(D(P0‖P ′′0 ) + D(P1‖P ′′1 )) .

It is clear that E0 [τβ ]→∞ as β → 0. Moreover, π′′0|1(Φβ) ≤
β by the universality constraint. By Lemma 2, we have

ẽ0 ≤ D(P0‖P ′′1 ) + αD(P0‖P ′′0 ) + αD(P1‖P ′′1 ) .

Since this is true for all (P ′′0 , P
′′
1 ) satisfying (1), we can

minimize the RHS with respect to (P ′′0 , P
′′
1 ) and leverage (6)

to get ẽ0 ≤ GJS(P1, P0, α).
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APPENDIX

A. Proof of Proposition 1

Recall that a sequential probability ratio test Φ = (τ, δ) is defined as

τ = inf{k ∈ N : Sk ≥ B or Sk ≤ −A}

δ(xτ ) =

{
0 if Sτ ≥ B,
1 if Sτ ≤ −A,

where Sk =
∑k
i=1 log P0(xi)

P1(xi)
is the logarithm of the probability ratio, and A,B > 0 are two thresholds. Following the proof

of [15, Theorem 15.3], it can be shown that if E0[τ ] <∞, then

E0[Sτ ] = E0[τ ]D(P0‖P1) , (8)

and for every event E ∈ Fτ , we have
E0[1{E}] = E1[2Sτ1{E}].

Hence
π1|0(Φ) = P0{Sτ ≤ −A} = E1[2Sτ1{Sτ ≤ −A}] ≤ 2−A. (9)

Let τ0 = inf{k ∈ N : Sk ≥ B} and observe that τ ≤ τ0. By (8),

E0[τ ] ≤ E0[τ0] =
E0[Sτ0 ]

D(P0‖P1)
≤ B + c0

D(P0‖P1)
, (10)

where c0 = maxx∈X

∣∣∣log P0(x)
P1(x)

∣∣∣. Similarly we can show π0|1(Φ) ≤ 2−B and E1[τ ] ≤ A+c0
D(P1‖P0) .

For (4), consider a family of SPRT indexed by n ∈ N with An = nD(P1‖P0) − c0 and Bn = nD(P0‖P1) − c0. By (10),
(2) is satisfied. Using (9), we have

e0 ≥ lim inf
n→∞

nD(P1‖P0)− c0
n

= D(P1‖P0) ,

e1 ≥ lim inf
n→∞

nD(P0‖P1)− c0
n

= D(P0‖P1) .

For (5), consider a family of SPRT indexed by β ∈ (0, 1) with Aβ = Bβ = − log β. By (9), (3) is satisfied. Using (10), we
have

ẽ0 ≥ lim inf
β→0

− log β

− log β + c0
D(P0‖P1) = D(P0‖P1) ,

ẽ1 ≥ lim inf
β→0

− log β

− log β + c0
D(P1‖P0) = D(P1‖P0) .

B. Achievability with Expected-Stopping-Time Universality

1) Method of Types: First we state some notations and properties about the method of types [14]. The collection of all
possible realization sequences xk is denoted as Pkd , and

|Pkd | ≤ (k + 1)d. (11)

The collection of all length-k sequences that have the same type as Πxk is denoted as T (Πxk), so-called type class of Πxk .
If xk consists of i.i.d. samples following P ,

P⊗k
{
Xk ∈ T (Πxk)

}
≤ 2−kD(Π

xk‖P). (12)

2) Expected-Stopping-Time Universality: Using these properties, we show that Φ
(M)
n satisfies the universality constraint on

expected stopping time with n. Express the expected stopping time as

E0[τ ] =

∞∑
k=1

P0 {τ ≥ k} ≤ n− 1 +

∞∑
k=n−1

P0 {τ > k} . (13)

Next we aim to upper bound P0{τ > k} such that the sum is less than 1.

P0 {τ > k} ≤ P0

{
k⋂
i=1

(
GJS

(
Π
T
Ni
0
,ΠXi , α

)
≥ f(i)

)}



≤ P0

{
GJS

(
Π
T
Nk
0

,ΠXk , α
)
≥ f(k)

}
=

∑
(

Π
xk
,Π
t
Nk
0

)
∈Pkd×P

Nk
d

GJS

(
Π
t
Nk
0

,Π
xk
,α

)
≥f(k)

P0

{
Xk ∈ T (Πxk)

}
P0

{
TNk0 ∈ T (Π

t
Nk
0

)
}

≤
∑

(
Π
xk
,Π
t
Nk
0

)
∈Pkd×P

Nk
d

GJS

(
Π
t
Nk
0

,Π
xk
,α

)
≥f(k)

2−kD(Π
xk‖P0)2

−NkD

(
Π
t
Nk
0

∥∥∥∥P0

)
(by (12))

≤
∑

(
Π
xk
,Π
t
Nk
0

)
∈Pkd×P

Nk
d

2−kf(k) (by the definition of the GJS divergence)

≤ (k + 1)d(Nk + 1)d(k + 1)−2d(Nk + 1)−d (by (11))

= (k + 1)−d

Since (k + 1)−d is decreasing, we have for all n ≥ 2,
∞∑

k=n−1

P0 {τ > k} ≤
∞∑

k=n−1

(k + 1)−d ≤
∫ ∞
n−2

(u+ 1)−d du =
(n− 1)−(d−1)

d− 1
≤ 1. (14)

Combining (13) and (14) gives us E0[τ ] ≤ n. Using the same argument, we can show E1[τ ] ≤ n.
3) Error Exponents: First we upper bound the error probability.

π1|0(Φ(M)
n ) = P0

{
δ(Xτ , TNτ0 , TNτ1 ) = 1

}
= P0

{ ∞⋃
k=n−1

(
GJS

(
Π
T
Nk
1

,ΠXk , α
)
≤ f(k)

)}

≤
∞∑

k=n−1

P0

{
GJS

(
Π
T
Nk
1

,ΠXk , α
)
≤ f(k)

}
≤

∞∑
k=n−1

∑
(

Π
xk
,Π
t
Nk
1

)
∈Pkd×P

Nk
d

GJS

(
Π
t
Nk
1

,Π
xk
,α

)
≤f(k)

2−kD(Π
xk‖P0)2

−NkD

(
Π
t
Nk
1

∥∥∥∥P1

)
(by (12)) (15)

Define
∆(n, P0, P1) = min

(V,V1)∈P(X )2:GJS(V,V1,α)≤f(n−1)
αD(V ‖P1) + D(V1‖P0) .

Using (11) and the fact that f(k) is decreasing, we can upper bound (15) by
∞∑

k=n−1

2
−k
[
∆(n,P0,P1)− d logn

n−1 −
d log(Nn−1+1)

n−1

]
. (16)

Note that GJS(V, V1, α) is jointly convex in (V, V1) [6, Lemma 4], and the objective function is strictly jointly convex in
(V, V1). By the continuity of optimization problem [13, Corollary D.1],

∆(n, P0, P1)→ D α
1+α

(P1‖P0) as f(n− 1)→ 0.

Moreover,
d log n

n− 1
+
d log(Nn−1 + 1)

n− 1
→ 0 and f(n− 1)→ 0 as n→∞.

Hence, for any ε > 0, we can find N > 0 such that

∀n ≥ N,
∣∣∣∣∆(n, P0, P1)− d log n

n− 1
− d log(Nn−1 + 1)

n− 1
−D α

1+α
(P1‖P0)

∣∣∣∣ ≤ ε.



Now pick some ε < D α
1+α

(P1‖P0), then for all n ≥ N , (16) can be further upper bounded by

∞∑
k=n−1

2
−k
(

D α
1+α

(P1‖P0)−ε
)

=
2
−(n−1)

(
D α

1+α
(P1‖P0)−ε

)

1− 2
−
(

D α
1+α

(P1‖P0)−ε
) .

Take n to infinity and get e0 ≥ D α
1+α

(P1‖P0)− ε. Since ε can be made arbitrarily close to zero, we have e0 ≥ D α
1+α

(P1‖P0).
Similarly, e1 ≥ D α

1+α
(P0‖P1).

C. Achievability with Error-Probability Universality

1) Error-Probability Universality: First we show that Φ
(D)
β satisfies the universality constraint on error probability with β.

π1|0(Φ
(D)
β ) = P0

{
δ(Xτ , TNτ0 , TNτ1 ) = 1

}
≤
∞∑
k=1

P0

{
τ = k, δ(Xk, TNk0 , TNk1 ) = 1

}
≤
∞∑
k=1

P0

{
GJS

(
Π
T
Nk
0

,ΠXk , α
)
≥ g(β, k)

}
≤
∞∑
k=1

(k + 1)d(Nk + 1)d2−kg(β,k) (by the same method as in Appendix B2)

≤ β(d− 1)

∞∑
k=1

(k + 1)−d

≤ β(d− 1)

∫ ∞
0

(u+ 1)−d du = β

2) Error Exponents: For Φ
(D)
β , define

τ0 = inf
{
k ∈ N : GJS

(
Π
t
Nk
1

,Πxk , α
)
> g(β, k)

}
.

Lemma 3: ∃N > 0, c > 0 such that for Φ
(D)
β , P0 {τ0 ≥ k} ≤ 1

β 2−ck for any k ≥ N .
Proof:

P0 {τ0 ≥ k} ≤ P0

{
GJS

(
Π
T
Nk−1
1

,ΠXk−1 , α
)
≤ g(β, k − 1)

}
≤ P0

{
GJS

(
Π
T
Nk−1
1

,ΠXk−1 , α
)
≤ g(β, k − 1) and D

(
Π
T
Nk−1
1

∥∥∥P1

)
≤ ε and D(ΠXk−1‖P0) ≤ ε

}
+ P0

{
D
(

Π
T
Nk−1
1

∥∥∥P1

)
> ε
}

+ P0 {D(ΠXk−1‖P0) > ε}

(i)

≤ P0

 GJS
(

Π
T
Nk−1
1

,ΠXk−1 , α
)
≤ g(β, k − 1) + GJS

(
Π
T
Nk−1
0

,ΠXk−1 , α
)

and D
(

Π
T
Nk−1
1

∥∥∥P1

)
≤ ε and D(ΠXk−1‖P0) ≤ ε


+ P0

{
D
(

Π
T
Nk−1
1

∥∥∥P1

)
> ε
}

+ P0 {D(ΠXk−1‖P0) > ε}
(ii)

≤ P0

{
GJS

(
Π
T
Nk−1
0

,ΠXk−1 , α
)
≥ a− g(β, k − 1)

}
+ kd2−(k−1)ε + (Nk−1 + 1)

d
2−Nk−1ε

≤ 1

β(d− 1)
k3d (Nk−1 + 1)

2d
2−(k−1)a + kd2−(k−1)ε + (Nk−1 + 1)

d
2−Nk−1ε

≤ 1

β
2−ck ∀ k ≥ N for some c,N > 0 independent of n

where (i) is because GJS
(

Π
T
Nk−1
0

,ΠXk−1 , α
)

is nonnegative. For (ii), since P0 6= P1, when ε is chosen to be sufficiently
small, it follows that ∀Q0, Q1 ∈ P(X ), if D(Q0‖P0) ≤ ε and D(Q1‖P1) ≤ ε, then GJS(Q1, Q0, α) ≥ a.

�
Lemma 4: As β → 0,

− τ0
log β

a.s.→ 1

GJS(P1, P0, α)
.



Proof: By the strong law of large numbers, as k →∞,

ΠXk
a.s.→ P0, Π

T
Nk
0

a.s.→ P0, Π
T
Nk
1

a.s.→ P1.

With the continuity of KL-divergence, we have

GJS
(

Π
T
Nk
1

,ΠXk , α
)

a.s.→ GJS(P1, P0, α) as k →∞.

By Lemma 3, τ0 is finite a.s. Hence with probability 1 under P0,

GJS
(

Π
T
Nτ0
1

,ΠXτ0 , α
)
> g(β, τ0) = − log β + log(d− 1)

τ0
+ f(τ0), (17)

GJS

(
Π
T
Nτ0−1
1

,ΠXτ0−1 , α

)
≤ g(β, τ0 − 1) = − log β + log(d− 1)

τ0 − 1
+ f(τ0 − 1). (18)

Next we show that τ0
a.s.→∞ as β → 0:

P0 {τ0 ≤ k} = P0

{
GJS

(
Π
T
Nτ0
1

,ΠXτ0 , α
)
> g(β, τ0); τ0 ≤ k

}
≤ P0

{
k
(

min
V

[
αD
(

Π
T
Nτ0
1

∥∥∥V )+ D(ΠXτ0‖V )
])

> log
1

β(d− 1)

}
≤ P0

{
kα̃
(

min
V

[
D
(

Π
T
Nτ0
1

∥∥∥V )+ D(ΠXτ0 ‖V )
])

> log
1

β(d− 1)

}
where α̃ = max {α, 1}

≤ P0

{
2kα̃ > log

1

β(d− 1)

}
(Since Jensen-Shannon divergence ≤ 1)

= 0 ∀ k < − log β + log(d− 1)

2α̃

Taking β → 0, we have τ0
a.s.→∞. The result follows from (17) and (18).

�
Lemma 5:

{
− τ0

log β

}
β∈(0,0.9]

is uniformly integrable.

Proof: Given any ε > 0,

E0

[
− τ0

log β
1

{
− τ0

log β
≥ v
}]

= − 1

log β
E0 [τ01{τ0 ≥ −v log β}]

= − 1

log β

∞∑
k=1

P0 {τ01{τ0 ≥ −v log β} ≥ k}

≤ − 1

log β
(−v log β)P0 {τ0 ≥ d−v log βe} − 1

log β

∞∑
k=d−v log βe

P0 {τ0 ≥ k}

≤ v

β
2−cd−v log βe − 1

β log β

∞∑
k=d−v log βe

2−ck (by Lemma 3 if we choose v such that d−v log 0.9e ≥ N )

≤ vβcv−1 − 1

β log β
· βcv

1− 2−c

≤ 0.9cv−1

(
v − 1

log 0.9 (1− 2−c)

)
if v is large enough such that cv − 1 > 0

≤ ε if v is large enough

�
By Lemma 4 and Lemma 5, we have

lim
β→0

E0

[∣∣∣∣ τ0
− log β

− 1

GJS(P1, P0, α)

∣∣∣∣] = 0.

By definition, τ ≤ τ0, hence e0 ≥ GJS(P1, P0, α).



D. Benefit of Sequentiality

Our goal is to show the following inequality for all P,Q and α > 0:

D α
1+α

(P‖Q) ≥ GJS(Q,P, α) .

First we introduce Hellinger distance of order a

Hela (P‖Q) = EX∼Q


(
P (X)
Q(X)

)a
− 1

a− 1

 .
By definition, Rényi divergence of order a is related to Hellinger distance as

Da (P‖Q) =
1

a− 1
log (1 + (a− 1)Hela (P‖Q)) .

Hence

D α
1+α

(P‖Q) = −(α+ 1) log

(
1− 1

1 + α
Hel α

1+α
(P‖Q)

)
.

Since − log(1− x) ≥ (log e)x for x > 0,

D α
1+α

(P‖Q) ≥ (log e)Hel α
1+α

(P‖Q) .

It remains to show that
(log e)Hel α

1+α
(P‖Q) ≥ GJS(Q,P, α) .

Note that Hel α
1+α

(P‖Q) is a f -divergence with

fH(t) = −(α+ 1)
(
t
α
α+1 − 1

)
+ α(t− 1),

and GJS(Q,P, α) is a f -divergence with

fG(t) = α log
α+ 1

α+ t
+ t log

(α+ 1)t

α+ t
.

The proof is complete if we show (log e)fH(t) ≥ fG(t) for all t > 0. To do this, we calculate the derivatives of fH(t) and
fG(t):

f ′H(t) = α
(

1− t−
1

α+1

)
(19)

f ′′H(t) =
α

α+ 1
t−

α+2
α+1 (20)

f ′G(t) = log
(α+ 1)t

α+ t
(21)

f ′′G(t) = (log e)

(
1

t
− 1

α+ t

)
(22)

Consider ρ(t) = (log e)fH(t)− fG(t). It’s clear that ρ(1) = 0. So it suffices to show ρ(1) = 0 is a global minimum of ρ(t).
Combining (19) and (21), we have ρ′(1) = 0. Next we show that ρ(t) is convex by examining its second derivative. By (20)
and (22),

ρ′′(t) = (log e)

(
αt−

α+2
α+1

α+ 1
− 1

t
+

1

α+ t

)

=
α(log e)t−

α+2
α+1

(α+ 1)(α+ t)

(
α+ t− (α+ 1)t

1
α+1

)
.

It is obvious that α(log e)t
−α+2
α+1

(α+1)(α+t) is positive for t ∈ (0,∞). Let η(t) = α+ t− (α+ 1)t
1

α+1 . We have η(1) = 0, η′(1) = 0 and

η′′(t) = α
α+1 t

− 2α+1
α+1 > 0 for t ∈ (0,∞). Hence η(t) is convex and η(1) = 0 is a global minimum. Using the fact that η(t) is

non-negative, we obtain ρ′′(t) ≥ 0. Therefore ρ(t) is convex and ρ(1) = 0 is a global minimum.



E. Converse

1) Proof of Lemma 1: The proof is similar to the converse part in [15, Theorem 15.3]. Using data processing inequality of
divergence:

d
(
P′θ(E),P′′1−θ(E)

)
≤ D

(
P′θ
∥∥P′′1−θ) |Fτ

= E′θ

[
τ∑
k=1

log
P ′θ(Xk)

P ′′1−θ(Xk)
+

Nτ∑
k=1

log
P ′0(T0,k)

P ′′0 (T0,k)
+

Nτ∑
k=1

log
P ′1(T1,k)

P ′′1 (T1,k)

]
= E′θ [τ ] D

(
P ′θ
∥∥P ′′1−θ)+ E′θ [Nτ ] (D(P ′0‖P ′′0 ) + D(P ′1‖P ′′1 )) ,

where the last equality is by Doob’s Optional Stopping Theorem.
2) Proof of Lemma 2: Given any ε > 0, we aim to find δ > 0 such that for all p, q ∈ (0, δ), |h(p, q) − 1| ≤ ε. For

p, q ∈ (0, δ), if δ < 0.5,

d(1− p, q) ≥ d(1− δ, q)

= (1− δ) log
1− δ
q

+ δ log
δ

1− q

= (1− δ) log
1

q
+ (1− δ) log(1− δ) + δ log δ + δ log

1

1− q

≥ (1− δ) log
1

q
− 2

e ln 2
(since ∀x ∈ (0, 1), x log x ≥ − 2

e ln 2
)

For the upper bound,

d(1− p, q) = (1− p) log
1− p
q

+ p log
p

1− q
≤ log

1

q
+ δ log

1

1− δ
.

Hence
d(1− p, q)

log 1
q

≥ 1− δ − 2

e ln 2

1

log 1
q

≥ 1− δ − 2

e ln 2

1

log 1
δ

,

and
d(1− p, q)

log 1
q

≤ 1 +
δ log 1

1−δ

log 1
q

≤ 1 +
δ log 1

1−δ

log 1
δ

.

It suffices to choose δ > 0 small enough such that

δ − 2

e ln 2

1

log δ
< ε and

δ log(1− δ)
log δ

< ε.


