
NOTE 2: BIMEROMORPHIC MAPS AND PRIMITIVE BIMEROMORPHIC MAPS

1. Bimeromorphic automorphisms

A meromorphic map f : X d Y between (connected) complex manifolds is an irreducible closed
subvariety Γ ⊂ X × Y such that the restriction of the first projection p : X × Y → X to Γ is generically
biholomorphic. In other words, there exists a Zariski open ΓU ⊂ Γ such that p sends biholomorphically
ΓU to a Zariski open U ⊂ X, so the restriction of f to U defines a holomorphic map U→ Y. The subvariety
Γ ⊂ X × Y is called the graph of f : X d Y. If the restriction of the other projection X × Y → Y to Γ is
also generically biholomorphic, then we call f a bimeromorphic map. In this case, the same subvariety
Γ ⊂ X × Y defines also a bimeromorphic map f−1 : Y d X, called the inverse of f . A bimeromorphic
self-map f : Xd X is also called a bimeromorphic automorphism.

A meromorphic map f : Xd Y is called dominant if the image of Γ under X ×Y→ Y is a Zariski open
of Y. Given meromorphic maps f : X d Y and 1 : Yd Z and assume that f is dominant, then we can
define their composition 1 ◦ f as follows: If Γ f ⊂ X × Y and Γ1 ⊂ Y × Z denote the graph of f and 1 and
pXY denotes the projection X × Y × Z→ Y × Z (and we define pYZ and pXZ similarly), then the graph of
1 ◦ f is defined to be the irreducible component of

pXZ

(
p−1

XY(Γ f ) ∩ p−1
YZ(Γ1)

)
⊂ X × Z

which dominates X. With this composition law and the inverse f−1 defined in the previous paragraph,
the bimeromorphic automorphisms f : Xd X of a complex manifold X form a group denoted by Bir(X).

When X and Y are projective, a meromorphic map X d Y is the analytification of a rational map.
While meromorphic maps are the generalization of rational maps for complex manifolds, we should
note that the usual equivalent descriptions of rational maps in algebraic geometry do not generalize
to meromorphic maps. First of all, a morphism (in algebraic geometry) U → Y from a Zariski open
U ⊂ X of an irreducible projective variety X to another projective variety Y always extends to a rational
map X d Y, whereas the exponential map exp : C → C does not extend to any meromorphic map
P1 d P1. Secondly, for irreducible projective varieties X and Y, pulling back meromorphic functions
sends bijectively the set of dominant rational maps f : Xd Y to the set of C-algebra homomorphisms
f ∗ : M (Y)→M (X) between the fields of meromorphic functions. However in complex geometry, the
knowledge of the induced C-algebra homomorphism M (Y)→M (X) is not sufficient to reconstruct the
meromorphic map Xd Y. For example, there exists a complex torus T such that M (T) = C, but both the
identity and the automorphism ı : T→ T defined by ı(x) = −x induce the identity Id : M (T)→M (T).

Remark 1. In the previous lecture, we’ve seen that every automorphism group Aut(X) is a complex Lie
group. For Bir(X), it still carries a natural structure of group scheme when X is a minimal projective
variety [3], but in general, there might be no natural (infinite dimensional) Lie group or algebraic group
structure on Bir(X) (see [1] for the case X = PN).

2. Bimeromorphic maps and the Iitaka fibrations

In this lecture, we will see some invariants and geometric structures attached to compact complex
manifolds and prove that they are preserved under bimeromorphic maps. Let us start with the global
sections of the canonical line bundle ωX = det T∨X and its powers.

Lemma 2. Let f : X̃ → X be a holomorphic map between complex manifolds. If f is bimeromorphic, then for
every m ∈ Z,

f ∗ : H0(X, ω⊗m
X )→ H0(X̃, ω⊗m

X̃
)

is an isomorphism.
1
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Proof. Since X is smooth, there exists a subvariety Z ⊂ X of codimension at least 2 such that if E = f−1(Z),
then f|X̃\E : X̃\E→ X\Z is an isomorphism. Define

1 : H0(X̃, ω⊗m
X̃

) ↪→ H0(X̃\E, ω⊗m
X̃\E

) = H0(X\Z, ω⊗m
X\Z) ' H0(X, ω⊗m

X )

where the first map is the restriction to X̃\E and the last isomorphism comes from the Riemann extension
theorem. Obviously 1 ◦ f = Id. As 1 is injective, 1 is an inverse of f . �

Lemma 3. Let f : Xd X be a bimeromorphic self-map of a complex manifold X. Then for every m ∈ Z, f induces
an automorphism

f ∗ : H0(X, ω⊗m
X )→ H0(X, ω⊗m

X )

by pulling back global sections.

Proof. Let X
p
←− X̃

q
−→ X be a resolution of f by a complex manifold X̃. By Lemma 2, p and q induce

isomorphisms p∗, q∗ : H0(X, ω⊗m
X )→ H0(X̃, ω⊗m

X̃
). We simply define f ∗ = (p∗)−1

◦ q∗. �

Let X be a compact complex manifold. For every integer m, if H0(X, ω⊗m
X ) , 0 then the linear system

|mKX| defines a meromorphic map

Φm : X PN.
|mKX |

If H0(X, ω⊗m
X ) , 0 for some m > 0, then the Kodaira dimension of X is defined to be

κ(X) = max
m>0

(dim Im(Φm)) .

If H0(X, ω⊗m
X ) = 0 for every m > 0, we set κ(X) = −∞ by convention. By Lemma 3, the Kodaira dimension

is a bimeromorphic invariant, namely if X is bimeromorphic to another compact complex manifold X′,
then κ(X) = κ(X′). By a theorem of Iitaka, if κ(X) , −∞, then there exists m such that dim Im(Φm) = κ(X)
and a resolution of Φm has connected fibers. Such a map Φm is called an Iitaka fibration of X.

Example 4. Let C be a smooth projective curve of genus 1. Then κ(C) = −∞, 0, or 1 if 1 = 0, 1, or 1 ≥ 2
respectively.

3. Primitive bimeromorphic maps

Definition 5. Let X be a compact complex manifold and let f ∈ Bir(X). We say that f is primitive if there
is no commutative diagram of the form

X X

B B

f

φ φ

1

where φ : Xd B is a dominant rational map with 0 < dim B < dim X.

We will study primitive bimeromorphic self-maps of a compact complex manifold X according
to its Kodaira dimension. First we show that if X has a primitive bimeromorphic self-map then
κ(X) ∈ {−∞, 0,dim X}.

Proposition 6. Let X be a compact complex manifold. If X has a primitive bimeromorphic self-map f : Xd X,
then κ(X) = −∞, 0 or dim X.

Proof. Using the notation as above, let m be an integer such that Φm : X d PN is an Iitaka fibration.
By Lemma 3, f induces an automorphism of H0(X, ω⊗m

X ), which further induces an automorphism
1 : PN

→ PN such that Φm ◦ f = 1 ◦ Φm. Let B = Im(Φm). By construction, given a general point x ∈ X,
a section η ∈ H0(X, ω⊗m

X ) vanishes at f (x) if and only if f ∗η vanishes at x. So 1(B) = B, in particular f
descends to 1|B. Therefore if 0 < κ(X) = dim B < dim X, then f is not primitive. �

Compact complex manifolds X with κ(X) = dim X are also called manifolds of general type. Note that
since the Iitaka fibration of a compact complex manifold of general type is a bimeromorphic map, such
a manifold is always bimeromorphic to a projective variety.
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Proposition 7. Let X be a compact complex manifold of general type.

i) There exists a bimeromorphic map φ : X d B to a projective variety B such that the group homomorphism
Φ : Aut(B)→ Bir(X) defined by 1 7→ φ−1

◦ 1 ◦ φ is an isomorphism.
ii) Bir(X) is finite.

Proof. Again, let Φm : Xd PN be an Iitaka fibration and let B = Im(Φm). Then B is projective. For every
bimeromorphic map f : X d X, the same argument as in the proof of Proposition 6 shows that there
exists an automorphism 1 : B→ B such that Φm ◦ f = 1 ◦Φm. The map f 7→ 1 is the inverse of Φ, which
proves i).

By i), it suffices to show that Aut(B) is finite. If 1 : B→ B is an automorphism of B, then Φ(1) induces
an automorphism 1′ : PN

→ PN and 1′
|B = 1. So Aut(B) can be identified with a Zariski closed subgroup

of PGLN+1(C) (consisting of elements 1′ : PN
→ PN such that 1′(B) = B). If dim Aut(B) ≥ 1, then since

PGLN+1(C) is an affine group (because it is the quotient of the affine group SLN+1(C) by the group of
(N + 1)-th roots of unity, which is finite), Aut(B) has a one-parameter subgroup Σ birational to P1. Since
the Σ-orbit of a general point of B is not a point, we deduce that B is uniruled (namely, covered by
non-constant images of P1). As X is birational to B, X also uniruled, so ω⊗m

X have no global sections for
every positive integer m. This contradicts the assumption that X is of general type. Therefore Aut(B) is a
Zariski closed subgroup of PGLN+1(C) of dimension 0 and in particular, Aut(B) is finite. �

Remark 8. For every positive integer n, there exists c > 0 such that |Bir(X)| ≤ c · vol(X,KX) for every
projective manifold X of general type [2]. Here, the volume of a divisor D on X is defined to be

vol(X,D) := lim sup
m→∞

n!h0(X,O(mD))
mn .

If D is a nef divisor, then vol(X,D) = Dn. An explicit expression of c in terms of n is still unknown.

According to 7, compact complex manifolds X with κ(X) ≤ dim(X) − 1 are the only dynamically
interesting manifolds and by Proposition 6, the dynamical systems of them can be reduced to those of a
compact complex manifold X with κ(X) ≤ 0.

Exercise 9.

i) Let f : Xd Y be a dominant meromorphic map between complex manifolds. Construct f ∗ : H0(Y, ω⊗m
Y )→

H0(X, ω⊗m
X ) and show that f ∗ is injective.

ii) Let X be a compact complex manifold of general type and f : Xd X a meromorphic map. Show that if f is
dominant, then f is bimeromorphic.

Exercise 10. Let f : Xd X be a birational self-map of a projective manifold. If ρ(X) = 1, then f is biholomorphic.

4. Case κ = 0

Proposition 11. Let X be a projective manifold such that κ(X) = 0. If X has a primitive birational self-map
Xd X, then either X is birational to a projective complex torus (i.e. an abelian variety), or b1(X) = 0.

Let X be a compact Kähler manifold. By Hodge symmetry, the projection

(4.1) H2n−1(X,R)→ H2n−1(X,C)/Hn−1(X,Ωn
X)

is an isomorphism, and the image of the free part H2n−1(X,Z)free of H2n−1(X,Z) under the composition
H2n−1(X,Z) → H2n−1(X,R) with (4.1) is a lattice in H2n−1(X,C)/Hn−1(X,Ωn

X). The Albanese variety of X is
defined to be the complex torus

Alb(X) =
H2n−1(X,C)

Hn−1(X,Ωn
X) ⊕H2n−1(X,Z)free

.
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If X is projective, then a polarization of X gives rise to a polarization of Alb(X), so in this case Alb(X) is
an abelian variety. By Poincaré’s duality, we have

Alb(X) '
H1(X,C)∨

H1(X,OX)∨ ⊕H1(X,Z)free
' H0(X,Ω1

X)∨/H1(X,Z)free.

Fix x0 ∈ X. The Albanese map a : X→ Alb(X) is defined to be

a : X→ Alb(X)

x 7→
(
γ 7→

∫ x

x0

γ

)
.

(4.2)

Up to composing a with a translation, the Albanese map does not depend on the choice of x0 ∈ X.

Lemma 12. A bimeromorphic map f : X d X′ between compact complex manifolds induces an isomorphism
f∗ : H1(X,Z)→ H1(X′,Z). If X and X′ are Kähler, then f∗ is an isomorphism of Hodge structures.

Proof. Let us first show that if 1 : X̃→ X is a bimeromorphic holomorphic map from a compact Kähler
manifold X̃, then 1∗ : H1(X̃,Z)→ H1(X,Z) is an isomorphism, whose inverse is 1∗ : H1(X̃,Z)→ H1(X,Z).
Resolving 1−1 : X d X̃ by a sequence of blow-ups 1′ : X̃′ → X along smooth centers, we obtain a
factorization 1′ : X̃′ τ

−→ X̃
1
−→ X. Since τ and 1 are surjective and generically of degree 1, the pushforwards

τ∗ : H1(X̃′,Z) → H1(X̃,Z) and 1∗ : H1(X̃,Z) → H1(X,Z) are surjective. As 1′∗ : H1(X̃,Z) → H1(X,Z) is an
isomorphism by the blow-up formula, 1∗ : H1(X̃,Z)→ H1(X,Z) is injective. It follows from 1∗ ◦ 1∗ = Id
that 1∗ is the inverse of 1∗.

Now let
X X̃ X′

p q

be a resolution of f obtained by a sequence of blow-ups p : X̃ → X along smooth centers. The map
f∗ : H1(X,Z)→ H1(X′,Z) is defined to be f∗ = q∗ ◦ p∗. Since q∗ and p∗ are isomorphisms, so is f∗. Since two
resolutions of f are always dominated by a third one, a similar argument shows that the definition of f∗
is independent of the resolutions. Finally if X and X′ are Kähler, then by construction X̃ is also Kähler. It
follows that q∗ and p∗ are morphisms of Hodge structures, and so is the composition f∗ = q∗ ◦ p∗. �

Remark 13. For compact complex manifolds, the fundamental group is in fact a bimeromorphic invariant.
This is stronger than Lemma 12 because H1(X,Z) is the Poincaré dual of H1(X,Z) = π1(X)/[π1(X), π1(X)].

It follows from Lemma 12 that a bimeromorphic automorphism f : Xd X of a compact Kähler mani-
fold, giving rise to a morphism of Hodge structures f∗ : H1(X,Z)→ H1(X,Z), induces an automorphism
F : Alb(X)→ Alb(X) of Lie groups. Moreover, if a : X→ Alb(X) is the Albanese map defined by x 7→

∫ x

x0

for some x0 ∈ X such that f (x0) is well-defined, then the diagram

(4.3)
X X

Alb(X) Alb(X)

f

a a

τ◦F

is commutative where τ : Alb(X)→ Alb(X) is the translation by−a( f (x0)). In other words, bimeromorphic
automorphism preserves the Albanese map.

Proposition 11 is now a direct consequence of the following theorem due to Kawamata.

Theorem 14 (Kawamata [6]). Let X be a projective manifold. If κ(X) = 0, then the Albanese map X→ Alb(X)
is surjective with connected fibers.

Proof of Proposition 11. Since the Albanese maps in (4.3) are surjective, if f is primitive then dim Alb(X) =

dim X or b1(X) = 2 dim Alb(X) = 0. If dim Alb(X) = dim X, then since a : X → Alb(X) is surjective with
connected fibers, a is a bimeromorphic map. �
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5. Uniruled manifolds

Let X be a compact complex variety. We say that X is rationally connected if for any general pair of points
x, y ∈ X, there exists a connected compact curve C ⊂ X such that x, y ∈ C and whose normalization is a
union of P1. Here by convention, 0-dimensional compact complex varieties are also rationally connected.
A meromorphic map 1 : X d B is called almost holomorphic if there exists a dense Zariski open subset
U ⊂ X such that 1|U is holomorphic and proper (so the fiber of 1 over a point b ∈ 1(U) is well-defined,
which is 1−1

|U (b)). The following theorem asserts that every compact Kähler manifold X admits a unique
almost holomorphic fibration in rationally connected subvarieties of maximal dimension.

Theorem 15 (Campana, Kollár-Miyaoka-Mori). There exists a unique dominant almost holomorphic map
1 : X d B such that a general fiber of 1 is rationally connected and if X d B′ is another almost holomorphic
map whose general fiber is rationally connected, then dim B ≤ dim B′. Moreover, if b ∈ B is a very general point
(namely, if b ∈ B is in a non-empty countable intersection of Zariski open subsets) and C is a rational curve
intersecting f−1(b), then C ⊂ f−1(b).

We refer to [8, Chapter IV.5] for a proof of Theorem 15 and further discussions. The almost holomorphic
map Xd B in Theorem 15 is called the maximal rationally connected fibration of X (or MRC-fibration). We
easily observe that X is rationally connected if and only if dim B = 0. Also, X is uniruled if and only if
dim B < dim X.

Proposition 16. Bimeromorphic self-maps preserve the MRC-fibration. In particular, if f : Xd X is a primitive
bimeromorphic self-map of a uniruled compact Kähler manifold, then X is rationally connected.

Proof. Let 1 : X d B be the MRC-fibration of X and let F = 1−1(b) where b ∈ B is a very general point.
Since F is rationally connected, its image f (F) is also rationally connected. By the second statement of
Theorem 15, f (F) has to be a fiber of 1, and from this we obtain a commutative diagram

(5.1)
X X

B B

f

1 1

f ′

for some bimeromorphic map f ′ : Bd B′. Finally if X is uniruled, then dim B < dim X. As f is primitive,
then necessarily dim B = 0, therefore X is rationally connected. �

6. (Conjectural) manifolds supporting a primitive bimeromorphic self-map

Let X be a projective manifold. The Minimal Model Program (MMP) predicts that X is either uniruled
or birational to a minimal variety X′, namely a normal Q-factorial projective variety X′ with at worst
terminal singularities such that the canonical divisor KX′ is nef (i.e. KX′ · C ≥ 0 for every curve C ⊂ X′).
Moreover, the abundance conjecture predicts that |mKX′ | is based-point-free for m� 0. In other words,
the Iitaka fibration of X′ is a morphism. If κ(X) = 0 (resp. κ(X) = −∞), then the conjunction of the
MMP and the abundance conjecture implies that KX′ is numerically trivial (resp. X is uniruled). Both
the MMP and the abundance conjecture are known to hold for projective threefolds (and more generally,
for compact Kähler threefolds). See [7, 4] for related discussions.

Combining Proposition 7, Proposition 11, and Proposition 16, we obtain the following conjectural
birational classification of projective manifolds which have a primitive birational self-map of infinite
order.

Corollary 17 (D.-Q. Zhang [9]). Let X be a projective manifold and assume the MMP and the abundance
conjecture for X. If X has a primitive birational self-map f : Xd X of infinite order, then X is birational to one of
the following:

i) an abelian variety;
ii) a normal Q-factorial variety X′ with at worst terminal singularities and numerically trivial KX′ such that

h1(X′,OX′ ) = 0;



6 NOTE 2: BIMEROMORPHIC MAPS AND PRIMITIVE BIMEROMORPHIC MAPS

iii) a rationally connected manifold.

Remark 18. For a projective variety X′ as in ii), thanks to recent work of Druel, Greb-Guenancia-Kebekus,
and Höring-Peternell [5], we know more precisely that up to a finite quasi-étale (i.e. étale in codimension
1) cover, X′ is a product of Calabi-Yau varieties and irreducible symplectic varieties.
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