
Modern Algebra II

A first course in commutative ring theory

(Version: January 14, 2025)

()

()

()

()



Acknowledgement

These are the lecture notes of "Modern Algebra II" that I teach in 2024 at the National Taiwan
University. I would like to thank the teaching assistant Hajime Nakahashi, as well as all the students
who attend the lectures. Special thanks to Jia-Lin Hsu, Yung-Chen Li, Jun-Ting Lin, Tzu-Yang Tsai,
Shao-Wei Wang, and Yi-Teng Wu for helpful feedback.

All comments are very welcome.



Contents

Acknowledgement 2

Lecture 1. A brief introduction 5
1. Rings arising from number theory 5
2. Motivations from algebraic geometry 6

Lecture 2. Algebraic numbers and integrality 8

Lecture 3. The geometry of rings and ideals 11
4. The historical origin of ideals 11
5. Ideals and algebraic closed subsets 11
6. Affine schemes: a first definition 13

Lecture 4. Tensor products 19
7. Tensor products 19
8. Properties of tensor products 21
9. Tensor algebras 24

Lecture 5. Localizations 26
10. Localizations 26
11. Nakayama’s lemma 33

Lecture 6. Maximal ideals and Hilbert’s Nullstellensatz 36
12. 36

Lecture 7. Generators and relations 39
13. Finite generation and finite presentation 39
14. Locally free modules 41

Lecture 8. Krull dimension and chain conditions 44
15. Krull dimension of a ring 44
16. Chain conditions 46
17. Associated points of modules 49

Lecture 9. Dimension and integral morphisms 52
18. Finite and integral morphisms 52
19. Dimension of finitely generated k-algebras 54

Lecture 10. Codimension 57
20. Catenary spaces 57
21. Krull’s principal ideal theorem (Hauptidealsatz) 58

Lecture 11. Valuation rings 61
22. Riemann surfaces and number fields 61
23. Unique factorization of ideals in a Dedekind domain 64
24. Weil divisors and Cartier divisors 66

3



CONTENTS 4

Lecture 12. Differentials 69
25. 69
26. Dimension of the tangent cone 74

Lecture 13. Projective modules and flat modules 80
27. Extensions 80
28. Higher Ext-groups 82
29. Flat modules 86

Lecture 14. Completion 91
30. Examples and definition 91
31. Completion 92
32. Completion of Noetherian rings 93

Bibliography 95



LECTURE 1

A brief introduction

Throughout these notes, unless otherwise specified a ring A is always assumed to be

• commutative;
• unital (i.e. there exists an element 1 ∈ A such that 1 · x = x · 1 = x for any x ∈ A).

A morphism of rings f : A→ B always maps 1 to 1. We also assume the axiom of choice together with
its consequence (e.g. Zorn’s lemma).

Modern Algebra II of this semester is mainly about the theory of commutative rings. Examples of
rings are

Z, Q, Z[e2πı/n], C[X], Z[X,Y]/(Y2
− X3

− X), C[X1,X2, . . .], ...

There are two main sources which motivate the development of the theory of commutative rings:
algebraic number theory and algebraic geometry.

1. Rings arising from number theory

1.1. Sums of two squares. When is a positive integer n equal to the sum of two squares, namely
n = a2 + b2 with a, b ∈ Z? If n is odd, then an obvious necessary condition is that n ∈ 4Z + 1. A little
experiment shows that

1 = 02 + 12, 5 = 12 + 22, 9 = 02 + 32, 13 = 22 + 32, 17 = 12 + 42,

21 is not a sum of two squares, 25 = 02 + 52, 29 = 22 + 52,

33 is not a sum of two squares, 37 = 12 + 62, ......,

and one see that the converse does not hold in general. However:

Theorem 1.1 (Fermat). Let p be an odd prime number. Then p is a sum of two squares if and only if p ∈ 4Z + 1.

1.2. Gauss integers and Gauss primes. The proof of Fermat’s theorem we present here involves the
ring of Gauss integers:

Z[ı] = { a + bı | a, b ∈ Z }

where ı is a square root of −1. One can run the Euclidean division with respect to the multiplicative
norm N : Z[ı]→ Z≥0 defined by

N(a + bı) = a2 + b2.

That Z[ı] is a Euclidean domain implies that Z[ı] is a unique factorization domain (UFD).

Exercise 1.2. Find the greatest common divisor of 8 + 10ı and 2 + 6ı by the Euclidean algorithm.

Exercise 1.3. What are the units of Z[ı]? Show that z ∈ Z[ı] is a unit if and only if N(z) = 1.

The notions of prime elements and irreducible elements in Z[ı] therefore coincide, and we call them
Gauss primes. They relate the two statements in Fermat’s theorem as follows.

Theorem 1.4. Let p ∈ Z be an odd prime number. The following assertions are equivalent:

(1) p is a sum of two squares.
(2) p is not a Gauss prime.
(3) p ∈ 4Z + 1.

5



2. MOTIVATIONS FROM ALGEBRAIC GEOMETRY 6

Proof. First we show that (2) implies (1). Suppose that p = αβ with non-unit α, β ∈ Z[ı]. Then

p2 = N(p) = N(α)N(β).

As N(α),N(β) , 1 and p is a prime number, we have p = N(α), which is a sum of two squares.
It remains to show that (3) implies (2). Suppose that p = 4k + 1 with k ∈ Z>0. Modulo p, we have

−1 = (p − 1)! = (2k)!2,

where the first equality follows from Wilson’s theorem. Thus if n := (2k)!, we have

p | (n + ı)(n − ı)

in Z, and therefore in Z[ı]. As neither factor is divisible by p, it follows that p is not a Gauss prime. □

In the following exercise, we describe all the Gauss primes.

Exercise 1.5. Show that z ∈ Z[ı] is a Gauss prime if and only if up to multiplying by a unit, z satisfies
one of the following descriptions:

(1) z = 1 + ı;
(2) z = a + bı such that N(z) a prime number with N(z) ∈ 4Z + 1;
(3) z is a prime number with z ∈ 4Z + 3.

(Hint: first show that N(z) = p or p2 for some prime number p.)

Theorem 1.4 and its proof provide an example showing that how rings such as Z[ı] can be used to
provide new perspectives, or to explain what lie behind some elementary statements in number theory.
There are other examples, such as solving the Diophantine equation

X2
− dY2 = 1

with X,Y ∈ Z for a given square-free integer d is equivalent to finding units in the quadratic integer ring
Z[
√

d]. Historically, motivated by Fermat’s last "theorem", the rings of cyclotomic integers Z[ζn] where
ζn is a primitive nth root of unity were also heavily studied in the 19th century (e.g. whether Z[ζn] is a
UFD).

Remark 1.6. See [3] for a one-line proof of Fermat’s theorem and related discussions.

2. Motivations from algebraic geometry

Apart from algebraic number theory, we’ve mentionned that another source of the theory of
commutative rings is algebraic geometry.

2.1. Manifolds. We have a contravariant fully faithful embedding1

Smooth manifolds→ Commutative R-algebras

M 7→ C∞(M)
(2.1)

So the study of smooth manifolds M (e.g. the de Rham cohomology, the embedding problem, etc.)
is formally equivalent to the study of their rings of smooth functions C∞(M), together with the
homomorphisms between them. See also [4, Exercise 1.26].

Let M be a manifold. We also have a faithful functor

Smooth vector bundles on M→ C∞(M)-modules

V 7→ Γ(X,V) ,
(2.2)

whose essential image is the subcategory of finitely generated projective C∞(M)-modules; see [11,
Chapter 12].

1See [11, Chapter 7] for more detail. In physical language, C∞(X) can be regarded as the algebra of observables, and the fully
faithful embedding could be interpreted by the observability principle: namely things and differences exist if and only if we can
observe them.



2. MOTIVATIONS FROM ALGEBRAIC GEOMETRY 7

2.2. Affine space and its algebraic closed subsets. Instead of smooth manifolds, now consider the
affine space Ad

k := kd of dimension d ∈ Z≥0 over an algebraically closed field k. The ring of polynomial
functions on Ad

k is the k-algebra
k[X1, . . . ,Xd].

The first objects that we are interested in algebraic geometry are the subsets

Z = { Pi = 0 | for all i ∈ J } ⊂ Ad
k

of Ad
k cut out by a collection of polynomial functions {Pi}i∈J. Equivalently, Z is defined by the ideal

I = (Pi)i∈J ⊂ k[X1, . . . ,Xd]

generated by {Pi}i∈J:

(2.3) Z = Z(I) :=
{

x ∈ Ad
k

∣∣∣ f (x) = 0 for all f ∈ I
}
.

We call such a subset Z an affine algebraic closed subset. The study of Z in the context of algebraic geometry
is contained in the study of the quotient

R = k[X1, . . . ,Xd]/I.

Modules over R are analogous to vector bundles over a manifold.
The local models in algebraic geometry are the so-called affine schemes, which form a category

equivalent to the category of commutative rings. Therefore just as multivariable calculus is the local
theory of differential geometry, the local study of algebraic geometry is equivalent to the study of
commutative rings.

Commutative rings appear in various contexts, and different perspectives allow us to formulate
and study concepts of commutative rings of different origins (geometric and topological ones such as
differentials, cohomology; arithmetic ones such as factoriality).



LECTURE 2

Algebraic numbers and integrality

3.1. Number fields and their Z-structures. The goal of algebraic number theory is to study algebraic
numbers, which, by definition, are the elements of the algebraic closure Q of Q in C. Studying them
consists of studying the finite field extensions K of Q. These fields are called number fields.

It is a remarkable and fundamental fact that each number field K has a canonical Z-structure. This
Z-structure provides a natural generalization of "integers" in a number field K and plays a central rôle
in the theory of algebraic numbers.

Theorem-Definition 3.1. There exists a unique maximal subring OK of K which is a Z-structure of the Q-vector
space K; in other words, there exists a Q-linear isomorphism

K ∼−→ Qd

mapping OK onto Zd
⊂ Qd. We call OK the ring of integers of K.

Note that if such a ring OK exists, then OK is a Z-module of finite type. We will then see that for
every α ∈ OK, we can find a monic polynomial P ∈ Z[X] (i.e. the leading coefficient of P is 1) such that
P(α) = 0. Elements satisfying the above properties are called integral (over Z), and eventually we will
see that OK consists of all integral elements of K. We shall first define and study integral elements in a
more general context.

3.2. Integral elements. Let B be a ring and let A ⊂ B be a subring. An element b ∈ B is called integral
over A if there exists a monic polynomial P ∈ A[X] such that P(b) = 0.

Proposition 3.2. Let b ∈ B. The following assertions are equivalent:

(1) b ∈ B is integral.
(2) The subring A[b] ⊂ B generated by A and b is an A-module of finite type.
(3) A[b] is contained in a subring C ⊂ B of finite type as an A-module.

Proof. The implications (1)⇒ (2)⇒ (3) are clear. The implication (3)⇒ (1) follows from the Cayley–
Hamilton Theorem below, applied to the multiplication ·b : C⟲. □

Theorem 3.3 (Cayley–Hamilton). Let R be a ring and let M be an R-module generated by n element. For every
R-linear endomorphism ϕ : M⟲, there exists a monic polynomial P ∈ R[X] of degree n such that

P(ϕ) = 0.

Moreover if ϕ(M) ⊂ IM for some ideal I ⊂ R, then we can choose

P = Xn + rn−1Xn−1 + · · · + r0 ∈ R[X]

with rn− j ∈ I j for all j.

Proof. Let v1, . . . , vn be generators of M and write

ϕ(vi) =
n∑

j=1

ri jv j

with ri j ∈ R (or ri j ∈ I for the second statement). Let δi j be the Kronecker delta and consider the matrix

A := (δi jϕ − ri j)1≤i, j≤n

8



2. ALGEBRAIC NUMBERS AND INTEGRALITY 9

with coefficients in the subring R′ ⊂ EndR(M) generated by ϕ and the multiplications x 7→ rx for all
r ∈ R; we still use r to denote the image of r ∈ R in EndR(M).

Note that R′ is commutative, so if C denotes the transpose of the cofactor matrix of A, then

CA = det(A)In ∈Mn(R′).

By definition, we have Av = 0, where v is the column matrix consisting of v1, . . . , vn, so det(A) ∈ R′

evaluating at vi is zero for all i. It follows that det(A) = 0, and we finish the proof by developing
det(A). □

We prove by induction on n the following corollary.

Corollary 3.4. Let b1, . . . , bn ∈ B be integral elements over A. Then A[b1, . . . , bn] ⊂ B is an A-module of finite
type.

3.3. Integral extensions and finite extensions. Let A be a ring. An A-algebra is a ring B together with
a ring homomorphism ϕ : A→ B. An A-algebra is naturally a A-module, with

a · b := ϕ(a)b

for any a ∈ A and b ∈ B. That ϕ : A → B is a ring homomorphism gives rise to several rules that a · b
needs to satisfy.

There are two notions of finiteness of algebras that we can define.

• We say that B is a finite A-algebra (or that B is finite over A) if B regarded as an A-module is of
finite type.

• We say that B is a finitely generated A-algebra (or an A-algebra of finite type) if there exists a
finite number of elements b1, . . . , bn such that any element of B is a polynomial in b1, . . . , bn with
coefficients in A. Equivalently, there exists a surjective morphism of A-algebras

A[X1, . . . ,Xn]→ A

for some n ∈ Z≥0.

Here, a morphism between two A-algebras B and C is a ring homomorphism f : B→ C which commutes
with the structural morphisms:

B
f

// C

A

__ ??

Exercise 3.5. Let f : B → C be a ring homomorphism between two A-algebras. Show that f is a
morphism of A-modules if and only if f is a morphism of A-algebras.

Corollary 3.6. Let B be a ring and let A ⊂ B be a subring. Suppose that B is a finitely generated A-algebra. Then
B is integral over A if and only if B is finite over A.

Proof. The "if" part follows from Proposition 3.2 applied to C = B. The "only if" part follows from
Corollary 3.4. □

Remark 3.7. The finite generation assumption in Corollary 3.6 is required: Consider for instance
Q ↪→ Q.

3.4. Integral closure. Let A be a subring of a ring B be as before.

Corollary-Definition 3.8. The subset A ⊂ B of integral elements over A is a subring. We call A the integral
closure of A in B.

Proof. Let x, y be two integral elements of B. Then both x+ y and xy are in A[x, y], which is a finite type
A-module by Corollary 3.4. We conclude by Proposition 3.2 with C = A[x, y]. □
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If every b ∈ B is integral over A, we say that B is an integral extension of A. On the other hand if
A = A, then we say that A is integrally closed in B. In general, we say that an integral domain A is an
integrally closed domain (or a normal domain) if it is integrally closed in its field of fractions.

The transitivity of integral extensions is another immediate corollary of Proposition 3.2.

Corollary 3.9 (Transitivity of integral extensions). Let A ⊂ B ⊂ C be inclusions of subrings. If B is an
integral extension of A and C is an integral extension of B, then C is an integral extension of A.

Proof. Let x ∈ C. Since x is integral over B, we have

(3.4) xn + bn−1xn−1 + · · · + b0 = 0

for some b0, . . . , bn−1 ∈ B. These coefficients are integral over A, so A′ := A[b0, . . . , bn−1] ⊂ C is an
A-module of finite type. As A′[x] is an A′-module of finite type by (3.4), it is an A-module of finite type
by transitivity. We conclude by Proposition 3.2 with C = A′[x] that x is integral over A. □

Exercise 3.10. Show that if a ring R is a UFD, then it is integrally closed in its field of fractions.

Exercise 3.11 (The Gauss lemma). Let A be an integrally closed domain and let K be its field of fractions.
Let f ∈ A[t] be a monic. Suppose that f = 1h in K[t] with 1, h ∈ K[t] monic. Show that 1, h ∈ A[t]. (Hint:
consider the splitting field L of f . Observe that the coefficients of 1 are in the ring generated by the roots
of f in L, and they are integral over A.)

Exercise 3.12. A be an integrally closed domain. Show that A[t] is also an integrally closed domain.
(Hint: By Exercise 3.10, enough to show that A[t] is integrally closed in K[t] where K be the field of
fraction of A. Show that if f ∈ K[t] is integral over A[t], then the constant coefficient of f is in A.
Continue by induction on the degree of f .)

3.5. The geometry of numbers.

Proof of Theorem 3.1. Let OK be the integral closure of Z in the number field K. By the primitive
element theorem, there exists α ∈ Q such that K = Q[α] in Q. We can assume that α is integral over Z.
Then 1, α, . . . , αd−1 where d := [K : Q] are Z-independent in OK. So the free Z-module OK has rank at
least d.

Now let x1, . . . , xp be the real conjugates of α, and let z1, z1, . . . , zq, zq be the conjugates of α which
are not real. For each index i, Let σi : K ↪→ R (resp. τi : K ↪→ C) be the embeddings of K sending α to xi

(resp. zi), and let
σ = (σ1, . . . , σp, τ1, . . . , τq) : K ↪→ Rp

× Cq =: V.

We claim that σ(OK) is a discrete subgroup of V. Indeed, otherwise for all ε > 0, there exists nonzero
x ∈ OK such that |σi(x)|, |τ j(x)| < ε for all i and j, but then e.g.

σ1(x) · · · σp(x)τ1(x)τ1(x) · · · τq(x)τq(x),

which is the (nonzero) constant term in the minimal polynomial of x, cannot be an integer if ε is small. As
x ∈ OK, its minimal polynomial has coefficients in Z, which is a contradiction. Since dimR V = p+2q = d,
the discreteness of σ(OK) in σ(K) implies that OK is a free Z-module of rank at most d, and therefore
equal to d. Hence OK is a Z-structure of K.

Finally, suppose that Λ ⊂ K is another subring of K which is of finite type as a Z-module. Then for
any x ∈ Λ, the subring Z[x] ⊂ K is also a Z-module of finite type. So x is integral over Z by Proposition 3.2,
and thus Λ ⊂ OK, which proves that OK is maximal. □

Problem 3.13. What is the ring of integers of a cyclotomic field Q[ζn]?



LECTURE 3

The geometry of rings and ideals

4. The historical origin of ideals

For a more complete treatment, see [6] and the references therein.

4.1. Failure of the uniqueness of factorizations. Some rings in Section 1 are not UFD. For instance in
Z[
√
−5], we have

6 = 2 · 3 = (1 +
√

−5)(1 −
√

−5).

Exercise 4.1. Show that 2 is irreducible in Z[
√
−5], and both 1 +

√
−5 and 1 −

√
−5 are not divisible by

2. (Hint: consider the multiplicative norm N(z) = |z|2.) When is 2 irreducible in Z[ζn]?

The ring of cyclotomic integers Z[ζn] is a Principal Ideal Domain (PID) for n ≤ 22, but not anymore
for n = 23 !1 For instance, the product

(1 + ζ2
23 + ζ

4
23 + ζ

5
23 + ζ

6
23 + ζ

10
23 + ζ

11
23)(1 + ζ23 + ζ

5
23 + ζ

6
23 + ζ

7
23 + ζ

9
23 + ζ

11
23)

is divisible by 2, but both factors are not. Again, since 2 is irreducible in Z[ζ23], the ring Z[ζ23] is even
not a UFD.

4.2. Kummer’s "ideal numbers". One of the key contributions of Kummer is the introduction of "ideal
numbers" (nowadays called ideals), which generalize "numbers" in Z[ζn]. He also realized that contrary
to numbers in Z[ζn], any proper ideal of Z[ζn] admits a unique factorization into prime ideals. Later,
Dedekind generalized the statement to the ring of integers in any number field; we will come back
to this, and viewed it as a corollary of the primary decomposition. Note that this generalization is
interesting only when the ring R is not a PID.

5. Ideals and algebraic closed subsets

5.1. Zariski topology. Let k be an algebraically closed field. Recall that any ideal I ⊂ k[X1, . . . ,Xd] cuts
out an affine algebraic closed subset

Z = Z(I) :=
{

x ∈ Ad
k

∣∣∣ f (x) = 0 for all f ∈ I
}
.

For instance, the maximal ideal
mx := (X1 − x1, . . . ,Xd − xd)

cuts out the point x = (x1, . . . , xd) ∈ Ad
k, which is thus an affine algebraic closed subset.

Exercise 5.1. Prove the following statements.

(1) The empty set and Ad
k are both algebraic closed subsets.

(2) For any collection of ideals {Ii}i∈J of k[X1, . . . ,Xd], we have

Z

⋃
i∈J

Ii

 =⋂
i∈J

Z(Ii).

(3) For any pair of ideals I, J ⊂ k[X1, . . . ,Xd], we have Z(I) ∪ Z(J) = Z(IJ) = Z(I ∩ J). Here we recall
that the product I1I2 of two ideals I1, I2 in a ring R is the ideal generated by x1x2 for all x1 ∈ I1

and x2 ∈ I1.

1Historically, some unsuccessful attempt of proving Fermat’s last theorem was based on the false belief that Z[ζn] is always a PID.

11



5. IDEALS AND ALGEBRAIC CLOSED SUBSETS 12

Therefore the algebraic closed subsets of Ad
k define the closed subsets of a topology on Ad

k, called
the Zariski topology.

For any algebraic closed subset Z ⊂ Ad
k, the subset

I(Z) :=
{

f ∈ k[X1, . . . ,Xd]
∣∣∣ f (x) = 0 for all x ∈ Z

}
of polynomial functions vanishing along Z form an ideal. We may then consider the quotient

k[Z] := k[X1, . . . ,Xd]/I(Z)

and call it the ring of polynomial functions of Z. This is the analogue of C∞(X) of a smooth manifold X.

Exercise 5.2. Let Z1,Z2 ⊂ Ad
k be two algebraic closed subset. Show that

I(Z1 ∪ Z2) = I(Z1) ∩ I(Z2).

5.2. Radical. Suppose that Z ⊂ Ad
k is the algebraic subset defined by the ideal I. Note that I ⊂ I(Z).

More generally, I(Z) contains any polynomial function f such that f n
∈ I for some power n ∈ Z>0. This

motivates the following definition:

Definition 5.3. Let R be a ring. For any ideal I ⊂ R, the radical of I is defined as
√

I :=
{

f ∈ R
∣∣∣ f n
∈ I for some n ∈ Z>0

}
.

An ideal I is called radical if I =
√

I.

For instance, any prime ideal (in particular, maximal ideal) of R is radical.

Proposition 5.4. The radical
√

I of I is an ideal. More precisely, suppose that I , R. Then
√

I is the intersection
of the prime ideals containing I.

Proof. Let p be a prime ideal containing I. For every f ∈
√

I, we have f n
∈ I ⊂ p for some integer n > 0.

Since p is a prime ideal, we have f ∈ p. Thus
√

I ⊂ p.
Conversely, let f <

√
I. Consider the set

Σ :=
{

J ⊂ R ideal
∣∣∣ I ⊂ J and f n < J for all integers n > 0

}
.

ordered by inclusion. Since Σ , ∅ (because I ∈ Σ), by Zorn’s lemma Σ has a maximal element p. Notice
that p is a prime ideal: indeed, for any x, y < p, as p is maximal in Σ, we have

f m
∈ (x) + p, f n

∈ (y) + p

for some integers m,n > 0. So f m+n
∈ (xy) + p, showing that xy < p. Hence p is a prime ideal such that

f < p. □

Remark 5.5. Quite often, given a collection of ideals satisfying certain properties, the maximal ones are
prime. See [12, Chapter 10.28] for more discussions.

Exercise 5.6. Give an elementary proof of the first statement of Proposition 5.4 without using Zorn’s
lemma.

Exercise 5.7. For any ideal I ⊂ R, show that
√

I = R if and only if I = R.

5.3. Hilbert’s Nullstellensatz: statement. We will see that in fact,
√

I contains already all the polyno-
mials vanishing along Z:

Theorem 5.8 (Hilbert’s Nullstellensatz). We have I(Z(I)) =
√

I.

As a consequence, Z 7→ I(Z) defines a one-to-one correspondence between the algebraic closed
subsets Z ⊂ Ad

k and the radical ideals of k[X1, . . . ,Xd].

Corollary 5.9. Let Z ⊂ Ad
k be an algebraic closed subset. The above correspondence induces a bijection between

the points of Z and the maximal ideals of k[Z]. Precisely, it maps x ∈ Z to the image of mx in k[Z].
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Proof. We prove Corollary 5.9 for the case Z = Ad
k, and leave the general case as an exercise.

Let m ⊂ k[X1, . . . ,Xd] be a maximal ideal. Since m , k[X1, . . . ,Xd], we have Z(m) , ∅ by Hilbert’s
Nullstellensatz and Exercise 5.7. Let x ∈ Z(m). Then

m ⊂ I(Z(m)) ⊂ I({x}) ⊂ mx

Since m is maximal, necessarily m = mx. Thus m 7→ Z(m) = {x} is the inverse of I : x 7→ I({x}) = mx. □

5.4. Irreducible closed subsets and prime ideals.

Definition 5.10. An algebraic closed subset Z is called irreducible if Z is nonempty and

Z = Z1 ∪ Z2 ⇒ (Z = Z1 or Z = Z2)

for any algebraic closed subsets Z1 and Z2.

For instance, Z(X1X2) = Z(X1) ∪ Z(X2) is not irreducible.

Exercise 5.11. Show that the correspondence Z 7→ I(Z) induces a bijection between the irreducible
algebraic closed subsets of Ad

k and the prime ideals of k[X1, . . . ,Xd]. (Your proof should involve
Hilbert’s Nullstellensatz.)

We therefore have a dictionary

Spaces←→ Rings (of functions)

Ad
k ←→ k[X1, . . . ,Xd]

Z←→ k[Z]

as well as bijections

In Ad
k←→ In k[X1, . . . ,Xd]

Algebraic closed subsets←→ Radical ideals

Irreducible closed subsets←→ Prime ideals

(Closed) points←→Maximal ideals

6. Affine schemes: a first definition

6.1. Spectrum. Let R be a ring. The previous dictionary motivates the following definition.

Definition 6.1. As a set, the spectrum of R is defined as

Spec(R) :=
{

prime ideals of R
}
.

The maximal spectrum of R is defined as

Specm(R) := {maximal ideals of R } .

Example 6.2. We still assume that k is algebraically closed. Let Z ⊂ Ad
k be an algebraic closed subset.

By Corollary 5.9 we have
Specm(k[Z]) = Z.

Example 6.3. The ideals of Z are
(0), (1), (2), . . .

and
Spec(Z) =

{
(p)

∣∣∣ p prime number
}
∪ {(0)}.

Exercise 6.4. For R = R[X], show that

Spec(R[X]) = Specm(R[X]) ∪ {(0)},
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and construct a natural bijection

Specm(R[X]) = R ⊔
{z ∈ C\R}

complex conjugate
.

6.2. Zariski closed subsets.

Exercise 6.5. In § 5, show that (2.3) can be rewritten as

Z(I) =
{

x ∈ kd
∣∣∣ I ⊂ mx

}
.

This motivates us to define for any ideal I ⊂ R, the subset

V(I) :=
{
p ∈ Spec(R)

∣∣∣ I ⊂ p
}
⊂ Spec(R).

Such subsets are called Zariski closed subsets. They define a topology on Spec(R) by the following exercise,
called the Zariski topology.

As a first definition, an affine scheme is the data (Spec(R),R) associated to a ring R, where we regard
Spec(R) as a topological space. To simplfy the notation, such data (Spec(R),R) is again denoted by
Spec(R). The ring R could be interpreted as the "ring of (regular) functions" on Spec(R). For any f ∈ R
and p ∈ Spec(R), one could think of the relation f ∈ p as " f vanishes at p" (or equivalently, f vanishes
along V(p)). We will explain how we "evaluate functions" after we introduce localization.

Exercise 6.6. Prove the analogous statements in Exercise 5.1 with k[X1, . . . ,Xd] replaced by R and Ad
k

by Spec(R). Show that
V(I) = V(

√

I)

for any ideal I ⊂ R.

The following statement could be regarded as the "Nullstellensatz for Spec", which always holds
and is much easier then Hilbert’s Nullstellensatz (for the maximal spectrum).

Exercise 6.7. Let I ⊂ R be an ideal and let f ∈ R. Show that f vanishes at every p ∈ V(I) if and only if
f ∈
√

I. Deduce that

V : Spec(R)→
{

Irreducible Zariski closed subsets of Spec(R)
}

(6.1)

is a bijection.

6.3. Generic points, closed points. The following exercise shows that every irreducible Zariski closed
subset of Spec(R) has a unique dense point.

Exercise 6.8. Show that the Zariski closure of p ∈ Spec(R) is V(p), and that p is the only point of V(p)
with this property.

We call p the generic point of V(p).

Exercise 6.9. Show that a point p is closed in Spec(R) if and only if p ∈ Specm(R).
Elements of Specm(R) are therefore called closed points of Spec(R).

Example 6.10. Let k be an algebraically closed field. As sets, we have

Spec(k[X1, . . . ,Xd]) =
{

Irreducible algebraic closed subsets of Ad
k

}
.

Let p ∈ Spec(k[X1, . . . ,Xd]). Through the above description we have

p =
{

Irreducible algebraic closed subsets contained in Z(p)
}

and
p ∩Ad

k = Z(p).

Here is one way to draw Spec(k[X,Y]), taken from Mumford’s red book [9]:
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Figure 1. A picture of Speck[X,Y] from [9]

In the picture, Zariski closed subsets have either dimension 0 (points), 1 (curves), or 2 (the whole
plane). The "fuzzy" points represent the generic points of some irreducible Zariski closed subsets.

6.4. Spec(Z), SpecC[X] and SpecZ[X].
There are two kinds of points in SpecC[X]:

• Maximal ideals (X − a), which correspond to a ∈ C.
• The generic point (0) of SpecC[X], namely the point which is dense in SpecC[X].

Figure 2. A picture of SpecC[X] from [13]

In Spec(Z), there are also two kinds of points:

• Maximal ideals (p), which corresponds to prime numbers p ∈ Z.
• The generic point (0) of Spec(Z).

Therefore we may also visualize Spec(Z) as a line, just like SpecC[X]:
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Figure 3. A picture of Spec(Z) from [9]

Exercise 6.11. Here is a picture of SpecZ[X], again from Mumford’s red book. Explain why we draw
SpecZ[X] this way.

Figure 4. A picture of SpecZ[X] from [9]

6.5. Morphisms. Let 1 = f # : A→ B be a ring homomorphism. Recall that the premimage 1−1(I) of an
ideal I ⊂ B is again an ideal, and we have an induced injective ring homomorphism

A/1−1(I)→ B/I.

If I = p is a prime ideal, then B/p is an integral domain, so A/1−1(p) is an integral domain as well. This
shows that 1−1(p) is a prime ideal of A, and we therefore have a map

f = 1−1 : Spec(B)→ Spec(A).

Exercise 6.12. Show that f is continuous with respect to the Zariski topology.

Therefore, taking the spectrum defines a contravariant functor

Spec : Rings→ Top

from the category of rings to the category of topological spaces.
A morphism of affine schemes is the data ( f , f #) as above. Most of the time it is simply denoted by f ,

but we shall keep in mind that f # determines the continuous map between spectra, and not conversely.
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Example 6.13. In algebraic geometry, we consider maps Ad
k → An

k between affine spaces defined by
polynomials, i.e. of the form

f : Ad
k → An

k

x 7→ (P1(x), . . . ,Pn(x)).
(6.2)

for some P1, . . . ,Pn ∈ k[X1, . . . ,Xd]. It is induced by the homomorphism

f # : k[X1, . . . ,Xn]→ k[X1, . . . ,Xd]

1 7→ 1(P1, . . . ,Pn).
(6.3)

Conversely, every k-algebra morphism from k[X1, . . . ,Xn] to k[X1, . . . ,Xd] is of the form (6.3).

Exercise 6.14. Let R be a ring and let I ⊂ R be an ideal. Show that

Spec(R/I)→ Spec(R)

induced by the quotient map R→ R/I is homeomorphic onto V(I).

Exercise 6.15. "Draw" the morphism

SpecR[Y]/(Y2 + 1)→ Spec(R)

for R = C[X], and for R = Z.

6.6. Reduced subscheme. The radical
√

0 of the zero ideal 0 of a ring R is called the nilradical of R,
and is denoted by Nil(R). Elements of Nil(R) are called nilpotent elements. A ring R is called reduced if
Nil(R) = 0. Since Nil(R) is radical, the quotient

Rred := R/Nil(R)

is a reduced ring.

Exercise 6.16. Show that the morphism Spec(Rred) → Spec(R) induced by the quotient R → Rred is a
homeomorphism. We call Spec(Rred) the reduced subscheme of Spec(R).

Remark 6.17. Although Spec(Rred) and Spec(R) are topologically indistinguishable, the scheme structure
on Spec(R) is richer than that on Spec(Rred) (informally, because there are more functions over Spec(R)
than over Spec(Rred)). For instance, let k be a field. Then both Spec(k) and Spec k[ε]/(ε2) are topologically
a point. Now assume that k is algebraically closed, and let Z ⊂ Ad

k be an algebraic closed subset together
with a closed point x ∈ Z. Then the evaluation map evx : k[Z]→ k at x is only k-morphism such that
the image of the induced morphism

Spec(k)→ Spec k[Z]

is x. On the other hand, there are in general many k-morphisms k[Z] → k[ε]/(ε2) having the same
property. Later in this course or in the course of algebraic geometry, you will see that such morphisms

Spec k[ε]/(ε2)→ Spec k[Z]

correspond to tangent vectors of Z at x (therefore contains more information then just x ↪→ Z).

Remark 6.18. The functor R 7→ Rred from the category of rings to the category of reduced rings is
surjective on objects. It follows from the universal property of quotient rings that this functor is left
adjoint to the inclusion functor.

6.7. Affine varieties. Let k be a field. An affine k-variety is the spectrum Spec(R) of a finitely generated
k-algebra R such that R is reduced.

Exercise 6.19. Suppose that k is algebraically closed. Show that

{Affine k-varieties } ∼−→
{

Affine algebraic closed subsets (in some An
k)

}
Spec(R) 7→ Specm(R).
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is a bijection

We will see that affine k-varieties satisfy some non-trivial geometric properties that we expect to
hold at an intuitive level (see e.g. Lecture 6, Sections 19 and 20).

6.8. Absolute versus relative. Any ring is naturally a Z-algebra. Precisely, the forgetful functor

Z-Alg→ Ring

from the category of Z-algebras to the category of rings is an equivalence. So the study of rings is
contained in the study of R-algebras with R varying among rings. Statements for R-algebras are therefore
more precise and general than the same statements for rings.

Dually, the the study of schemes is contained in the study of schemes equipped with a morphism
to some fixed schemes S. Such data are called S-schemes. We qualify statements concerning S-schemes
as relative, and statements concerning schemes (or equivalently when S = Spec(Z)) as absolute.
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Tensor products

7. Tensor products

Let’s start with three facets of tensor products before we construct them.

7.1. First facet: extension of scalars. Let V be a vector space of dimension d over a field K. If we choose
a basis e1, . . . , ed of V, then every element of V is a linear combination of the ei’s with coefficients in K,
which gives a K-linear isomorphism

V ≃ ⊕d
i=1K · ei.

Now let L/K be a field extension. The tensor product

VL := V ⊗K L

that we will define can be understood as the extension of scalars. With the above chosen basis e1, . . . , ed,
there exists a canonical isomorphism

VL ≃ ⊕
d
i=1L · ei,

through which VL can be described as an L-vector space having the same basis elements as V, but
replacing the coefficient field with L. If we have a K-linear map ϕ : U→ V between K-vector spaces, it
also extends to an L-linear map

ϕL : UL → VL

defined by the same matrix.

7.2. Universal property of extension of scalars. We also notice that if V is a K-vector space and W is
an L-vector space, then any K-linear map ψ : V →W has a unique L-linear extension ψ̃ : VL →W. This
motivates us to define extension of scalars as follows.

Theorem-Definition 7.1 (Universal property of extension of scalars). Let A be a ring and let B be an
A-algebra. Let M be an A-module. There exists a B-module M ⊗A B, together with an A-linear map

ϕ : M→M ⊗A B,

satisfying the following universal property: for any A-linear map ψ : M→ N to some B-module N, there exists a
unique B-linear map ψ̃ : M ⊗A B→ N such that

M
∀ ψ

//

ϕ ##

N

M ⊗A B

∃! ψ̃

OO

commutes. Moreover, the pair (M ⊗A B, ϕ) is unique up to unique isomorphism. We call M ⊗A B the B-module
obtained from M by extension of scalars.

7.3. Second facet: fiber product of affine schemes. Let R be a ring and let A be an R-algebra. This
gives rise to a structural morphism of affine scheme

Spec(A)→ Spec(R)

making Spec(A) an affine scheme over Spec(R).

19
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Through the functor Spec, showing that fiber products exist in the category of affine schemes over
R is equivalent to showing that fiber coproducts exist in the category of R-algebras. Tensor products of
R-algebras provide the answer.

Theorem-Definition 7.2 (Universal property of tensor products of algebras). Let A be a ring and let B,C
be A-algebras. There exists an A-module B ⊗A C, together with morphisms of A-algebras ϕB : B→ B ⊗A C and
ϕC : C→ B⊗A C, which satisfy the following universal property: for any pair of morphisms of A-algebras ψ1, ψ2

as in the diagram, there exists a unique morphism of A-algebras ψ : B ⊗A C→ Z such that

Z

B
ϕB

//

∀ψ1

22

B ⊗A C

∃!ψ

<<

A

OO

// C

ϕC

OO ∀ψ2

II

commutes. Moreover, the triple (B⊗A C;ϕB, ϕC) is unique up to unique isomorphism. We call B⊗A C the tensor
product of B and C over A.

Therefore if Spec(A) and Spec(B) are affine schemes over R, we can define the product as

Spec(A) ×Spec(R) Spec(B) = Spec(A ⊗R B).

7.4. Third facet: linearization of bilinear maps.

Theorem-Definition 7.3 (Universal property of tensor products of modules). Let M and N be two
R-modules. There exists an R-module M ⊗R N, together with an R-bilinear map

ϕ : M ×N→M ⊗R N,

satisfying the following universal property: for any R-bilinear map ψ : M ×N → L to some R-module L, there
exists a unique R-linear map ψ̃ : M ⊗R N→ L such that

M ×N
∀ψ

//

ϕ %%

L

M ⊗R N

∃!ψ̃

OO

commutes. Moreover, the pair (M ⊗R N, ϕ) is unique up to unique isomorphism. The R-module M ⊗R N is called
the tensor product of M and N over R.

7.5. Construction of tensor products of modules. Now we start the constructions, and consider first
Theorem 7.3. Since we want ϕ : M ×N→M ⊗R N to be R-bilinear, we just define the R-module M ⊗R N
straightforwardly by generators and relations as follows:

• Generators: m ⊗ n for all m ∈M and n ∈ N.
• The R-submodule of relations R is generated by

(m +m′) ⊗ n = m ⊗ n +m′ ⊗ n, m ⊗ (n + n′) = m ⊗ n +m ⊗ n′,

(rm) ⊗ n = m ⊗ (rn) = r(m ⊗ n),

for all m,m′ ∈M, n,n′ ∈ N, and r ∈ R.

Namely,

M ⊗R N :=

 ⊕
m∈M,n∈N

R · (m ⊗ n)

 /R.
For every m ∈M and n ∈ N, we still use m ⊗ n to denote its image in M ⊗R N. Elements in M ⊗R N

of the form m ⊗ n are called pure tensors, or simple tensors.
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Exercise 7.4. Prove Theorem 7.3.

Given a finite number of R-modules M1, . . . ,Mn, we define the tensor product

M1 ⊗R · · · ⊗R Mn

in a similar way. It satisfies a similar universal property, replacing bilinear maps with multilinear maps.

Exercise 7.5. Let M,N,L be R-modules. Show that we have canonical isomorphisms

• R ⊗R M ∼
−→M,

• M ⊗R N ∼−→ N ⊗R M,
• (M ⊗R N) ⊗R L ∼−→M ⊗R (N ⊗R L),
• (M ⊕N) ⊗R L ∼−→ (M ⊗R L) ⊕ (N ⊗R L),

defined by r ⊗m 7→ rm, m ⊗ n 7→ n ⊗m, etc.

7.6. Constructions of other tensor products. Now we consider Theorems 7.1 and 7.2. In the setting
of Theorem 7.1, the previous construction defines M ⊗A B as an A-module. We define the B-module
structure on M ⊗A B by

b′ · (m ⊗ b) := m ⊗ (b′b)

for any pure tensor m ⊗ b and any b′ ∈ B, then extend linearly.

Exercise 7.6. Show that the B-module structure on M ⊗A B is well-defined and satisfies the universal
property in Theorem 7.1.

Likewise for Theorem 7.2, we define the ring structure (i.e. the product) on B ⊗A C by

(b ⊗ c) · (b′ ⊗ c′) := (bb′) ⊗ (cc′)

for pure tensors b ⊗ c and b′ ⊗ c′, then extend linearly. Define

s : A→ B ⊗A C

a 7→ a · (1 ⊗ 1).

Exercise 7.7. Show that s defines an A-algebra structure on B ⊗A C. Prove Theorem 7.2.

7.7. Tensor product of morphisms. Let M1,M2,N1,N2 be R-modules. For any R-linear morphisms
f : M1 →M2 and 1 : N1 → N2, we have a well-defined R-linear map

f ⊗ 1 : M1 ⊗R N1 →M2 ⊗R N2

defined by ( f ⊗ 1)(m ⊗ n)→ f (m) ⊗ 1(n) on pure tensors, then extend by linearity. In particular for any
R-module, this defines an endofunctor

• ⊗R N : ModR →ModR

on the category of R-modules, sending an R-module M to M ⊗R N, and f ∈ HomR(M1,M2) to f ⊗ IdN.
Similarly let A be a ring and let B be an A-algebra. Taking tensor product defines a functor

• ⊗A B : ModA →ModB

from the category of A-modules to the category of B-modules.

8. Properties of tensor products

8.1. Restriction and extension of scalars. Let A be a ring and let ϕ : A → B be an A-algebra. Any
B-module M has an induced A-module structure, defined by

a ·m := ϕ(a) ·m

for every a ∈ A and m ∈ M. As a morphism of B-modules is naturally a morphism of A-modules, we
thus have a functor

ModB →ModA
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from the category of B-modules to the category of A-modules, called the restriction of scalars (or the
forgetful functor).

The restriction of scalars and the extension of scalars are related as follows.

Exercise 8.1. Show that the extension of scalars and the restriction of scalars form an adjoint pair:
namely there exist natural (to be defined below) bijections

HomB(M ⊗A B,N) ≃ HomA(M,N)

for any A-module M and B-module N. (Hint: use the universal property.)

In general, given a pair of functors F : C → D and G : D → C , we say (F,G) forms an adjoint pair if
for every object X ∈ C and Y ∈ D , there exist bijections

αX,Y : HomD (F(X),Y) ∼−→ HomC (X,G(Y))

which are natural, in the sense that for any morphism 1 : Y→ Y′ in D , the diagram

HomD (F(X),Y)
αX,Y //

1◦

��

HomC (X,G(Y))

G(1)◦
��

HomD (F(X),Y′)
αX,Y′ // HomC (X,G(Y′))

commutes, and same for the similar diagram defined for any morphism f : X→ X′ in C . We also say
that F is left-adjoint to G, and G is right-adjoint to F.

8.2. Aside 1: Un éventail infini de variétés. Consider an algebraic closed subset Z of An
C defined by

an ideal I ⊂ Z[X1, . . . ,Xn] of polynomials with integer coefficients. For each prime number p, we may
consider the same collection of defining polynomials, and consider their coefficients modulo p. This
defines another algebraic closed subset Zp of in the affine space An over Fp.

The theory of schemes provides a way to fit them together. Let’s consider instead the affine scheme

X = SpecZ[X1, . . . ,Xn]/I.

Since any ring R is naturally a Z-algebra, we have cartesian squares

XR //

��
□

X

��
Spec(R) // Spec(Z)

When R = C, this turns X into a complex subscheme of An
C. When R = Fp, we obtain the reduction

modulo p of X.
In general, if f : Spec(B)→ Spec(A) is a morphism of affine schemes and I ⊂ A is an ideal, then the

fiber of f over the closed subscheme Spec(A/I) ⊂ Spec(A) is

Spec(B ⊗A (A/I)) = Spec(B/IB) ⊂ Spec(B).

8.3. Aside 2: restricted and induced representations. Let G be a group acting on a vector space V over
a field k. This defines a structure of left k[G]-module on V, and we have an equivalence of categories

G-Rep/k ≃Modk[G]

between the category of G-representations over k and the category of right k[G]-modules.
Extension and restriction of scalars can be defined for right modules over noncommutative rings. If

we take a subgroup H ≤ G, then the restriction of scalars to k[H] and the extension of scalars ⊗k[H]k[G]
on the right hand side correspond on the left hand side to taking the restricted and the induced
representations.
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8.4. ⊗ and Hom. Tensor product of modules is related to the Hom-functor also by means of adjoint
pair.

Let N be an R-module. For any R-module L, let HomR(N,L) be the space of R-linear maps from N
to L. We regard HomR(N,L) as an R-module defined by (rϕ)(x) := rϕ(x) for any r ∈ R, ϕ ∈ HomR(N,L),
and x ∈ N. We then have a covariant functor

HomR(N, •) : ModR →ModR

sending L to HomR(N,L), and a morphism ϕ : L→ L′ to

ϕ◦ : HomR(N,L)→ HomR(N,L′).

Likewise, we have a contravariant functor HomR(•,N).

Exercise 8.2. Let M be an R-module. Show that • ⊗R M is left adjoint to HomR(M, •): namely there exist
natural bijections

HomR(L ⊗R M,N) ≃ HomR(L,HomR(M,N))

for any R-modules L and N.

Note that HomR(L,HomR(M,N)) can also be identified as the R-modules of R-bilinear maps

L ×M→ N.

In particular when N = R, it follows that the space of R-bilinear form on L×M is isomorphic to (L⊗R M)∨.
Here M∨ := HomR(M,R) (called the dual of M) for any R-module M.

Exercise 8.3. Do we have natural bijections HomR(L,M ⊗R N) ≃ HomR(HomR(L,M),N)) for any R-
modules L,M,N?

8.5. Tensor product is right-exact. Let R be a ring and let M be an R-module. What is M ⊗R (R/I) for
an ideal I ⊂ R?

Let
· · · →Mi−1

fi−1
−−→Mi

fi
−→Mi+1 → · · ·

be a (finite or infinite) sequence of morphisms of R-modules. We say that the sequence is exact if

Im( fi−1) = ker( fi)

for all index i. For instance, saying that the sequence of R-modules

M′′
f
−→M′

1
−→M→ 0

is exact means that we can identify M as M′ quotient by the relations f (M′′).

Proposition 8.4. Let N be an R-module. For any exact sequence

(8.1) M′′
f
−→M′

1
−→M→ 0

of R-modules the induced sequence

M′′ ⊗R N
f⊗Id
−−−→M′ ⊗R N

1⊗Id
−−−→M ⊗R N→ 0

is also exact.

We may interpret Proposition 8.4 as follows: after tensoring N, the module M′ ⊗R N still generated
M ⊗R N, and the relations are precisely those induced by the relations before tensoring N.

Proof. From the exactness of (8.1), it is clear that 1 ⊗ Id is surjective. Now consider the R-linear map

ϕ : M ⊗R N→
M′ ⊗R N

Im( f ⊗ Id)
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defined by m ⊗ n 7→ m′ ⊗ n on pure tensors, where m′ is any element of 1−1(m). The exactness of (8.1)
again implies that ϕ is well-defined. By construction, ϕ is the inverse of 1 ⊗ Id on pure tensors, so
1 ⊗ Id = ϕ−1 by R-linearlity. Hence Im( f ⊗ Id) = ker(1 ⊗ Id). □

Proposition 8.4 implies the following useful isomorphism.

Exercise 8.5. Let M be an R-module and let I ⊂ R be an ideal. Show that

M ⊗R (R/I) ≃M/IM

as R/I-modules. Similarly, if A is an R-algebra, show that

A ⊗R (R/I) ≃ A/IA

as A-algebras.

Remark 8.6. Left (resp. right) adjoint functors between abelian categories are always right-exact (resp.
left-exact).

9. Tensor algebras

Let R be a ring and let M be an R-module.

9.1. Tensor algebras. For every n ∈ Z≥0, we define inductively

T0(M) := R, Tn(M) := Tn−1(M) ⊗R M

and let

T(M) :=
∞⊕

n=0

Tn(M).

We define product on T(M), first for pure tensors by

(x1 ⊗ · · · ⊗ xi) · (y1 ⊗ · · · ⊗ y j) = (x1 ⊗ · · · ⊗ xi ⊗ y1 ⊗ · · · ⊗ y j),

then extend by linearity. We can therefore consider T(M) as a noncommutative graded R-algebra, and
call it the tensor algebra associated to M.

9.2. Symmetric and exterior algebras.

Theorem-Definition 9.1 (Universal property of symmetric and exterior powers). Let M be an R-module.
Let n be a positive integer. There exists an R-module N together with an R-multilinear symmetric (resp.
alternating) map

ϕ : Mn
→ N

which satisfies the following universal property: for any symmetric (resp. alternating) R-multilinear map
ψ : Mn

→ L to some R-module L, there exists a unique R-linear map ψ̃ : N→ L such that

Mn
∀ψ
//

ϕ   

L

N

∃!ψ̃

OO

commutes. Moreover, the pair (N, ϕ) is unique up to unique isomorphism. The R-module N is called the
symmetric power (resp. the exterior power) of M over R, and is denoted SymnM (resp.

∧n M).

The symmetric algebra associated to an R-module M is defined as

Sym(M) :=
T(M)

<x ⊗ y − y ⊗ x | x, y ∈M>
,

where the denominator is the two-sided ideal generated by all the x ⊗ y − y ⊗ x.
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Exercise 9.2. Show that the grading on T(M) induces a grading ⊕iSymi(M) on Sym(M), and that Sym(M)
is a commutative graded R-algebra. Show that the composition

ϕ : Mn
→ Tn(M)→ Symn(M)

satisfies the universal property in Theorem 9.1.

Exercise 9.3. Show that Sym(M) satisfies the following universal property. For any R-linear map
ψ : M→ L to some R-algebra L, there exists a unique R-linear map ψ̃ : Sym(M)→ L such that

M
∀ψ

//

ϕ ##

L

Sym(M)

∃!ψ̃

OO

commutes.

The image of a pure tensor x1 ⊗ · · · ⊗ xn in Symn(M) is denoted by

x1 · · · xn.

When n! is invertible in R, the quotient q : Tn(M)→ Symn(M) splits: the map defined by

x1 · · · xn 7→
1
n!

∑
σ∈Sn

xσ(1) ⊗ · · · ⊗ xσ(n)

extends to a morphism of R-modules ı : Symn(M)→ Tn(M) such that q ◦ ı is the identity.

Exercise 9.4. Let V be a vector space over a field k of finite dimension n. Show that there is an
isomorphism

Sym(V) ≃ k[X1, . . . ,Xn]

as graded k-algebras.

The exterior algebra associated to an R-module M is defined as∧
M :=

T(M)
<x ⊗ x | x ∈M>

,

where the denominator is the two-sided ideal generated by all the x ⊗ x.

Exercise 9.5. Likewise, show that the grading on T(M) induces a grading ⊕i
∧i M on

∧
M, and that∧

M is a graded-commutative graded R-algebra: namely, for every a ∈
∧i M and b ∈

∧ j M, we have

b ∧ a = (−1)i ja ∧ b,

where ∧ is the product on
∧

M. Show that the composition

ϕ : Mn
→ Tn(M)→

n∧
M

satisfies the universal property in Theorem 9.1.

The image of a pure tensor x1 ⊗ · · · ⊗ xn in
∧n(M) is denoted by

x1 ∧ · · · ∧ xn.

When n! is invertible in R, the map defined by

x1 ∧ · · · ∧ xn 7→
1
n!

∑
σ∈Sn

sgn(σ)xσ(1) ⊗ · · · ⊗ xσ(n)

extends to a morphism of R-modules
∧n M→ Tn(M) and defines a splitting of the quotient q : Tn(M)→∧n M.

Exercise 9.6. Let K be a field and let V be a K-vector space. Construct a natural K-linear identification
between Symn(V∨) (resp.

∧n V∨) and the space of symmetric (resp. alternating) multilinear forms on V.
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Localizations

10. Localizations

Let R be a ring.

10.1. Some guiding principle. A subset S ⊂ R is called multiplicative if

• 1 ∈ S;
• a, b ∈ S implies ab ∈ S.

Given such a subset S ⊂ R, we want to define a ring of fractions S−1R where elements of S are formally
inverted, namely elements of S−1R are of the form r/s with r ∈ R and s ∈ S. When R is an integral
domain and S = R − {0}, we want S−1R = Frac(R).

When R is an integral domain, naturally we want two fractions r/s and r′/s′ to be equal in S−1R if
and only if they satisfy their "cross-multiplications" are equal, namely rs′ − r′s = 0. In general, it may
happen that some s ∈ S is annihilated by some nonzero r ∈ R, and we want

r
1
=

0
s
= 0 =

0
s′
∈ S−1R.

for any other s′ ∈ S (for instance s′ = 1). In general we don’t have r · s′ − 0 · 1 = 0, but rather

r · s′ − 0 · 1 =
0
s
.

Therefore when R is an arbitrary ring (which might contain zero divisors), it is more natural to consider
the condition

r/s = r′/s′ ⇔ rs′ − r′s =
0
t

for some t ∈ S,

namely rs′ − r′s equals to some representative of zero.
Finally, the addition and multiplication of fractions should follow the usual rules.

10.2. Localization of rings and modules. As a set, the localization of R by a multiplicative subset S ⊂ R
is

S−1R = (R × S)/ ∼,

where ∼ is the equivalence relation defined as

(r, s) ∼ (r′, s′) ⇔ t(s′r − sr′) = 0 for some t ∈ S.

The image of (r, s) in S−1R is also commonly denoted by r/s. Given r/s, r′/s′ ∈ S−1R, we define

r
s
+

r′

s′
=

rs′ + r′s
ss′

r
s
·

r′

s′
=

rr′

ss′
.

Exercise 10.1. Verify that ∼ is indeed an equivalence relation, and that (S−1R,+, ·) is a ring. Show that
the localization map R→ S−1R sending r to r/1 defines an R-algebra structure on S−1R.

Let M be an R-module and let S ⊂ R be a multiplicative subset. The localization S−1M of M is an
S−1R-module defined similarly, with R replaced by M everywhere in the above definition, except that

r
s
·

m
s′
=

rm
ss′

26
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is for every r/s ∈ S−1R and every m/s′ ∈ S−1M. Likewise, the localization map M→ S−1M sending m to
m/1 is a morphism of R-modules. By construction,

ker(M→ S−1M) = {m ∈M | sm = 0 for some s ∈ S } .

Exercise 10.2. Show that S−1R = 0 if and only if 0 ∈ S.

Exercise 10.3. Show that the an R-module N is in the image of the forgetful functor

ModS−1R →ModR

if and only if the multiplication s : N ⟲ by any s ∈ S is an automorphism.

10.3. The universal property. Let S ⊂ R be a multiplicative subset.

Proposition 10.4 (Universal property of localizations of rings). For every ring homomorphism ψ : R→ A
from R such that ψ(s) is invertible for all s ∈ S, there exists a unique ring homomorphism ψ̃ : S−1R → A such
that

R
∀ψ
//

localization !!

A

S−1R

∃!ψ̃

OO

commutes.

As a consequence, if R → A is an R-algebra, then the universal property provides a natural
S−1R-algebra structure on S−1A.

Proposition 10.5 (Universal property of localizations of modules). Let M be an R-module. For every
S−1R-module N and every morphism of R-modules ψ : M→ N, there exists a unique morphism of S−1R-modules
ψ̃ : S−1M→ N such that

M
∀ψ

//

localization ""

N

S−1M

∃!ψ̃

OO

commutes.

Exercise 10.6. Prove the above universal properties.

For any morphism of R-modules f : M → N, the universal property yields a morphism of S−1R-
modules S−1 f : S−1M→ S−1N such that

S−1M
S−1 f
// S−1N

M

OO

f
// N

OO

commutes; explicitly,
(S−1 f )(m/s) = f (m)/s.

Thus the localization defines a functor

S−1 : ModR →ModS−1R

from the category of R-modules to itself. If f : A→ B is a morphism of R-algebra, then the localization
S−1 f : S−1A→ S−1B is also a morphism of S−1R-algebra.

Exercise 10.7. Let S ⊂ T ⊂ R be multiplicative subsets. Show that the localization

T−1M ∼
−→ T−1(S−1M)

of the localization map M→ S−1M by T is is an isomorphism of T−1R-modules.
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10.4. Localization as extension of scalars.

Exercise 10.8. For any R-module M and any multiplicative subset S ⊂ R, show that

M ⊗R S−1R ∼−→ S−1M

sending m ⊗ (r/s) to rm/s is well defined and is an isomorphism of S−1R-modules. (Hint: compare the
universal properties of both sides and use Exercise 10.3.)

In particular, the localization functor S−1 : ModR →ModS−1R is left adjoint to the forgetful functor.

Exercise 10.9. Show that
S−1M ⊗S−1R S−1N ∼−→ S−1(M ⊗R N)

sending (m/r) ⊗ (n/s) to (m ⊗ n)/rs is an isomorphism of S−1R-modules.

10.5. Exacteness of localizations.

Proposition 10.10. Let

L
f
−→M

1
−→ N

be an exact sequence of R-modules. The induced sequence

S−1L
S−1 f
−−−→ S−1M

S−11
−−−→ S−1N

is exact as well.

Proof. Since S−1 is a functor, we have (S−11)◦(S−1 f ) = 0. Now suppose that (S−11)(n/s) = 1(n)/s = 0, then
1(tn) = t1(n) = 0 for some t ∈ S. So tn = f (m) for some m ∈M. Thus n/s = f (m)/ts = (S−1 f )(m/ts). □

In particular, the localization of a submodule is still a submodule, and localization commutes with
taking quotient.

Exercise 10.11. Let I ⊂ R be an ideal. Show that we have a ring isomorphism

S−1(R/I) ∼−→ (S−1R)/IS−1R

which identifies S−1R→ S−1(R/I) and the quotient map S−1R→ (S−1R)/IS−1R.

Exercise 10.12. Let M be an R-module. The map

S−1 : { submodules of M } →
{

submodules of S−1M
}

is surjective. More precisely, for any submodule N ⊂ S−1M, if ϕ : M → S−1M is the localization map,
then

S−1(ϕ−1(N)) = N.

In particular, {
ideals of S−1R

}
=

{
I · S−1R

∣∣∣ I ideal of R
}
.

Proposition 10.13. The localization map ϕ : R→ S−1R induces a homeomorphism

Spec(S−1R) ∼−→
{
p ∈ Spec(R)

∣∣∣ p ∩ S = ∅
}

where the target is endowed with the topology induced from Spec(R).

Proof. We only show that the map is bijective.
To show that the map is well defined and injective, it suffices by Exercise 10.12 to show that for any

prime ideal p′ of S−1R, we have ϕ−1(p′) ∩ S = ∅. Suppose that s ∈ ϕ−1(p′) ∩ S, then ϕ(s) ∈ p′ is a unit of
S−1R, which is impossible.

Let p be a prime ideal of R such that p ∩ S = ∅. Let a/s, b/t ∈ S−1R such that ab/st ∈ p · S−1R. Then
ab ∈ p · S−1R, so uab ∈ p for some u ∈ S. Since u < p by assumption, necessarily a ∈ p or b ∈ p, thus
a/s ∈ p · S−1R or b/t ∈ p · S−1R. Hence p · S−1R is a prime ideal.
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Finally, we need to show that ϕ−1(p · S−1R) = p. Clearly ϕ−1(p · S−1R) ⊃ p. Conversely, if r ∈ R such
that r/1 ∈ p · S−1R, then ur ∈ p for some u ∈ S. Again since p ∩ S = ∅, we have r ∈ p. □

Exercise 10.14. Finish the proof, by showing that the bijection is a homeomorphism.

10.6. Localization and Hom.

Proposition 10.15. Let M and N be R-modules and let S ⊂ R be a multiplicative subset. Suppose that M is
finitely presented (see § 13.3). Then we have an isomorphism of S−1R-modules

HomS−1R(S−1M,S−1N) ≃ S−1HomR(M,N).

Proof. Let
Rm
→ Rn

→M→ 0

be a finite presentation of M. Tensoring with S := S−1R yields an exact sequence

Sm
→ Sn

→ S ⊗R M→ 0.

Applying Hom to the above exact sequences yields exact sequences

(10.1) 0→ HomR(M,N)→ Nm
→ Nn

and

(10.2) 0→ HomS(S ⊗R M,S ⊗R N)→ (S ⊗R N)m
→ (S ⊗R N)n.

Since localization is exact, applying S−1 to (10.1) gives

(10.3) 0→ S−1HomR(M,N)→ (S ⊗R N)m
→ (S ⊗R N)n.

As the morphisms (S ⊗R N)m
→ (S ⊗R N)n in (10.2) and in (10.3) are the same, we have

HomS−1R(S−1M,S−1N) ≃ S−1HomR(M,N). □

Exercise 10.16. Write down the natural isomorphism HomS−1R(S−1M,S−1N) ∼−→ S−1HomR(M,N).

Remark 10.17. Proposition 10.15 is false if we don’t assume that M is finitely presented, even if we
assume M finitely generated; see [2] for a counterexample.

10.7. First examples: the standard opens D( f ). Let k be an algebraically closed field and let f ∈
k[X1, . . . ,Xd] be an irreducible polynomial. On the Zariski open Ad

k − Z( f ), the functions of the form

h
1

with 1(z) = 0 implies z ∈ Z( f )

is well defined. As a consequence of Nullstellensatz, the condition on 1 is equivalent to 1 = c · f n for
some n ∈ Z≥0 and some unit c ∈ k×. Therefore the ring of such functions is exactly the localization of
k[X1, . . . ,Xd] by the multiplicative subset {

f n
∣∣∣ n ∈ Z≥0

}
.

More generally for any ring R and any f ∈ R, we consider

R f := localization of R by
{

f n
∣∣∣ n ∈ Z≥0

}
.

By Proposition 10.13, the map R→ R f induces a homeomorphism

(10.4) Spec(R f )
∼
−→

{
p ∈ Spec(R)

∣∣∣ f < p
}
= Spec(R) − V( f ).

Through this homeomorphism, we can therefore endow the Zariski open Spec(R) − V( f ) with an affine
scheme structure, so regard R f as the ring of functions on Spec(R) − V( f ). We call D( f ) := Spec(R f ) a
standard Zariski open subset.

Exercise 10.18. Show that the standard open subsets D( f ) form a basis of topology of Spec(R). In other
words, show that any Zariski open U ⊂ Spec(R) is a union of standard open subsets.
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When R = k[X1, . . . ,Xd], then for every f ∈ R, the homeomorphism (10.4) restricts to a bijection

Specm(R f ) ≃ Ad
k − Z( f ).

The same statement holds more generally if Ad
k and R are replaced with an affine algebraic closed subset

Z ⊂ Ad
k and its coordinate ring.

Exercise 10.19.

(1) Show that R f ≃ R[X]/(1 − X f ).
(2) Let f , 1 ∈ R. Show that R f1 = (R f )1 = (R1) f .

For an R-module M, the localization of M by
{

f n
∣∣∣ n ∈ Z≥0

}
is denoted similarly by M f .

10.8. Prime avoidance. We’ve mentioned that the standard open subsets D( f ) form a basis of topology
of Spec(R). We have the following more precise statement.

Proposition 10.20. Let Σ ∈ Spec(R) be a finite subset. Suppose that Σ ∈ Spec(R) − V(I) for some ideal I ⊂ R,
then there exists f ∈ I such that Σ ⊂ D( f ) ( ⊂ Spec(R) − V(I) ).

Proposition 10.20 is equivalent to the following algebraic reformulation, which we prove instead.

Proposition 10.21 (Prime avoidance). Let p1, . . . , pn ⊂ R be prime ideals and let I ⊂ R be an ideal. If
I ⊂

⋃n
i=1 pi, then I ⊂ pi for some i.

Proof. We prove by induction on n the following equivalent statement: if I 1 pi for every i, then there
exists x ∈ I such that x < pi for all i. The case n = 1 is clear. Suppose that the statement is proven for
n − 1. Then there exists r ∈ I such that y < pi for every i = 1, . . . ,n − 1. Assume that y ∈ pn (otherwise
x = y works). We can assume that pi 1 p j whenever i , j, so I 1 pn implies that Ip1 · · · pn−1 1 pn by the
Exercise below. Choose z ∈ Ip1 · · · pn−1 such that z < pn. Then x = y + z works. □

Exercise 10.22. Let p ⊂ R be a prime ideal. Show that for every pair of ideals I, J ⊂ R, if IJ ⊂ p then I ⊂ p
or J ⊂ p.

Remark 10.23. The same conclusion of Proposition 10.20 still holds if we only assume that all but two
ideals among p1, . . . , pn are prime [12, 00DS].

10.9. Germs of smooth functions. Let M be a manifold and let p ∈M be a point. Recall the a germ of
smooth functions (U, f ) at p is a smooth function f : U→ R defined on a neighborhood of U ⊂ M of p.
Two germs (U, f ) and (V, 1) are identified if and only if f = 1 on a smaller neighborhood of p. If we have
a basis of topology C on M, every germs of smooth function is represented by (U, f ) for some U ∈ C .

The germ of smooth functions at p from a ring C∞M,p. Note that (U, f ) ∈ C∞M,p is invertible if and only
if f (p) , 0. It follows that the kernel

m := ker(C∞M,p → R)

of the evaluation map at p is the unique maximal ideal of C∞M,p.
Similarly, given a smooth vector bundle E over M of rank r, the germs of local sections of E at p are

defined in the same way as the germs of smooth functions. They form a free C∞M,p-module Ep of rank r.

10.10. Second examples: rings of germs. Now let R be a ring and let p ∈ Spec(R).
We’ve mentioned in Exercise 10.18 that the standard open subsets form a basis of Zariski topology,

so we copy the above definition, and define a germ of regular functions as a pair (D( f ), 1 ∈ R f ) with
p ∈ D( f ), and identify (D( f1), 11 ∈ R f1 ) with (D( f2), 12 ∈ R f2 ) whenever "11 = 12 on D( f1) ∩ D( f2)", or
precisely 11 = 12 in R f1 f2 .

Exercise 10.24. Show that the germs of regular functions at p form a ring, isomorphic to

Rp := localization of R by R − p.

(Note that R − p is multiplicative because p is a prime ideal.)
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We call Rp the localization of R at the prime ideal p. The reason we call the functor R 7→ S−1R
localization is due to the above examples and the local nature of rings of germs. The following exercise
provides another indication.

Exercise 10.25. Show that
Spec(Rp) =

⋂
U∋p

U,

where Spec(Rp) is viewed as a subset of Spec(R) by Proposition 10.13, and U runs through all Zariski
open of Spec(R) containing p.

Exercise 10.26. Let f ∈ R and p ∈ D( f ). Show that (R f )p = Rp.

When R is an integral domain, its localization at the generic point is R(0) = Frac(R). We call Frac(R)
the function field of Spec(R).

10.11. Local rings. Let R be a ring and let p ∈ Spec(R). The following corollary of Proposition 10.13 is
analogous to the case of rings of germs of smooth functions.

Corollary 10.27. pRp is the unique maximal ideal of Rp.

In general, a ring R with a unique maximal ideal is called a local ring. Equivalently, Spec(R) has a
unique closed point, whence the name "local ring". Sometimes a local ring is denoted more precisely by
(R,m), where m is the unique maximal ideal of R. The field R/m is called the residue field.

Exercise 10.28. Let R be a ring and m ⊂ R an ideal. Prove the equivalence of the following assertions.

(1) (R,m) is a local ring.
(2) The non-unit elements of R form an ideal, equal to m.
(3) R , 0 and for every x ∈ R, either x or 1 + x is a unit.

Let R be any ring and let p ∈ Spec(R). The residue field of the local ring Rp is also called the residue
field of p, sometimes denoted by κ(p).

Exercise 10.29. Using the exactness of localization, show that κ(p) ≃ Frac(Rp).

10.12. Scheme-theoretic fibers. Let f : Spec(B) → Spec(A) be a morphism of affine schemes induced
by the ring homomorphism ϕ : A→ B. Let p ∈ Spec(A). A natural scheme structure on the fiber f−1(p)
is defined as follows.

Consider the cartesian square of affine schemes

(10.5) Spec(B ⊗A κ(p)) //

��
□

Spec(B)

��
Spec(κ(p)) // Spec(A)

where the horizontal arrow at the bottom is induced by the composition A → Ap → Ap/pAp. This is
also a cartesian square of topological spaces by the following lemma.

Lemma 10.30. Let
η : B→ Bp → Bp/pBp ≃ B ⊗A κ(p)

be the composition of the localization and the quotient maps. The map

Spec(B ⊗A κ(p))→ f−1(p)

q 7→ η−1(q).
(10.6)

is an order-preserving bijection.

Proof. The prime ideals of B ⊗A κ(p) are in bijection with the prime ideals q ⊂ B with ϕ−1(q) = p by
Proposition 10.13 (for "⊂") and Exercise 12.1 (for "⊃"), and they are exactly the preimages of p under
f . □
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As topological spaces, Spec(κ(p))→ Spec(A) is the inclusion of p into Spec(A). We therefore regard
Spec(B ⊗A κ(p)) as the scheme-theoretic fiber of p ∈ Spec(A).

10.13. Local properties. Informally, a property (P) is called local if it holds whenever it holds for each
germ. For instance for smooth functions on a manifold, "being identically zero" is a local property.

Here we present some local properties of rings, modules, etc.

Proposition 10.31. Let M be an R-module and let m ∈M. The following assertions are equivalent.

(1) m = 0;
(2) m = 0 in Mp for all p ∈ Spec(R);
(3) m = 0 in Mm for all maximal ideal m ⊂ R.

Proof. It is clear that (1) ⇒ (2) ⇒ (3). Now assume that m , 0 in M. Then 1 < Ann(m), so the ideal
Ann(m) is contained in some maximal ideal m. Since no element of R −m annihilates m, we have m , 0
in Mm. □

Corollary 10.32. Let M be an R-module. The following assertions are equivalent.

(1) M = 0;
(2) Mp = 0 for all p ∈ Spec(R);
(3) Mm = 0 for all maximal ideal m ⊂ R.

Corollary 10.33. Let f : M→ N be a morphism of R-modules. The following assertions are equivalent.

(1) f is injective (resp. surjective);
(2) fp is injective (resp. surjective) for all p ∈ Spec(R);
(3) fm is injective (resp. surjective) for all maximal ideal m ⊂ R.

Here, fp : Mp → Np is the localization of f by R − p.

Proof. Since localization is exact, (1) implies (2). Clearly (2) implies (3). Now assume (3). Again since
localization is exact, we have ker( f )m = ker( fm) = 0 for all maximal ideal m ⊂ R. Hence ker( f ) = 0 by
Corollary 10.32. The proof for the surjectivity is similar. □

10.14. Support. Let f be a smooth function on a manifold M. The support of f is defined as

Supp( f ) =
{

p ∈M
∣∣∣ f (p) , 0

}
=

{
p ∈M

∣∣∣∣ f , 0 ∈ C∞M,p
}
.

For an element m of an R-module M, the support of m is defined similarly:

Supp(m) =
{
p ∈ Spec(R)

∣∣∣ m , 0 ∈Mp

}
.

We also define
Supp(M) :=

{
p ∈ Spec(R)

∣∣∣ Mp , 0
}
,

and call it the support of M.

Proposition 10.34. Let M be an R-module. We have

Supp(m) = V(Ann(m)) ⊂ Spec(R).

Proof. Let p ∈ Spec(R). We have p ∈ Supp(m) if and only if m , 0 in Mp, which is equivalent to
Ann(m) ⊂ p. □

Corollary 10.35. Suppose that M is generated by finitely many elements m1, . . . ,mk over R. We have

Supp(M) =
k⋃

i=1

Supp(mi) = V(Ann(M)) ⊂ Spec(R).

In particular, both Supp(m) and Supp(M) are closed in Spec(R).
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Proof. Let p ∈ Spec(R). Then m1, . . . ,mk also generated Mp over Rp by Corollary 10.33. So p ∈ Supp(M)
if and only if mi , 0 in Mp for some i, namely p ∈ Supp(mi). Hence

Supp(M) =
⋃

i

Supp(mi) =
⋃

i

V(Ann(mi)) = V(Ann(M)).

□

Exercise 10.36. Let 0→M′ →M→M′′ → 0 be an exact sequence of R-modules. Show that

Supp(M) = Supp(M′) ∪ Supp(M′′).

10.15. Localization and integral extensions. Localization commutes with taking integral closure.

Proposition 10.37. Let B be a ring and A ⊂ B a subring. Let S be a multiplicative subset of A. If C is the
integral closure of A in B, then S−1C is the integral closure of S−1A in S−1B.

Proof. Let c/s ∈ S−1C with c ∈ C. Since c is integral over A, we have

cn +

n−1∑
i=0

aici = 0

for some integer n ≥ 1 and ai ∈ A, so

(c/s)n +

n−1∑
i=0

(ai/sn−i)(c/s)i = 0,

which shows that c/s is integral over S−1A.
Conversely, let b/s ∈ S−1B be an element integral over S−1A. Then

(b/s)m +

m−1∑
i=0

(a′i/si)(b/s)i = 0

for some integer m ≥ 1 and some a′i ∈ A. Up to replacing b and s by bσ and sσ with σ := s0 · · · sm−1, we
have

(b/s)m +

m−1∑
i=0

(a′′i /s
m−i)(b/s)i = 0

for some a′′i ∈ A. Multiplying the above equality by sm shows that b is integral over A, namely b ∈ C. □

Corollary 10.38. Let R be an integral domain. The following assertions are equivalent.

(1) R is integrally closed;
(2) Rp is integrally closed for all p ∈ Spec(R);
(3) Rm is is integrally closed for all maximal ideal m ⊂ R.

Proof. Let C be the integral closure of A in Frac(A) and let f : A ↪→ C be the inclusion. For every
p ∈ Spec(R), by Proposition 10.37 the localization fp : Ap ↪→ Cp is the inclusion of Ap into its integral
closure. We conclude by Corollary 10.33. □

11. Nakayama’s lemma

11.1. Germs and fibers. Let M be a smooth manifold and let E be a smooth vector bundle over M of
rank r. Let p ∈M and let mp be the maximal ideal of C∞M,p. Since mp is the kernel of the evaluation map
at p, the residue field C∞M,p/mp is isomorphic to R. We have

E |p := Ep ⊗C∞M,p
(C∞M,p/mp) ≃ Ep/mpEp ≃ Ep ≃ Rr

as R-vector spaces, where Ep is the fiber of the vector bundle E.
Now let M be a module over a ring R. If we consider M as an object over Spec(R), one could regard

it as an analogue of modules of sections of a vector bundle. For every p ∈ Spec(R), elements of the
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localization Mp are called germs of the module M at p. The tensor product

M|p :=Mp ⊗Rp κ(p)

is called the fiber of M at p, or the restriction of M to p. It is a κ(p)-vector space.

Exercise 11.1 (The local nature of fibers above closed points). Let m ⊂ R be a maximal ideal. Show that

R/m ≃ Rm/mRm.

More generally, show that for every R-module M, we have

M|m ≃ (Mm)|mRm .

Elements of M can be regarded as global sections. For any σ ∈M, the value of σ at p is defined as the
image σ|p ∈M|p of σ in the fiber over p ∈ Spec(R). In particular, the value f|p of a regular function f ∈ R
at p is an element of the residue field κ(p). Note that a section σ ∈ M takes values in different vector
spaces M|p, depending on p.

Example 11.2. Let k be an algebraically closed field and let R = k[X,Y]. Consider e.g.

f :=
X − Y

X(Y + X)
∈ k(X,Y).

We can regard f as an element of RX(Y+X), i.e. as a regular function on the standard open D(X(Y + X)).
Take a closed point m ∈ D(X(Y + X)), e.g. the maximal ideal corresponding to the point (2, 3). Then
through the k-linear isomorphism κ(m) ≃ RX(Y+X)/m

∼
−→ k, we have

f |m =
2 − 3

2(3 + 2)
= −

1
10
,

which is exactly the evaluation of f at (2, 3).
Now consider p = (Y), the generic point of the X-axis. Under the natural isomorphism κ(p) ≃ k(X),

we have
f |p =

X
X2 =

1
X
,

namely we evaluate f by setting Y = 0.

Exercise 11.3. What is the value of 7
13 at (5) ∈ Spec(Z)?

11.2. Spreading out generators from fibers to germs, and the Nakayama lemma. Again, consider a
smooth vector bundle E of rank r over a smooth manifold M. Let p ∈M. Then any v ∈ E|p extends to a
germ of smooth sections ṽ ∈ Ep. Moreover, if v1, . . . , vN are generators of E|p over R, then any extensions
ṽ1, . . . , ṽN of them to Ep again generate Ep over C∞M,p.

Here is the analogue statement for finitely generated modules, which we will prove as a corollary
of the Nakayama lemma.

Corollary 11.4. Let (R,m,k) be a local ring and let M be a finitely generated R-module. Let v1, . . . , vd be a basis
of the k-vector space M|m. Then any liftings ṽ1, . . . , ṽd ∈M of v1, . . . , vd generate M.

In this lecture, we call the following result the Nakayama lemma. The statement is the case d = 0 of
Corollary 11.4.

Theorem 11.5. Let (R,m) be a local ring and let M be a finitely generated R-module. If mM = M (i.e.
M|m = 0), then M = 0.

Proof. Applying the Cayley–Hamilton theorem (Theorem 3.3) to the identity on M shows that (1+r)M =
0 for some r ∈ m. Since (R,m) is a local ring, 1 + r is a unit. Hence M = 0. □

Corollary 11.6. Let R be any ring and let M be a finitely generated R-module. Then M|m = 0 for every maximal
ideal m ⊂ R if and only if M = 0.

Proof. This is a direct consequence of Theorem 11.5 and Corollary 10.32. □
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Proof of Corollary 11.4. First of all, since M is finitely over R, so is the quotient M|m =M/mM. Thus
M|m is indeed finite dimension over k. By assumption, we have

M = mM +
d∑

i=1

Rṽi.

Applying Theorem 11.5 to M/
∑d

i=1 Rṽi (which is finite over R because so is M) shows that M =∑d
i=1 Rṽi. □



LECTURE 6

Maximal ideals and Hilbert’s Nullstellensatz

12.

12.1. Maps between maximal spectra? In general, a ring homomorphism f : A→ B does not induce a
map between their maximal spectra; consider e.g. f : Z ↪→ Q.

Exercise 12.1. Let f : A→ B be a surjective ring homomorphism. Let I := ker f . Consider

f−1 : { Ideals of B } →
{

Ideals of A containing I
}

(1) Show that f−1 is a bijection which preserves inclusions. More precisely, show that J 7→ f (J) is
the inverse of f−1.

(2) Show that f−1 sends maximal ideals to maximal ideals.

The following statement singles out another important class of homomorphisms f : A → B
containing Example 6.13, for which this property holds.

Proposition 12.2. Let k be a field and let A and B be finitely generated k-algebras. Any morphism f : A→ B of
k-algebras induces

f−1 : Specm(B)→ Specm(A).

Proof. By Exercise 12.1, up to replacing A by f (A), we can assume that f is injective. Let m ⊂ B be a
maximal ideal. Then f induces an injective homomorphism

A/ f−1(m) ↪→ B/m

of k-algebras.
If we know that B/m is a finite field extension of k, then the k-algebra A/ f−1(m) is a field, and thus

f−1(m) is a maximal ideal of A. This is indeed the case by Zariski’s lemma stated below. □

12.2. Zariski’s lemma.

Proposition 12.3 (Zariski’s lemma). Let L/k be a field extension. Suppose that L is finitely generated as a
k-algebra. Then L/k is a finite extension.

Proof. By assumption, there exist x1, . . . xn ∈ L such that L = k[x1, . . . , xn]. We prove the proposition
by induction on n ≥ 0. The case n = 0 is trivial. Suppose that n = k ∈ Z>0 and that the proposition is
proven for n = k − 1. Then L is a finite extension over k(xn). So there exists 0 , f ∈ k[xn] such that f · xi

is integral over k[xn] for every i = 1, . . . ,n − 1. As k(xn) ⊂ L = k[xn][x1, . . . , xn−1] and integral elements
form a subring, it follows that for every F ∈ k(xn), there exists an integer N ≥ 0 such that f NF ∈ k(xn) is
integral over k[xn].

Suppose that k(xn) is not a finite extension k, then the morphism k(X)→ k(xn) of k-algebras sending
X to xn is an isomorphism (see Exercise). Since k[xn] is integrally closed, we have f NF ∈ k[xn]. But
this is impossible if we take F = 1/P for some P ∈ k[xn] which does not divide f (such an element P
exists since there are infinitely many irreducible monic polynomials in k[X]). Thus k(xn)/k is a finite
extension. As L/k(xn) is also a finite extension by the induction hypothesis, the proposition follows. □

We will also use Zariski’s lemma later to prove Hilbert’s Nullstellensatz. The following corollary
gives a first hint how they are related.

36
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Corollary 12.4. Let m ⊂ k[X1, . . . ,Xn] be a maximal ideal.

(1) The residue field k[X1, . . . ,Xn]/m is a finite extension of k.
(2) As a consequence, if k is algebraically closed then there exsit a1, . . . , an such that

m = (X1 − a1, . . . ,Xn − an).

Proof. The first assertion follows directly from Zariski’s lemma. For the second statement, since k is
algebraically closed, we have an isomorphism

k[X1, . . . ,Xn]/m ≃ k.

For each i = 1, . . . ,n, let ai ∈ k denote the image of Xi. Then

(X1 − a1, . . . ,Xn − an) ⊂ m.

As (X1 − a1, . . . ,Xn − an) is a maximal ideal, the above inclusion is an equality. □

Remark 12.5. Corollary 12.4.(2) should remind us Hadamard’s lemma for smooth functions.

12.3. Nullstellensatz. Let k be a field.
For every subset S ⊂ k[X1, . . . ,Xn], let Z(S) ⊂ An

k
be the algebraic subset in the affine space over the

algebraic closure k cut out by S.

Proposition 12.6 (Weak Nullstellensatz). Let S ⊂ k[X1, . . . ,Xn] be a subset such that Z(S) = ∅. Then the
ideal generated by S is k[X1, . . . ,Xn].

In other words if Z(S) = ∅, then we have the "partition of unity" of the form

1 =
∑

fi1i

with fi ∈ S and 1i ∈ k[X1, . . . ,Xn].

Proof. Assume to the contrary that the ideal I generated by S is not k[X1, . . . ,Xn]. Then I is contained
in a maximal ideal m. By Corollary 12.4, we have a k-linear inclusion

k[X1, . . . ,Xn]/m ⊂ k

of fields. For every i = 1, . . . ,n, if ai ∈ k denote the image of Xi, then f (a1, . . . , an) = 0 for all f ∈ m. Thus
Z(S) , ∅. □

For every algebraic subset Z ⊂ An
k
, let

I(Z) :=
{

f ∈ k[X1, . . . ,Xn]
∣∣∣ f (p) = 0 for all p ∈ Z

}
,

which is an ideal of k[X1, . . . ,Xn].

Theorem 12.7 (Nullstellensatz). For every ideal I ⊂ k[X1, . . . ,Xn], we have

I(Z(I)) =
√

I.

Proof. (Rabinowitch’s trick, conceptualized by localization.)
It is clear that

√
I ⊂ I(Z(I)).

Let f ∈ I(Z(I)). Since f ∈
√

I if and only if f is nilpotent in R := k[X1, . . . ,Xn]/I, it suffices to show
that R f = 0. We have

R f ≃
R[X]

(1 − X f )
=

k[X1, . . . ,Xn,X]
I + (1 − X f )

by Exercise 10.19. Regarding I as an ideal in k[X1, . . . ,Xn,X], we have

Z(I + (1 − X f )) = Z(I) ∩ Z(1 − X f ) = ∅ ⊂ An+1
k
,

so I + (1 − X f ) = k[X1, . . . ,Xn,X] by weak Nullstellensatz. Hence R f = 0. □
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12.4. Density of closed points. Here is a consequence of Hilbert’s Nullstellensatz.

Corollary 12.8. Let k be a field and let A be a finitely generated k-algebra. The closed points of Spec(A) form a
dense subset.

Proof. If I ⊂ A is an ideal such that Z(I) contains all the maximal ideals of A, then I is contained in the
Jacobson radical of A, defined as

rad(A) :=
⋂

m∈Specm(A)

m.

So it suffices to show that
rad(A) = Nil(A).

We have the following more general statement.

Lemma 12.9. For every ideal I ⊂ A, we have
√

I =
⋂

I⊂m∈Specm(A)

m

Proof. It is clear that
√

I ⊂
⋂

I⊂m∈Specm(A)m.
Choose a surjective ring homomorphism

f : R := k[X1, . . . ,Xd]→ A.

By Exercise 12.1, up to replacing I by f−1(I), it suffices to prove the statement for A = R and I ⊂ R.
Let f ∈ R such that f ∈ m for all maximal ideal m ⊂ R containing I. Let p ∈ Z(I) ⊂ An

k
and let

m ⊂ R := k[X1, . . . ,Xd]

be the corresponding maximal ideal. Then I ⊂ m, where we identify I as a subset of R through R ⊂ R.
Let m := R ∩m. We have m ⊊ R (because 1 < m). Though we don’t need this, actually m is a maximal
ideal of R: the natural map

R/m ↪→ R/m ≃ k

is an injective homomorphism of k-algebras, so R/m is a field. As I ⊂ R ∩m = m, we have f ∈ m ⊂ m,
and thus f (p) = 0. Hence ⋂

I⊂m∈Specm(A)

m ⊂ I(Z(I)),

and we conclude by the Nullstellensatz I(Z(I)) =
√

I. □

□



LECTURE 7

Generators and relations

13. Finite generation and finite presentation

Let R be a ring and let M be an R-module.

13.1. Free modules. An R-module M is called free if it is isomorphic to
⊕

i∈I R for some set I. For
instance, when k is a field, every k-module is free (by the axiom of choice). When I is finite, we call #I
the rank of M. It is well-defined by the following proposition.

Proposition 13.1. Let m,n ∈ Z≥0. If there exists an injective morphism f : Rm
→ Rn of R-modules, then m ≤ n.

In particular, Rm
≃ Rn if and only if m = n.

Proof. Suppose that m > n. Consider the composition

ϕ : Rm f
−→ Rn ↪→ Rm

of f with the inclusion identifying Rn with Rn
× 0 ⊂ Rm. By Cayley-Hamilton, we have

ϕk + rk−1ϕ
k−1 + · · · + r0 = 0

for some k ∈ Z>0 and r0, . . . , rk−1 ∈ R; we can assume that k is minimal. The last component of the
image of (0, . . . , 0, 1) ∈ Rm in Rm under ϕk + rk−1ϕk−1 + · · · + r0 is r0, so r0 = 0. As ϕ is injective, we have
ϕk−1 + rk−1ϕk−2 + · · · + r1 = 0, which contradicts the minimality of k. □

Remark 13.2. Infinite products
∏

i∈I R of a ring are not free in general. For instance, ZZ is not free (first
proven by Baer); see [1] for an interesting proof and related discussion. The group ZZ is also called the
Baer–Specker group (Specker shows that any countable subgroup of ZZ is free).

13.2. Generators. Given a subset { ei | i ∈ I } of elements of M. We call { ei | i ∈ I } a set of generators of M
if every m ∈M is an R-linear combination of { ei | i ∈ I }; in other words the morphism

p :
⊕

i∈I

R→M

of R-modules sending (ri)i∈I to
∑

i∈I riei is surjective.
We’ve already mentioned that if M has a finite set of generators, then we call M an R-module of finite

type (or a finitely generated R-module, or simply a finite R-module). Every finite R-module is a quotient
of a free module of finite rank, and vice versa.

Exercise 13.3. Show that every finitely generated free R-module has finite rank.

Lemma 13.4. Let
0→ K→M→ N→ 0

be an exact sequence of R-modules.

(1) Suppose that K and N are finitely generated. Then M is also finitely generated.
(2) Suppose that M is finitely generated. Then N is finitely generated.

Proof. Exercise. □

Remark 13.5. In the above lemma, in general M is finitely generated does not imply that K is finitely
generated (see Exercise 13.7). We will see next that if we assume N to be finitely presented, then K is
finitely generated.

39
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13.3. Finite presentation. An R-module M is called finitely presented if there exists an exact sequence

Rm
→ Rn

→M→ 0

for some integers m and n. In plain words, a finitely presented module is a module having not only
finitely many generators, but also the module of relations among are generated by finitely many
relations.

Lemma 13.6. Let
0→ K→M→ N→ 0

be an exact sequence of R-modules.

(1) Suppose that K and N are finitely presented. Then M is also finitely presented.
(2) Suppose that M is finitely generated and N is finitely presented. Then K is finitely generated.
(3) Suppose that M is finitely presented and K is finitely generated. Then N is finitely presented.

Proof. Exercise. □

Exercise 13.7. Construct a finitely presented R-module M such that

(1) M admits a submodule which is not finite over R.
(2) M admits a quotient which is not finitely presented.

(Hint: consider e.g. R =M = Z[X1,X2, . . .].)

Exercise 13.8. Let M be a finitely generated (resp. finitely presented) R-module and let R→ A be a ring
homomorphism. Show that the base change M ⊗R A is finitely generated (resp. finitely presented) over
A. In particular, the localization S−1M of M by a multiplicative subset S ⊂ R is finitely generated (resp.
finitely presented) over S−1R.

13.4. Openness of surjectivity and the isomorphism property. Let f : M → N be a morphism of
R-modules and let p ∈ Spec(R).

Proposition 13.9. Suppose that N is finitely generated over R. If fp is surjective, then there exists a standard
open subset D(1) ⊂ Spec(R) containing p such that the localization M1 → N1 is surjective.

Proof. As localization is an exact functor, we have

coker( f )p = coker( fp) = 0.

In particular the support Σ of coker( f ) is strictly contained in Spec(R). Since N is finite over R,
so is coker( f ) by Lemma 13.4, so Spec(R) − Σ is a Zariski open neighborhood of p ∈ Spec(R) by
Exercise 10.35. As the standard open subsets form a basis of Zariski topology, there exists 1 ∈ R such
that p ∈ D(1) ⊂ Spec(R)−Σ. Since coker( fq) = coker( f )q = 0 for every q ∈ D(1), the localization M1 → N1
is surjective by Corollary 10.33. □

Proposition 13.10. Suppose that M is finitely generated and N is finitely presented over R. If fp is an
isomorphism, then there exists a standard open subset D(h) ⊂ Spec(R) containing p such that the localization
Mh → Nh is an isomorphism.

Proof. By Proposition 13.9, there exists a standard open D(1) ⊂ Spec(R) containing p such that f1 :
M1 → N1 is surjective. Let K := ker( f1). Since M1 is finitely generated and N1 is finitely presented, K is
finitely generated. So Supp(K) ⊂ D(1) is a Zariski closed subset. As

Kp = ker( f1)p = ker(( f1)p) = ker( fp) = 0,

we have p < Supp(K), So there exists h ∈ R such that p ∈ D(h) ⊂ D(1) − Supp(K), and therefore

ker( fq) = ker(( f1)q) = ker( f1)q = Kq = 0

for every q ∈ D(h). Thus fq is an isomorphism for every q ∈ D(h). We conclude by Corollary 10.33 that
Mh → Nh is an isomorphism. □
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13.5. Upper semicountinuity of the number of generators.

Corollary 13.11. Let M be a finite R-module. For every k ∈ Z≥0, the set{
p ∈ Spec(R)

∣∣∣ Mp is generated by k elements over Rp
}

is open in Spec(R). Moreover, for every point p in the above set, there exists a standard open subset D(h) ⊂ Spec(R)
containing p such that there exists a surjective morphism of Rh-modules

Rk
h ↠Mh.

Proof. Let p ∈ Spec(R) such that Mp is generated k elements; we can assume that these elements are of
the form m1/1, . . . ,mk/1 with mi ∈M for all i. Consider the morphism of R-modules

f : Rk
→M

(r1, . . . , rk) 7→ r1m1 + · · · rkmk.
(13.1)

Then fp is surjective. Since M is finite over R, we conclude by Proposition 13.9. □

13.6. Openness of being free.

Corollary 13.12. Let M be a finitely presented R-module. The set{
p ∈ Spec(R)

∣∣∣ Mp is free over Rp
}

is open in Spec(R). Moreover, for every point p in the above set, there exists a standard open subset D(h) ⊂ Spec(R)
containing p such that

Mh ≃ Rk
h

as Rh-modules, with k = rankRpMp.

Proof. Let p ∈ Spec(R) such that Mp is free over Rp. Since M is finitely generated over R, so is Mp over
Rp, so there exist m1, . . . ,mk ∈M whose images in Mp form a basis of the free Rp-module Mp. Consider
the morphism of R-modules

f :Rk
→M

(r1, . . . , rk) 7→ r1m1 + · · · rkmk,
(13.2)

Since fp is an isomorphism and M is finitely presented, we conclude by Proposition 13.10. □

13.7. Finite generation/presentation are Zariski local properties. Suppose that ( f1, . . . fk) = R.

Proposition 13.13. Let M be an R-module.

(1) If M fi is finitely generated over R fi for each i, then M is finitely generated over R.
(2) If M fi is finitely presented over R fi for each i, then M is finitely presented over R.

Proof. Let Σi ⊂M fi be a finite subset which generate M fi ; we can assume that Σi is the image of some
finite subset Σ′i ⊂ M under the localization map M → M fi . Let Σ := ∪k

i=1Σ
′

i , and consider the map
1 : RΣ → M sending (rs)s∈Σ to

∑
s∈Σ rs · s. For every prime ideal p ⊂ R, we have fi < p for some i. So

1p : RΣp →Mp is the localization of RΣfi →M fi , which is surjective. Hence 1 is surjective.
We leave (2) as an exercise. □

14. Locally free modules

Let R be a ring.

14.1. Definition.

Definition 14.1. An R-module M is called locally free if for every p ∈ Spec(R), there exists a standard
open D(h) ⊂ Spec(R) containing p such that Mh is a free Rh-module.
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We could regard locally free modules over R as vector bundles on Spec(R). Note that by Proposi-
tion 13.13, every finitely generated locally free module is finitely presented. Assume that M is a finitely
presented R-module. Then by Corollary 13.12 and the exactness of localization, an R-module M is
locally free if and only if Mp is free over Rp for all p ∈ Spec(R).

Exercise 14.2. Let M be a finitely presented R-module. Show that rankRpMp is finite for every p ∈ Spec(R),
and that p 7→ rankRpMp is locally constant. When rankRpMp is constant, we call it the rank of M.

Exercise 14.3. Let M and N be locally free modules over R of rank m and n respectively.

• Show that M ⊗R N is locally free of rank mn
• Show that

M∨ := HomR(M,R)

is also locally free of rank m.

We will see that there exist locally free modules which are not free.

Exercise 14.4. Show that locally free modules are torsion free.

14.2. Picard group of a ring. Locally free modules of rank 1 are called invertible modules because of the
following property.

Exercise 14.5. Let M be a locally free R-module of rank 1. Show that

M ⊗R M∨ ≃ R

as R-modules.

Together with Exercise 14.3, we see that

Pic(R) := { Invertible R-modules } / ≃

endowed with the binary operation ⊗R is a group. We call Pic(R) the Picard group of R.

14.3. First examples: fractional principal ideals. Suppose that R is an integral domain. Then for every
nonzero r ∈ R, the principal ideal (r) is isomorphic to R as an R-module, so (r) is an invertible R-module.
More generally, let K = Frac(R), and define fractional principal ideals as R-submodules of K of the form
(α) := α · R for some α ∈ K. They are also invertible R-modules. We have (a)(b) = (ab) and (a)(a−1) = (1)
for every a, b ∈ K×. So the fractional principal ideals form a group, denoted by Prin(R).

Exercise 14.6. Show that Prin(R) ≃ K×/R×.

Note that since every fractional principal ideal is isomorphic to R, it is zero in Pic(R). Finally, we
note that R f = ∪i∈Z( f i) for every nonzero f ∈ R.

14.4. Invertible modules and fractional ideals. Let M be an invertible R-module. Then there exists
h ∈ R together with an isomorphism ϕ : Mh

∼
−→ Rh of Rh-modules. Suppose that R is an integral domain

and let K := Frac(R). Since M is torsion free, the localization M ↪→ Mh is injective. We consider the
composition of injective morphisms of R-modules

M ↪→Mh
ϕ
−→ Rh ↪→ K,

and let I ⊂ K be the image. Since M is finite over R, necessarily I ⊂ (hk) for some k ∈ Z.
Still assuming that R is an integral domain. In general, a nonzero R-submodule I ⊂ K of a fractional

principal ideal is called a fractional ideal. We just saw that invertible modules are fractional ideals. If a
fractional ideal I is isomorphic (as an R-module) to some invertible module, then we call I an invertible
fractional ideal.

Note that every ideal of R is a fractional ideal. The product IJ of two fractional ideals I, J ⊂ K,
defined as the R-submodule of K generated by all i j ∈ K with i ∈ I and j ∈ J, is still a fractional ideal.
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14.5. Fractional ideals over a local integral domain.

Proposition 14.7. Let (R,m) be a local integral domain and let K := Frac(R). Let I ⊂ K be a fractional ideal.
The following assertions are equivalent.

(1) I is invertible.
(2) I is principal.
(3) I−1I = (1), where I−1 := { x ∈ K | xI ⊂ R }.

Proof. We’ve already seen that (2) implies (1). Assume that I is invertible. Since R is already local, we
have an isomorphism ϕ : R ∼−→ I as R-modules. So I is equal to the fractional ideal (ϕ(1)) ⊂ K. Thus (1)
implies (2).

Suppose that I = (h) is principal. Then h−1
∈ I−1, so 1 ∈ I−1I. Thus (2) implies (3). Finally we assume

(3), and write 1 =
∑n

i=1 aibi with ai ∈ I and bi ∈ I−1. Since 1 < m, we have u := aibi ∈ R −m for some i. As
R is local, u is invertible. Thus for any x ∈ I, we have

x = xu−1biai ∈ (ai),

namely I ⊂ (ai). Hence I = (ai), which proves (2). □

14.6. Characterizations of invertible fractional ideals. Again, let R be an integral domain and let
K := Frac(R). For every fractional ideal I ⊂ K, define

I−1 := { x ∈ K | xI ⊂ R } .

This is a natural generalization of the inverse of a fractional principal ideal, which already appears in
Proposition 14.7.

We only have I−1I ⊂ R, and in general the inclusion is strict. The property I−1I = R actually
characterizes invertible fractional ideals.

Corollary 14.8. Let R be an integral domain and let I be a fractional ideal of R. The following assertions are
equivalent.

(1) I is invertible.
(2) We have I−1I = (1).

Proof. Since both (1) and (2) are local properties, Corollary 14.8 is a consequence of Proposition 14.7. □

Exercise 14.9. Let k be a field. Show that the ideal I of k[t2, t3] generated by t2 and t3 is not invertible.

Invertible fractional ideals form a group, denoted by I (R), which contains Prin(R) as a subgroup.

Exercise 14.10. Show that I (R)/Prin(R) ≃ Pic(R). In other words, we have an exact sequence

0→ R× → K× → I (R)→ Pic(R)→ 0.

Exercise 14.11. Let R be a UFD. Then every invertible fractional ideal of R is principal.

By Exercise 14.11, the Picard group Pic(R) is therefore an obstruction for an integral domain R to be
a UFD. When R is a ring of integer, Pic(R) is always finite, and the cardinal of Pic(R) is called the class
number of R. This is an important invariant of rings of integers, and we refer to lectures of algebraic
number theory for further properties.
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Krull dimension and chain conditions

15. Krull dimension of a ring

15.1. Krull dimension. Let X be a topological space. In these lectures we will only be interested in
the situation where X is an affine scheme endowed with the Zariski topology. The Zariski topology is
quite coarse (if we compare with e.g. the Euclidean topology). It is then reasonable to first consider the
following definition of dimension; later we will see that when X is e.g. an affine algebraic closed subset
over a field, it has good properties and is indeed a suitable definition.

Definition 15.1. The (Krull) dimension of X, denoted dim X, is defined as the supremum of the length d
of the chains of irreducible closed subsets

Z0 ⊊ Z1 ⊊ · · · ⊊ Zd

of X. If X is empty, we set dim X = −∞.

Here, a closed subset Z ⊂ X is called irreducible if

• Z , ∅;
• for any closed subsets Z1,Z2 ⊂ X, we have Z = Z1 ∪ Z2 implies Z = Z1 or Z = Z2.

A closed subset which is not irreducible is called reducible.

Remark 15.2. In algebraic geometry, the emptyset ∅ is not connected by convention. In these lectures
we adopt such a convention.

Exercise 15.3. Show that an irreducible topological space is connected.

Exercise 15.4. Let Y ⊂ X, endowed with the topology induced from X. Show that

{ Irreducible closed subsets of Y } → { Irreducible closed subsets Z ⊂ X with Z ∩ Y , ∅ } .

W 7→ the closure of W in X
(15.1)

is well defined, injective, and preserves inclusions. Deduce that dim Y ≤ dim X.

The following exercise shows that dimension is a local notion.

Exercise 15.5. For every x ∈ X, set

dimx X := min
{

dim U
∣∣∣ U ⊂ X is an open neighborhood of x

}
and call it the dimension of X at x. Show that

dim X = sup
x∈X

dimx X.

Deduce that x 7→ dimx X is upper semi-continuous.

15.2. Codimension. Let X be a topological space.

Definition 15.6. Let Z ⊂ X be an irreducible closed subset. The codimension of Z in X, denoted codimXZ,
is defined as the supremum of the length c of the chains of irreducible closed subsets

Z = Z0 ⊊ Z1 ⊊ · · · ⊊ Zc

of X containing Z.

44
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Remark 15.7. We always have
codimXZ + dim Z ≤ dim X.

In general we do not have equality.

Exercise 15.8. Let U ⊂ X be an open subset. Show that (15.1) is bijective for Y = U. Deduce that

codimUZ ∩U = codimXZ

whenever Z ∩U , ∅. For U nonempty, do we have dim U = dim X?

15.3. More on irreducible closed subsets. Let X be a topological space. An irreducible component of X is
a maximal irreducible closed subset of X.

Proposition 15.9. Any topological space X is the union of its irreducible components. In particular, any
nonempty space X has an irreducible component.

Proof. We can assume that X , ∅. Let x ∈ X and let (Σ,⊂) be the partially ordered set of irreducible
closed subsets of X containing x. By Exercise 15.4, the closure of any point of X is irreducible, so Σ is
nonempty. For any chain Z1 ⊂ Z2 ⊂ · · · of elements of Σ, the union Z := ∪iZi contains x and is still
irreducible. Indeed, suppose that Z = Z′ ∪ Z′′ for some closed subsets Z′,Z′′ ⊂ X. Since each Zi is
irreducible, there exists an infinite subsequence {Zi j } such that Z′ ∩ Zi j = Zi j for all j or Z′′ ∩ Zi j = Zi j for
all j. Thus Z′ = Z or Z′′ = Z. Hence by Zorn’s lemma, Σ contains a maximal element, which is thus an
irreducible component of X containing x. □

15.4. Dimension and codimension of an affine scheme. Let R be a ring. The Krull dimension dim R of R
is defined as the Krull dimension of Spec(R). Since there is a one-to-one order-reversing correspondence
between the irreducible subsets of R and the prime ideals of R, the dimension of R is also equal to the
supremum of the length d of the chains of prime ideals

p0 ⊊ p1 ⊊ · · · ⊊ pd

of R.
The following two lemmas are both consequences of Proposition 10.13.

Lemma 15.10. We have
dim R = sup

p∈Spec(R)
dim Rp.

Proof. Every chain p0 ⊊ p1 ⊊ · · · ⊊ pd =: p of prime ideals of R localizes to p0Rp ⊊ p1Rp ⊊ · · · ⊊ pdRp
by Proposition 10.13. So dim R ≤ sup

p∈Spec(R) dim Rp We use Proposition 10.13 again to show that
dim R ≥ dim Rp for any p ∈ Spec(R). □

Exercise 15.11. Show that dim Rp ≤ dimp Spec(R), and that the inequality is strict in general.

Lemma 15.12. Let p ∈ Spec(R) =: X and let Y = p ⊂ X. We have

codimXY = dim Rp.

Proof. This is because we have a one-to-one order-preserving correspondence between the prime ideals
of Rp and the prime ideals of R containing p, by Proposition 10.13. □

Exercise 15.13. Let k be an algebraically closed field and let R = k[X,Y,Z]/(XZ,YZ). Compute dim R
and dim Rp for all p ∈ Spec(R).

Example 15.14. We have dim k[X1, . . . ,Xd] ≥ d, because

(X1, . . . ,Xd) ⊋ (X1, . . . ,Xd−1) ⊋ · · · ⊋ (X1) ⊋ (0).

Later we will see that it is actually an equality.
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16. Chain conditions

16.1. Chain conditions on partially ordered sets. Let (Σ,≤) be a partially ordered set. We say that Σ
satisfies the ascending chain condition (a.c.c.) if any increasing sequence

s1 ≤ s2 ≤ · · ·

in Σ is stationary after finitely many terms.

Lemma 16.1. The following assertions are equivalent.

(1) Σ satisfies a.c.c.
(2) Any nonempty subset of Σ has a maximal element.

Proof. Assume (2). Then any increasing sequence s1 ≤ s2 ≤ · · · has a maximal sn. Hence the sequence
is stationary after sn. Assume that (2) does not hold. Then there exists S ⊂ Σ without maximal element.
We can therefore construct inductively an infinite strictly increasing sequence in S by the axiom of
choice. □

Likewise, we say that Σ satisfies the descending chain condition (d.c.c.) if any decreasing sequence in
Σ is stationary after finitely many terms.

16.2. Noetherian topological space. Here is an application of Lemma 16.1. A topological space X
is called Noetherian if the set of closed subsets of X ordered by inclusion satisfies d.c.c. This implies
dim X < ∞, but not conversely (e.g. R with the usual topology).

Proposition 16.2. Any closed subset of a Noetherian space X is a finite union of irreducible closed subsets.

Proof. Suppose that the set S of closed subsets Z ⊂ X which does not satisfy the conclusion of the
proposition is nonempty. Then S has a minimal element Z by Lemma 16.1, which is necessarily reducible.
So Z = Z1 ∪Z2, with Z1,Z2 closed subsets in X and Z1,Z2 ⊊ Z. The minimality of Z implies that both Z1

and Z2 are finite unions of irreducible closed subsets, and therefore so is Z, which is a contradiction. □

Exercise 16.3. Show that a Noetherian topological space X has only finitely many irreducible components.
(Hint: show that if X = X1∪· · ·∪Xn where each Xi is an irreducible closed subset, and Xi 1 X j whenever
i , j, then X1, . . . ,Xn are exactly the irreducible components of X.)

16.3. Noetherian rings. A ring R is called Noetherian if the set of ideals of R ordered by inclusion satisfies
a.c.c.

Exercise 16.4. Let R be a Noetherian ring. Show that Spec(R) is Noetherian.

The converse of Exercise 16.4 does not hold in general, for instance for R = k[X1,X2, . . .]/(X2
1,X

2
2, . . .)

(Exercise: (X1,X2, . . .) is the only prime ideal of R). The spectrum SpecR of a ring R is Noetherian if and
only if the set of radical ideals of R satisfies a.c.c.

The same ring R = k[X1,X2, . . .]/(X2
1,X

2
2, . . .) also shows that in general, dim Spec(R) < ∞ does not

imply that R is Noetherian. Actually the converse does not hold neither: see e.g. [12, 02JC] for examples
of Noetherian rings having infinite dimension. We will see, however, that Noetherian local ring is always
finite dimensional in Corollary 21.5.

Exercise 16.5. Let R be a Noetherian ring. Show that any f ∈ R is a product of finitely many irreducible
elements.

Exercise 16.6. Let R be a Noetherian ring. For every ideal I ⊂ R, show that (
√

I)n
⊂ I for some integer

n > 0. (Hint:
√

I is finitely generated.)

Exercise 16.7. Show that any surjective endomorphism f : R→ R of a Noetherian ring is an isomorphism.
(Hint: consider ker( f ) ⊂ ker( f ◦ f ) ⊂ · · · .)
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16.4. Hilbert’s basis theorem.

Theorem 16.8 (Hilbert’s basis theorem). Let R be a ring. If R is Noetherian, then R[X] is also Noetherian.

Proof. Let I0 ⊂ I1 ⊂ · · · be an ascending chain of ideals of R[X]. For every pair of nonnegative integers
n and d, define the ideal

Jn,d :=
{

Leading coefficient of P
∣∣∣ P ∈ In with deg P = d

}
∪ {0} ⊂ R.

We have Jn,d ⊂ Jn′,d′ if n ≤ n′ and d ≤ d′. As R is Noetherian, there exists n0 ∈ Z≥0 such that Jn,d = Jn0,d for
all n ≥ n0 and all d ∈ Z≥0.

Now let n ≥ n0 and let f =
∑d

i=0 aiXi
∈ In with ai ∈ R. Then ad ∈ Jn,d = Jn0,d, so ad is also the leading

coefficient of some 1 ∈ In0 with deg 1 = d. It follows that f − 1 ∈ In with deg( f − 1) ≤ d− 1, and we argue
by induction on d that f ∈ In0 . □

Corollary 16.9. Let R be a Noetherian ring (e.g. a field). Any finitely generated R-algebra is Noetherian.

Remark 16.10. Let R be a Noetherian integral domain. The integral closure of R in Frac(R) is not
necessarily Noetherian (see e.g. [10, Appendix, Example 5]).

16.5. Noetherian modules. Let R be a ring. More generally, we say that an R-module M is Noetherian if
the set of submodules of M satisfies a.c.c. The following lemma shows that non Noetherian R-modules
M are exactly the R-modules which contain non finitely generated submodules. This characterization
is useful.

Lemma 16.11. Let R be a ring and let M be and R-module. The following assertions are equivalent.

(1) M is Noetherian.
(2) Every submodule of M is finitely generated.

Proof. Suppose that N ⊂M is a submodule which is not finitely generated. Consider

S =
{

finitely generated submodules of N
}
.

Then S has no maximal element (by the axiom of choice). Hence M is not Noetherian.
Now assume (2). Let N1 ⊂ N2 ⊂ · · · be a sequence of submodules of M. Then N := ∪iNi is also a

submodule of M. By assumption, N is generated over R by finitely many elements n1, . . . ,nk, and there
exists some Nm which contains them. Hence N = Nm. □

Corollary 16.12. Every principal ideal domain is a Noetherian ring.

Exercise 16.13. Let k be a field. Then k[X,Y] is Noetherian by Hilbert’s basis theorem. Show that the
subring of k[X,Y] generated by XYi for i ∈ Z≥0 is not Noetherian.

Exercise 16.14. Let 0 → M′ → M → M′′ → 0 be an exact sequence of R-modules. Show that M is
Noetherian if and only if both M′ and M′′ are Noetherian.

Lemma 16.15. Let R be a Noetherian ring and let M be an R-module. The following assertions are equivalent.

(1) M is finitely generated.
(2) M is finitely presented.
(3) M is Noetherian.

Proof. It is clear that (2) implies (1). Both (1)⇒ (3) and (3)⇒ (2) follow from Exercise 16.14. □

Lemma 16.16. Let M be an R-module. If M is Noetherian, then R/Ann(M) is Noetherian.

Proof. Up to replacing R by R/Ann(M), we can assume that Ann(M) = 0. Since M is Noetherian, by
Lemma 16.11 it is generated by finitely many elements m1, . . . ,mk ∈M. Since Ann(M) = 0, the morphism

R→Mk

r 7→ (rm1, . . . , rmk)

of R-modules is injective. Since Mk is Noetherian by Exercise 16.14, so is R by Lemma 16.11. □
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Exercise 16.17. Let R be a Noetherian ring and let S ⊂ R be a multiplicative subset. Show that S−1R is
also Noetherian.

Exercise 16.18. Let M be a Noetherian R-module and let N be a finitely generated R-module. Show that
M ⊗R N is Noetherian.

16.6. Artinian rings and modules. A ring R (resp. an R-module M) is called Artinian if the set of ideals
of R (resp. submodules of M) ordered by inclusion satisfies d.c.c.

Exercise 16.19. Let V be a vector space over a field k. Show that the following assertions are equivalent.

(1) V has finite dimension.
(2) V is Noetherian.
(3) V is Artinian.

Although the Noetherian and the Artinian conditions look alike, Noetherian rings and modules
are much more important (mostly due to Lemma 16.11). As the following theorem indicates, Artinian
rings are very specific.

Theorem 16.20. Let R be a ring. The following assertions are equivalent.

(1) R is an Artinian ring.
(2) R is Noetherian with dim R = 0.
(3) R is Noetherian, and Spec(R) is discrete and finite.

Proof. First we show (3) ⇒ (1). The assertion (3) implies that R has only finitely many prime ideals
p1, . . . , pn, and they are all maximal. By Exercise 16.6, we have Nil(R)n = 0 for some integer n > 0. Since

Nil(R) =
n⋂

i=1

pi ⊃

n∏
i=1

pi,

there exists a finite sequence of maximal ideals m1, . . . ,mk ⊂ R such that m1 · · ·mk = 0. Let J0 := R and
Ji := m1 · · ·mi. Consider the exact sequences of R-modules

0→ Ji+1 → Ji → Ji/Ji+1 → 0.

By induction starting from i = 0, all the terms in the exact sequence are Noetherian by Exercise 16.14.
Since Ji/Ji+1 is a module over the field R/mi+1, by Exercise 16.19 it is also an Artinian (R/mi+1)-module.

Asmi+1 · (Ji/Ji+1) = 0, the quotient Ji/Ji+1 regarded as an R-module is also Artinian. Hence by a backward
induction starting from Jk and the following exercise, R is Artinian.

Exercise 16.21. Let 0 → M′ → M → M′′ → 0 be an exact sequence of R-modules. Show that M is
Artinian if and only if both M′ and M′′ are Artinian.

We show (1)⇒ (2). Suppose that R is Artinian. First we prove that dim R = 0, namely every prime
ideal p ⊂ R is maximal. Let x ∈ R/p be a nonzero element. As A := R/p also satisfies d.c.c., we have
(xn) = (xn+1) for some integer n > 0. So xn = xn+1y for some y ∈ A. Since A is an integral domain, we
have xy = 1. Hence x is invertible, so p is a maximal ideal.

Lemma 16.22. Let R be an Artinian ring. There exists n ∈ Z>0 such that Nil(R)n = 0.

Proof. Since R is Artinian, there exits n ∈ Z>0 such that Nil(R)n = Nil(R)n+1 =: I. Assume that I , 0.
Consider

S := { Ideals J ⊂ R | JI , 0 } .

Since I ∈ S , ∅, by Lemma 16.1, the set S contains a minimal element J. As JI , 0, there exists x ∈ J such
that xI , 0. So J = (x) by minimality. Since (xI)I = JI2 = JI , 0, again by minimality we have (x) = xI. So
xy = x for some y ∈ I. Since 1− y is unit (because y is contained in every maximal ideal of R), necessarily
x = 0, which is impossible. Hence Nil(R)n = I = 0. □
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Since R is Artinian, we have

Nil(R) =
⋂

p∈Spec(A)

p =

n⋂
i=1

pi ⊃

n∏
i=1

pi

for some prime, and therefore maximal, ideals pi. So there exists a finite sequence of maximal ideals
m1, . . . ,mk ⊂ R such that m1 · · ·mk = 0. Set J0 := R and Ji := m1 · · ·mi, and consider again the exact
sequences of R-modules

0→ Ji+1 → Ji → Ji/Ji+1 → 0.

The same argument as before, exchanging Noetherian with Artinian, shows that R is Noetherian.
Now we show (2)⇒ (3). Since dim R = 0, every point of Spec(R) is a closed point, and each closed

point is a maximal irreducible closed subset of Spec(R). If follows from Exercise 16.3 that Spec(R) is
finite, hence also discrete because every point of Spec(R) is a closed. □

Exercise 16.23. Let p be a prime number. Show that the Z-module Z[ 1
p ]/Z is Artinian but not Noetherian.

16.7. Length, composition series, Jordan–Hölder property. Let R be a ring and let M be an R-module.
The module M is called simple if the only submodules of M are itself and 0.

Exercise 16.24. Show that an R-module M is simple if and only if M ≃ R/m as R-modules for some
maximal ideal m ⊂ R.

A composition series of an R-module M is a finite filtration

M =M0 ⊋M1 ⊋ · · · ⊋Mn = 0

of R-submodules such that each graded piece Mi/Mi+1 is a nonzero simple R-module.

Exercise 16.25. Show that the following assertions are equivalent:

(1) M has a composition series.
(2) M is both Noetherian and Artinian.

Exercise 16.26. Suppose that M has a composition series (Mi) of length n. Prove the following statements.

(1) Any strictly decreasing sequence of submodules can be completed to a composition series.
(2) Any composition series of M has length n.
(3) (Jordan-Hölder property) Moreover, if (M′i ) is another composition series, then up to a permu-

tation of indices, we have Mi/Mi+1 ≃M′i/M
′

i+1 as R-modules for all i.

The length lg(M) of an R-module M is defined as the length of any of its composition series if they
exist, otherwise lg(M) := ∞.

Exercise 16.27. Let
0→M1 →M2 → · · · →Mn → 0

be an exact sequence of R-modules. Show that
∑n

i=1(−1)i lg(Mi) = 0.

For the details, (i.e. the solutions of the exercises), we refer to [4, Chapter 6].

17. Associated points of modules

Let R be a ring and let M be an R-module. Throughout §17, we assume that R is Noetherian.

17.1. Associated points.

Definition 17.1. An associated point of M is the generic point p ⊂ Spec(R) of an irreducible component of
Supp(m) = V(Ann(m)) (by Proposition 10.34) for some m ∈M. They form a subset of Spec(R), denoted
by Ass(M).

Exercise 17.2. Let k be a field. Find the associated points and the embedded points of R =
k[X,Y]/(Y2,XY). Draw a picture.



17. ASSOCIATED POINTS OF MODULES 50

Exercise 17.3. Let R be an integral domain and let I ⊂ R be a nonzero ideal (e.g. I = R). Show that (0)
is the only associated point of I. Let p ⊂ R be a prime ideal. Viewing R/p as an R-module, show that
Ass(R/p) = {p}.

The above exercise implies in particular that every element in a minimal prime ideal p of R is a zero
divisor. This is true in general (without assuming R Noetherian)

Lemma 17.4. Let R be a (not necessarily) ring and let p ⊂ R be a minimal prime ideal. Every z ∈ p is a zero
divisor.

Proof. Since p is a minimal prime, pAp is the unique prime ideal of Ap. So z is nilpotent in Ap. It follows
that znt = 0 for some integer n ≥ 1 and t ∈ A − p. □

Exercise 17.5. Let S ⊂ R be a multiplicative subset. Show that

Ass(S−1M) = Ass(M) ∩ Spec(S−1R).

Lemma 17.6. We have M = 0 if and only if Ass(M) = ∅.

Proof. It is clear that if M = 0, then Ass(M) = ∅. Suppose that there exists a nonzero element m ∈ M.
Then Ann(m) , R, so V(Ann(m)) , ∅. Hence the generic point of an irreducible component of V(Ann(m))
(which exists by Proposition 15.9) is an associated point of M. □

Proposition 17.7. Let p ∈ Spec(R). The following assertions are equivalent.

(1) p ∈ Ass(M).
(2) pRp ∈ Ass(Mp).
(3) There exists m ∈Mp such that

√
Ann(m) = pRp.

Proof. The equivalence (1) ⇔ (2) follows from Exercise 17.5. It is clear that (3) ⇒ (2). Now assume
(2). Then there exists m ∈ Mp such that V(pRp) is an irreducible component of V(Ann(m)). So pRp is
a minimal prime ideal of Rp which contains Ann(m). Since any prime ideal of Rp is contained in pRp,
necessarily

√
Ann(m) = pRp. □

Exercise 17.8. (Compare Exercise 10.36.) Let 0 → M′ → M → M′′ → 0 be an exact sequence of
R-modules. Show that

• Ass(M′) ⊂ Ass(M);
• Ass(M) ⊂ Ass(M′) ∪Ass(M′′).

(Hint: use Proposition 17.7.)

17.2. Embedded points.

Proposition-Definition 17.9. Assume that M is a finite R-module.

(1) We have Ass(M) ⊂ Supp(M).
(2) The generic points of the irreducible components of Supp(M) belong to Ass(M). The other elements of

Ass(M) are called the embedded points of M.

Proof. The first assertion is clear. Suppose that M is generated by m1, . . . ,mk. Then Supp(M) =⋃k
i=1 Supp(mi) by Corollary 10.35. Since the union is finite and each Supp(mi) is closed, an irreducible

component Z of Supp(M) is necessarily an irreducible component of some Supp(mi). □

Example 17.10. If R = k[X,Y]/(Y2,XY), then (X,Y) is an embedded point of Spec(R).

Exercise 17.11. Let R = Z and M = Z ⊕ Z/nZ where n ≥ 1 is an integer. Compute Ass(M) and find all
the embedded points of M.

Remark 17.12. Our definition of associated points also makes sense without assuming R to be Noetherian,
and they are called weakly associated points in [12, Tag 0546]. For a module M over an arbitrary ring R,
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the associated points of M are the points p ∈ Spec(R) such that p = Ann(m) for some m ∈ M. It is clear
that associated points are weakly associated points. Our definition of associated points when the ring
R is Noetherian is justified by the following result.

Lemma 17.13. Let M be a module over a Noetherian ring R. Then weakly associated points of M coincide with
associated points of M.

Proof. Let p ∈ Spec(R) be a weakly associated point of M. As R is Noetherian, we have p = ( f1, . . . , fk).
By Proposition 17.7, there exists m ∈ M and f ∈ R − p such that

√
Ann(m/ f ) = pRp. In particular, for

all index i, we have f ei
i m/ f = 0 in Mp. So up to replacing m by f n1

1 · · · f nk
1 m/ f for some suitable integers

n1, . . . ,nk, and noting that it only increases
√

Ann(m/ f ) but
√

Ann(m/ f ) = pRp is already maximal, we
can assume that fim/ f = 0 for all i but still m/ f , 0. Hence pRp = Ann(m/ f ). It follows that p ⊂ Ann(m).
Since pRp is the maximal ideal of the local ring Rp, necessarily p = Ann(m). □

Exercise 17.14. Let (R,m) be a Noetherian local ring and let M be a finitely generated R-module. Show
that m ∈ Ass(M) if and only if every element of m is a zero divisor of M.

17.3. A filtration on finite modules over a Noetherian ring.

Proposition 17.15. Let R be a Noetherian ring and let M be a finite R-module. There exists a finite filtration

0 =M0 ⊂M1 ⊂ · · · ⊂Mn =M

such that for every index i, we have Mi/Mi−1 ≃ R/pi as R-modules for some prime ideal pi ⊂ R.

Recall that if each pi is maximal, then such a filtration is a composition series of M, which is a rather
special situation.

Proof. Suppose that M , 0. Then there exists p1 ∈ Ass(M) by Lemma 17.6. So there exists m ∈M such
that Ann(m) = p1 by Lemma 17.13. It follows that M1 := R ·m ⊂M is isomorphic to R/p1. Replacing M
by M/M1 and repeating the same procedure give rise to an ascending chain

0 =M0 ⊂M1 ⊂ · · ·

such that each graded piece satisfies Mi/Mi−1 ≃ R/pi for some prime ideal pi ⊂ R. We conclude by the
ascending chain condition of M. □

Exercise 17.16. Let R be a Noetherian ring and let M be a finite R-module. Show that Supp(M) is a finite
set of closed points if and only if M has finite length.

Corollary 17.17. Let R be a Noetherian ring and let M be a finite R-module. Then Ass(M) is finite.

Proof. Since for any prime ideal p ⊂ R, the R-module R/p satisfies Ass(R/p) = {p}, Corollary 17.17
follows from Proposition 17.15 and Exercise 17.8. □
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Dimension and integral morphisms

18. Finite and integral morphisms

A ring homomorphism A → B is called finite if the induced A-module structure on B is finitely
generated. A morphism of affine schemes Spec(B)→ Spec(A) is called finite if it is defined by a finite
ring homomorphism A→ B.

Example 18.1. Let k be a field. If A is a finite k-algebra, then A is Artinian. In particular, the underlying
topological space of Spec(A) is finite and discrete by Theorem 16.20.

Exercise 18.2.

(1) Show that the composition of two finite morphisms is finite.
(2) Let

Spec(B ⊗A C) //

��
□

Spec(B)

��
Spec(C) // Spec(A)

be a cartesian square of affine schemes. Suppose that Spec(B)→ Spec(A) is finite. Show that
the base change Spec(B ⊗A C)→ Spec(C) is also finite.

Proposition 18.3. Every finite morphism π : Spec(B)→ Spec(A) has finite fibers.

Proof. Let p ∈ Spec(A). It suffices to show that Spec(B ⊗A κ(p)) is finite, since it is the scheme-theoretic
fiber of p (see § 10.12). Since A→ B is finite, so is the base change κ(p)→ B ⊗A κ(p), and we’ve seen in
Example 18.1 that Spec(B ⊗A κ(p)) is finite. □

18.1. Noether normalization. Let k be a field and let A be a nonzero finitely generated k-algebra. The
following theorem asserts that there always exists a finite k-morphism from Spec(A) onto an affine
space.

Theorem 18.4 (Noether normalization lemma). There exists an injective finite morphism of k-algebras

k[X1, . . . ,Xn] ↪→ A

for some integer n ≥ 0.

When k is an infinite field, one strategy of proving Theorem 18.4 is the following. By assumption, we
have a surjective morphism k[Y1, . . . ,Ym]↠ A of k-algebra, and therefore an embedding Specm(A) ⊂ Am

k .
If k is an infinite field, then one can find some linear projection Am

k → Am−1
k whose restriction to Specm(A)

is finite. We continue until Specm(A) projects finitely onto some An
k.

Proof of Theorem 18.4. We have
A ≃ k[Y1, . . . ,Ym]/I

as k-algebras, where m ∈ Z≥0 and I ⊂ k[Y1, . . . ,Ym] is an ideal which is not (1). We prove Theorem 18.4
by induction on m.

For m = 0, the structural morphism k → A does the job. Suppose that Theorem 18.4 is proven
for m − 1. If I = (0), then we already have k[Y1, . . . ,Ym] ≃ A, so we assume I , (0). It suffices to find
y1, . . . , ym−1 ∈ k[Y1, . . . ,Ym] such that k[y1, . . . , ym−1]→ A is finite: A is then finite over the k-subalgebra
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A′ ⊂ A generated by y1, . . . , ym−1, and by the induction hypothesis, we have a finite injective morphism
k[X1, . . . ,Xn] ↪→ A′ of k-algebras. Hence the composition k[X1, . . . ,Xn] ↪→ A′ ↪→ A is also finite.

We can assume that I = ( f ) for some f , 0 ∈ k[Y1, . . . ,Ym]. For i = 1, . . . ,m − 1, set yi = Yi − Yem−1
m ∈

k[Y1, . . . ,Ym]. It suffices to show that the image of Ym in A is integral over k[y1, . . . , ym−1], and we
conclude by Corollary 3.8 and Proposition 3.2. This follows from the following exercise.

Exercise 18.5. Show that there exist positive integers e1 ≫ e2 ≫ · · · ≫ em−1 such that

f (y1 + Ye1
m , . . . , ym−1 + Yem−1

m ,Ym) = aYd
m + (lower degree terms in Ym)

for some a , 0 ∈ k. (If k is infinite, the construction is simpler: show that there exist λ1, . . . , λm−1 ∈ k
such that

f (y1 + λ1Ym, . . . , ym−1 + λm−1Ym,Ym) = aYd
m + (lower degree terms in Ym)

for some a , 0 ∈ k.)

□

18.2. Lying-over property. A ring homomorphism ϕ : A→ B is called integral if ϕ(A) ⊂ B is an integral
extension. By Proposition 3.2, any finite ring homomorphism is integral.

Exercise 18.6. Show that the composition of integral morphisms is integral, and that integral morphisms
are preserved under base change. Namely, prove the statements in Exercise 18.2, replacing "finite" by
"integral.

Exercise 18.7. Let k be a field and let k ↪→ A be an integral extension. Show that dim A = 0, namely
every prime ideal of A is maximal. (Hint: integral domain + finite over k⇒ field.)

Proposition 18.8 (Lying-over property). Let ϕ : A→ B be an injective ring homomorphism. If ϕ is integral,
then the induced morphism Spec(B)→ Spec(A) of affine schemes is surjective.

Proof. We have to show that for every p ∈ Spec(A), its scheme-theoretic fiber Spec(B ⊗A κ(p)) is
nonempty; in other words, pBp ⊊ Bp.

Assume to the contrary that pBp = Bp. Then 1 =
∑n

i=1 fibi with fi ∈ p and bi ∈ Bp. Since A ↪→ B is
integral, so is Ap ↪→ Bp by Proposition 10.37. So if M ⊂ Bp is the Ap-subalgebra generated by b1, . . . , bn,
then M is finite as an Ap-module by Corollary 3.6. As 1 =

∑n
i=1 fibi implies (pAp)M =M, we conclude by

Nakayama’s lemma that M = 0, which is impossible. □

Exercise 18.9. Show that an integral morphism Spec(B)→ Spec(A) of affine schemes is closed.

18.3. Dimension and integral extensions.

Corollary 18.10 (Going-up property). Let A→ B be an integral ring homomorphism and let f : Spec(B)→
Spec(A) be the induced morphism of affine schemes. Let p ⊂ p′ ⊂ A be prime ideals of A. If there exists q ∈ f−1(p),
then there exists q′ ∈ f−1(p′) such that q ⊂ q′.

Proof. The homomorphism A→ B induces an injective integral ring homomorphism A/p ↪→ B/q. So
there exists q′ ∈ Spec(B/q) lying over p′/p ∈ Spec(A/p) by Proposition 18.8. A preimage q′ ∈ Spec(B) of
q′ satisfies the conclusion of the corollary. □

Proposition 18.11. Let A → B be an integral ring homomorphism and let f : Spec(B) → Spec(A) be the
induced morphism of affine schemes. Let p ∈ Spec(A) and let q, q′ ∈ f−1(p). Then neither q ⊂ q′ nor q′ ⊂ q. In
other words, all the (scheme-theoretic) fibers of f have dimension 0.

Proof. Since A→ B is integral, so is κ(p)→ B⊗A κ(p) by Exercise 18.6. So by Exercise 18.7, every prime
ideal of Spec(B ⊗A κ(p)) is maximal. Since the bijection Spec(B ⊗A κ(p)) ∼−→ f−1(p) is order-preserving,
the first statement of Proposition 18.11 follows. The last statement follows from Lemma 10.30. □

The following proposition shows that integral extensions preserve dimension.
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Corollary 18.12. Let ϕ : A → B be an integral ring homomorphism. Then dim A ≥ dim B. If moreover ϕ is
injective, then dim A = dim B.

Proof. The first statement follows from Proposition 18.11. The second statement follows from the
lying-over property and the going-up property. □

18.4. Galois actions. Let K be a field and let A ⊂ K be subring. Let L/K be a field extension and let
B ⊂ L be the integral closure of A in L. As the Aut(L/K)-action on L fixes A, the subring B ⊂ L is stable
under Aut(L/K)-action. Also for every prime ideal p ⊂ A, the automorphism group Aut(L/K) acts on
the set of prime ideals of B lying over p.

The following proposition could be regarded as a generalization of the transitivity of the Galois
action on the conjugate elements for normal field extensions.

Proposition 18.13. Let A be an integrally closed domain and let K = Frac(A). Let L/K be a normal extension and
let B be the integral closure of A in L. For every prime ideal p ⊂ A, the Galois group Aut(L/K) acts transitively
on the set of prime ideals of B lying over p.

Proof, assuming that L/K is finite. We only proof Proposition 18.13 in the case where L/K is finite,
and refer to [7, Proof of Theorem 9.3.(iii)] for the general case. Then Aut(L/K) = { σ1, . . . , σd } is finite.
Let q, q′ ⊂ B be two prime ideals lying over p, and suppose that q′ , σ j(q) for all j. Then q′ 1 σ j(q) by
Proposition 18.11. So by prime avoidance, there exists x ∈ q′ such that x < σ j(q) for all j. Since σ j(x) < q

for all j, we also have NmL/K(x) =
(∏n

j=1 σ j(x)
)[L:K(x)]

< q by Exercise 18.14. As NmL/K(x) ∈ B ∩ K and A
is integrally closed, we have NmL/K(x) ∈ A. Since x divides NmL/K(x) in B, we also have NmL/K(x) ∈ q′.
But then NmL/K(x) ∈ q′ ∩ A = p ⊂ q, which is a contradiction. □

Exercise 18.14. Let L/K be a normal field extension. Let α ∈ L. Let Pα ∈ K[X] be the minimal polynomial
of α and let cα ∈ K[X] be the characteristic polynomial of the K-linear map

µα : L→ L

x 7→ αx.

Show that
cα = P[L:K(α)]

α .

Deduce that

NmL/K(α) := detµα =

 ∏
σ∈Aut(L/K)

σ(α)


[L:K(α)]

.

We call NmL/K : L→ K the norm map.

19. Dimension of finitely generated k-algebras

Krull dimension and codimension have better behavior for finitely generated algebras over a field
k. For instance, we will see that the inequality in Remark 15.7 is always an equality.

19.1. Transcendence bases. Let K/k be a field extension. A collection of elements {xi ∈ K}i∈I is called
algebraically independent if the morphism of k-algebras

k[Xi; i ∈ I]→ K

sending Xi to xi is injective. We say that K/k is a purely transcendental extension if

K ≃ k(Xi; i ∈ I)

as k-algebras.

Lemma-Definition 19.1. There exist algebraically independent elements {xi ∈ K}i∈I such that the subfield F they
generate is purely transcendental over k, and K/F is algebraic. We call {xi ∈ K}i∈I a transcendence basis of K/k.
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Proof. Consider
Σ :=

{
S ⊂ K

∣∣∣ S algebraically independent over k
}

ordered by inclusion. We have Σ , ∅ (because ∅ ∈ Σ), and every chain S1 ⊂ S2 ⊂ · · · is contained in ∪iSi,
which is also in Σ. Thus by Zorn’s lemma, Σ has a maximal element B. By construction, K is algebraic
over F = k(B). □

Exercise 19.2. By adapting the above argument, show that any subset G ⊂ K such that k(G) = K contains
a transcendence basis.

Example 19.3. Let A be a finitely generated k-algebra which is an integral domain, and let K = Frac(A).
The Noether normalization lemma asserts that we even have a finite extension k[X1, . . . ,Xn] ↪→ A of
k-algebras. Taking the fractional fields yields a transcendence basis of K/k.

Lemma-Definition 19.4. Either all the transcendence bases of K/k are finite and have the same cardinality, or
all the transcendence bases of K/k are infinite. The transcendental degree of K over k is defined as the cardinal
(resp. ∞) in the first (resp. second) case. It is denoted trdegkK ∈ Z≥0 ∪ {∞}.

Proof. Let B and B′ be two transcendence bases of K/k. Suppose that |B| ≥ |B′|. We can assume that
B′ =

{
β1, . . . , βn

}
is finite. For any α1 ∈ B, since B′ is a transcendence basis, there exists a polynomial

f ∈ k[X,Y1, . . . ,Yn] involving X such that

(19.1) f (α1, β1, . . . , βn) = 0.

The polynomial f also involves one of Yi, which we can assume to be Y1.
We claim that B′′ :=

{
α1, β2, . . . , βn

}
is a transcendence basis of K/k. That f involves Y1, implies that

β1 is algebraic over B′′, so the extensions K/k(B′′, β1)/k(B′′) are algebraic. Assume to the contrary that
B′′ is not algebraically independent over k. Since

{
β2, . . . , βn

}
is algebraically independent, α1 is then

algebraic over k(β2, . . . , βn). But then β1 is algebraic over k(β2, . . . , βn) by (19.1), which contradicts the
assumption that B′ is algebraically independent.

After finitely many substitutions as above, we obtain a subset { α1, . . . , αn } ⊂ B of cardinal n which
is a transcendence basis of K/k, so necessarily B = { α1, . . . , αn }. □

Exercise 19.5. Let K/L/k be field extensions. Show that

trdegkK = trdegkL + trdegLK.

Exercise 19.6. Let f ∈ k[X1, . . . ,Xd] be an irreducible element and let K be the field of fractions of
k[X1, . . . ,Xd]/( f ). Show that

trdegkK = d − 1.

19.2. Dimension and transcendental degree. Let k be a field and let A be a nonzero finitely generated
k-algebra.

Theorem 19.7. Any injective finite morphism of k-algebras

R := k[X1, . . . ,Xn] ↪→ A

satisfies n = dim A.

Proof. Since finite morphisms are integral, we have dim A = dim R by Corollary 18.12. Therefore it
suffices to prove Theorem 19.7 assuming that A is an integral domain; we now prove this by induction
on n ≥ 0.

If n = 0, then A is a finite k-algebra. It follows that A is Artinian, so dim A = 0 by Theorem 16.20.
Now suppose that the statement is proven up to n − 1. We only need to show that dim R = n. We’ve
already seen that dim R ≥ n. Let 0 = p0 ⊊ p1 ⊊ · · · ⊊ pm be a chain of prime ideals of R. Up to replacing
p1 by ( f ) where f ∈ p1 is an irreducible element of R, we can assume that p1 = ( f ). By the Noether
normalization lemma, there exists an injective finite morphism of k-algebras

k[Y1, . . . ,Yl] ↪→ R/( f ),
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which induces a field extension

k(Y1, . . . ,Yl) ↪→ Frac(R/( f )) =: K.

Since the images of X1, . . . ,Xn in K generate K without being algebraically independent, we have
trdegkFrac(R/( f )) ≤ n− 1 by Exercise 19.2. It follows from Exercise 19.5 that l ≤ n− 1, so dim R/( f ) = l ≤
n − 1 by the induction hypothesis. Since (0) ⊂ p2/p1 · · · ⊂ pm/p1 is a sequence of prime ideals of R/( f ),
we have m ≤ n. Hence dim R ≤ n. □

Corollary 19.8. Let A be a finitely generated k-algebra which is an integral domain. Let K := Frac(A). We have

dim A = trdegkK.

Proof. We can assume that A is nonzero. Then this follows from the Noether normalization lemma and
Theorem 19.7. □



LECTURE 10

Codimension

20. Catenary spaces

Let X be a topological space. We call X catenary if for every pair of irreducible closed subsets
Y,Y′ ⊂ X with Y ⊂ Y′, we have codimY′Y < ∞ and that all maximal chains of irreducible closed subsets
between Y and Y′ have the same length.

For an irreducible catenary space, the following exercise implies that the inequality in Remark 15.7
is always an equality.

Exercise 20.1. Show that the following statements are equivalent.

(1) X is catenary.
(2) For every triplet of nested irreducible closed subsets Y1 ⊂ Y2 ⊂ Y3, we have codimY2 Y1 < ∞

and
codimY3 Y1 = codimY3 Y2 + codimY2 Y1.

20.1. Catenary rings. Let R be a ring. We call R catenary if Spec(R) is catenary.

Exercise 20.2. Suppose that for every pair of strictly nested prime ideals p ⊊ p′ of R such that p ⊂ q ⊂ p′

implies q = p or q = p′ for every prime ideal q of R, we have

dim R/p = 1 + dim R/p′.

Show that R is catenary.

Let k be a field. Irreducible affine k-varieties are catenary.

Theorem 20.3. Let k be a field and let A be a finitely generated k-algebra. Suppose that X := Spec(A) is
irreducible. Then A is catenary. In particular, for every p ∈ Spec(A), we have

dim X = dim Y + dim Ap

where Y := {p} ⊂ X.

The proof of Theorem 20.3 that we will present rely on the going-down property of some integral
extension that we shall prove first.

20.2. Going down.

Proposition 20.4 (Going-down property). Let A be an integrally closed domain and let A ⊂ B be an integral
extension with B an integral domain. Let f : Spec(B)→ Spec(A) be the induced morphism of affine schemes Let
p ⊂ p′ ⊂ A be a pair of nested prime ideals of A. If there exists q′ ∈ f−1(p′), then there exists q ∈ f−1(p) such that
q ⊂ q′.

Proof. Let K = Frac(A) and let L/K be a normal closure of Frac(B)/K. Let C ⊂ L be the integral closure
of A in L. By Proposition 18.8, there exist prime ideal q̃′, q̃1 ⊂ C lying over q′ ⊂ B and p ⊂ A, respectively.
By the going-up property, there exists a prime ideal q̃′1 ⊂ C such that q̃1 ⊂ q̃

′

1 and q̃′1 ∩ A = p′. Since
both q̃′, q̃′1 ⊂ C lie over p′ ⊂ A, by Proposition 18.13 there exists σ ∈ Aut(L/K) such that σ(q̃′1) = q̃′. Then
q := B ∩ σ(q̃1) satisfies the conclusion of Proposition 29.15. □
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Corollary 20.5. Let k be a field and let A be a finitely generated reduced k-algebra such that X := Spec(A) is
irreducible. For every minimal nonzero prime ideal p ∈ Spec(A), we have

dim X = dim Y + 1

where Y := {p} ⊂ X.

Proof. First we assume that A = k[X1, . . . ,Xd]. Since p is minimal, we have p = ( f ) for some nonzero
irreducible element f ∈ A. We conclude by Exercise 19.6 and Corollary 19.8 that dim Y = dim X − 1.

Now we prove Corollary 20.5 for the general case. Let d := dim X. Since Y ⊊ X and both Y and X
are irreducible, we have

dim Y ≤ d − 1.

By the Noether normalization lemma, we have a finite injective morphism of k-algebras

ϕ : R := k[X1, . . . ,Xd] ↪→ A.

The induced morphism
R/(p ∩ R) ↪→ A/p

is also injective and finite, so
dim Y = dimπ(Y)

by Corollary 18.12, where π : X→ Spec(R) is the projection induced by ϕ.
Assume that dimπ(Y) ≤ d− 2. Since π is finite, π(Y) is Zariski closed in Spec(R). As Y is irreducible,

so is π(Y). Therefore by the case A = k[X1, . . . ,Xd] above, we have π(Y) ⊊ Z ⊊ Spec(R) for some
irreducible closed subset Z of Spec(R). As π satisfies the going-down property by Proposition 29.15, we
have Y ⊊ Z′ ⊊ X for some irreducible closed subset Z′ of X, which contradicts the assumption that the
prime ideal p is minimal. Hence dimπ(Y) = d − 1. □

Proof of Theorem 20.3. Theorem 20.3 now follows from Corollary 20.5 and Exercise 20.2. □

21. Krull’s principal ideal theorem (Hauptidealsatz)

Throughout this section, let R be a Noetherian ring.

21.1. Statement. Krull’s principal ideal theorem asserts that the Zariski closed subset cut out by a
function, if not empty, has codimension at most 1.

Theorem 21.1 (Krull’s principal ideal theorem). Let f ∈ R.

(1) The irreducible components of V( f ) has codimension 0 or 1.
(2) If f is not a zero divisor, then all the irreducible components of V( f ) have codimension 1.

Proof of (2) assuming (1). Suppose that not all irreducible components of V( f ) have codimension 1.
Then by (1), f is contained in some minimal prime ideal p. By Lemma 17.4, f is a zero divisor. □

We prove Theorem 21.1.(1) in a series of exercises.

Exercise 21.2.

(1) Show that we can assume that R is a local ring, whose maximal ideal p is the minimal prime
ideal of R containing f . Thus we need to show that for any prime ideal q ⊂ R such that f < q,
we have dim Aq = 0.

(2) Consider the symbolic power of q:

q(n) :=
{

r ∈ R
∣∣∣ the localization of r in Rq lies in (qRq)n }

.

Show that there exists an integer n > 0 such that

q(n) + ( f ) = q(n+1) + ( f )

in R, by showing that R/( f ) is Artinian.
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(3) Show that q(n) is q-primary: namely for any x, y ∈ R such that xy ∈ q(n), we have x < q⇒ y ∈ q(n).
Deduce that

q(n) = q(n+1) + ( f )q(n)

and conclude by Nakayama’s lemma that q(n) = q(n+1).
(4) Deduce from qnAq ⊂ q(n)Aq ⊂ q(n+1)Aq that

qnAq = qn+1Aq,

then qnAq = 0, again by Nakayama’s lemma.
(5) Conclude that dim Aq = 0.

21.2. Krull’s height theorem.

Corollary 21.3 (Krull’s height theorem). Let f1, . . . , fk ∈ R. Then every irreducible component of V( f1, . . . , fk)
has codimension at most k.

Remark 21.4. The height of a prime ideal p ⊂ R is defined as the codimension of the irreducible closed
subset of associated to p in Spec(R).

Proof. Let p ⊂ Spec(R) be the prime ideal associated to an irreducible component of V( f1, . . . , fk). Up
to replacing R by Rp, we can assume that R is a local ring, and the maximal ideal p of R is the minimal
prime ideal containing f1, . . . , fk.

We prove Corollary 21.3 in this setting by induction on k ≥ 1. The case k = 1 is Krull’s principal
ideal theorem. Suppose that q ⊊ p is a maximal prime ideal of R which is strictly contained in p. We
will show that q is a minimal prime ideal of R containing some 11, . . . , 1k−1; Corollary 21.3 then follows
from the induction hypothesis.

Since q ⊊ p, by the minimality of p we have ( f1, . . . , fk) 1 q; we can assume that fk < q. By the
maximality of q and p, we have V(q, fk) = {p}. So for every i = 1, . . . , k − 1, we have f ni

i = 1i + ai fk for
some 1i ∈ q and ai ∈ R. Since

V(11, . . . , 1k−1, fk) = V( f n1
1 , . . . , f nk−1

k−1 , fk) = V( f1, . . . , fk) = {p},

the ideal p/(11, . . . , 1k−1) has codimension at most 1 in R/(11, . . . , 1k−1) by the principal ideal theorem.
Since q ⊊ p, necessarily the prime ideal q/(11, . . . , 1k−1) has codimension 0. Hence q is a minimal prime
ideal of R containing 11, . . . , 1k−1. □

21.3. System of parameters of Noetherian local rings.

Corollary 21.5. Any Noetherian local ring has finite dimension.

Proof. Let (R,m) be a Noetherian local ring. We have m = ( f1, . . . , fk), so V( f1, . . . , fk) = {m} since m is a
maximal ideal. We conclude by Krull’s height theorem that dim R ≤ k. □

Exercise 21.6. Let (R,m) be a Noetherian local ring such that dim R = d. Show that there exists f1, . . . , fd
such that

V( f1, . . . , fd) = {m}.

We call f1, . . . , fd a system of parameters of (R,m).

21.4. Invertible ideals define subschemes of codimension 1. Let R be a Noetherian integral domain.

Corollary 21.7. Let I ⊂ R be an ideal. Suppose that I is invertible, then every irreducible component of V(I) has
codimension 1.

Proof. Let p ∈ Spec(R) be a minimal prime ideal containing I. Then pRp be the unique prime ideal of Rp
containing Ip. Since Ip is principal and nonzero by Proposition 14.7, and since Rp is an integral domain,
it follows from Theorem 21.1 that pRp has height 1 in Rp. Thus p has height 1 in R. □

Remark 21.8. The converse of Corollary 21.7 is not true: see Exercise 14.9.
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21.5. Characterization of UFDs. Here is another consequence of the principal ideal theorem.

Theorem 21.9. Let R be an integral domain. The following assertions are equivalent.

(1) R is a UFD.
(2) Every prime ideal of height one is principal.

Proof. We start with the easy direction (1)⇒ (2). Suppose that R is a UFD. Let p ⊂ R be a prime ideal
of height 1. Let f ∈ p. Since f is not a unit and p is prime, that R is a UFD implies taht f has a prime
factor p which belongs to p. Since (p) is a prime ideal and p has height 1, we have (p) = p.

Now assume (2). Since R is Noetherian, it suffices to show that every irreducible element f of R
is prime. Let p ⊂ R be a minimal prime ideal of R containing f . By the principal ideal theorem, p
has height 1, so p = (r) for some r ∈ R\R× by assumption. Thus f = cr for some c ∈ R, and since f is
irreducible, c is a unit. Hence ( f ) = (r) = p. □
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Valuation rings

22. Riemann surfaces and number fields

22.1. Reconstruction of a Riemann surface from its function field. Let X be a connected Riemann
surface. For any nonzero meromorphic function f on X and any point p ∈ X, we have

f (z) =
∑

n≥ordp f

anzn

for some local holomoprhic coordinate z of X around p, and some integer N with aN , 0. The integer
N is called the order of f of p, denoted by ordp f . The function ordp is a discrete valuation of M (X),
defined as follows.

Definition 22.1. Let K be a field. A discrete valuation of K is a surjective map

ν : K× ↠ Z

with ν(0) := ∞, such that for every f , 1 ∈ K, we have

• ν( f + 1) ≥ min
{
ν( f ), ν(1)

}
;

• ν( f1) = ν( f ) + ν(1).

We have the following fundamental result in the theory of Riemann surfaces.

Theorem 22.2 (Dedekind, Weber). Let X be a connected compact Riemann surface. The map

X→ {Discrete valuations on M (X) }

p 7→ ordp

is bijective.

Remark 22.3. The above result also holds for non-compact Riemann surfaces, which was proven by
Hironaka, under the pseudonym "Iss’sa".

Exercise 22.4. Let X be the Riemann sphere. Show that ord∞ f = −deg f for every f ∈M (X) = C(z).

Finally, note that ordp( f ) only depends on the local behavior of f at p. For instance, if f is holomorphic
at p, then ordp( f ) only depends on f ∈ OX,p regarded as a germ of holomorphic function at p.

22.2. p-adic valuation. For every prime number p, the p-adic valuation of a nonzero rational number r is
the integer νp(r) defined by the unique factorization

|r| =
∏

p prime number

pνp(r).

This is also an example of discrete valuation.

22.3. Valuations and absolute values (or places). Let K be a field. An absolute value of K is a function

| • | : K→ R≥0

satisfying the following properties: for every x, y ∈ K, we have

(1) |x| = 0 if and only if x = 0;
(2) |xy| = |x||y| (multiplicativity);
(3) |x + y| ≤ |x| + |y| (triangle inequality).
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We call | • | non-Archimedean if moreover

(3’) |x + y| ≤ max(|x|, |y|) for every x, y ∈ K (ultrametric triangle inequality).

Otherwise, we call | • | Archimedean. Note that (2) implies that |1| = 1 and that (3’) is stronger than (3).
The name Archimedean is justified by the following characterization of Archimedean absolute values.

Proposition 22.5. Let | • | be an absolute value of K. The following assertions are equivalent.

(1) | • | is Archimedean.
(2) The set { |n| | n ∈ Z } is unbounded
(3) | • | satisfies the Archimedean property: for every pair of non zero elements x, y ∈ K, there exists n ∈ Z

such that |nx| > |y|.

Proof. We prove (1)⇒ (2), and leave the other implications as exercises.
Suppose that there exists M > 0 such that |n| ≤ M for all n ∈ Z. Let x, y ∈ K. For every positive

integer n, we have

|x + y|n ≤
n∑

i=0

∣∣∣∣∣∣
(
n
i

)∣∣∣∣∣∣ |x|i|y|n−i
≤ N(n + 1) max(|x|n, |y|n).

Taking n
√ and letting n→∞ yield |x + y| ≤ max(|x|, |y|). □

Corollary 22.6. If K has positive characteristic, then any absolute value on K is non-Archimedean.

Fix a real number e > 1. A discrete valuation ν of a field K gives rise to a non-Archimedean absolute
value

|x|ν := e−ν(x) (x ∈ K).

Note that the topology on K defines by the metric | • |ν does not depend on the choice of e > 0, and
we call it the ν-adic topology on K.

An (topological) equivalence class of absolute values of K is called a place of K. The following
statement is an analogue of Theorem 22.2; we refer to [8, Theorem 7.12] for a proof.

Theorem 22.7 (Ostrowski).

{ Prime numbers } ∪ {∞} → { Places on Q }

p 7→ | • |p
(22.1)

where | • |p = | • |νp and | • |∞ is the restriction of the usual absolute value on R to Q, is bijective. Moreover, | • | is
Archimedean if and only if | • | = | • |∞.

22.4. Discrete valuation rings.

Theorem-Definition 22.8. Let (R,m) be a Noetherian local integral domain and let K := Frac(R). The following
assertions are equivalent.

(1) m is principal.
(2) R is a PID, and every nonzero ideal of R is of the form mk for some integer k ≥ 0.
(3) There exists a discrete valuation ν on K such that

R = { x ∈ K | ν(x) ≥ 0 } .

Note that this implies
m = { x ∈ K | ν(x) ≥ 1 } .

(4) R is integrally closed, with Krull dimension 1.

If (R,m) satisfies the above properties, we call R a discrete valuation ring (or DVR for short). An element x ∈ R
which generates m is called a uniformizing parameter (or uniformizer).

Proof. Assume (1), namely m = (x) for some x ∈ R. By the principal ideal theorem, we have dim R = 1.
Let I ⊂ R be a non zero ideal. Then dim R/I = 0. Since R is Noetherian, R/I is Artinian. It follows from
Lemma 16.22 that mN

⊂ I for large N ∈ Z. Note that (x)k+1 ⊊ (x)k: otherwise xk = rxk+1 for some r ∈ R,
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so rx = 1 because R is an integral domain, which contradicts x ∈ m. So there exists some integer k ≥ 0
such that I ⊂ mk and I 1 mk+1, namely there exists y ∈ I such that y ∈ (xk) but y < (xk+1). Write y = axk

for some a ∈ R. Then a < (x) = m, so a is invertible. It follows that xk
∈ I so mk = (xk) ⊂ I ⊂ mk. Hence (1)

implies (2).

Exercise 22.9. Assume (2) and that m = (x). For every integer k, let (xk) ⊂ K be the principal fractional
ideal associated to xk. Show that

ν : K× → Z

f 7→ max
{

k ∈ Z
∣∣∣ f ∈ (xk)

}
is a discrete valuation and R = { x ∈ K | ν(x) ≥ 0 }.

Assume (3). Let x ∈ K be an integral element over R. Then

xn =

n−1∑
i=0

rixi

for some integer n and some r0, . . . , rn−1 ∈ R. Suppose that x < R. Then ν(x) < 0, so ν(1/x) > 0, which
implies 1/x ∈ R. Thus x =

∑n−1
i=0 rixi−n+1

∈ R, which is a contradiction. So R is integrally closed.
To show that dim R = 1, we need to show that m is the unique nonzero prime ideal of R. As ν is

surjective, there exists x ∈ R such that ν(x) = 1. Note that m = (x): we have (x) ⊂ m by (3), and if y ∈ m,
then y = x(y/x) and y/x ∈ R because ν(y/x) ≥ 0. Let p ⊂ R be a nonzero prime ideal and let f ∈ p be a
nonzero element. Since k := ν( f ) ≥ 1 (because f is not a unit in R), the quotient a := f/xk is a unit in R.
Since f = axk

∈ p and a < p, we have x ∈ p. This proves (4).
Finally we assume (4). By Proposition 14.7, it suffices to show thatm is invertible, namelym−1m = R

Since dim R = 1, we have m , 0, so there exists x ∈ m −m2 by the Nakayama lemma. As (x) is not (0)
nor R, regarded R/(x) as an R-module we have Ass(R/(x)) = {m}. So there exists y ∈ R such that{

z ∈ R
∣∣∣ yz ∈ (x)

}
= m.

It follows that if a := y/x, then a ∈ m−1 and a < R.
Suppose that m−1m ⊊ R. Then m−1m = m. So a · m ⊂ m, which implies by Cayley–Hamilton that

P(α) ·m = 0 for some
P = Xn + rn−1Xn−1 + · · · + r0 ∈ R[X]

So P(α) = 0. Because R is integrally closed, this contradicts with a < R. Hence m is invertible, which
proves (1). □

Exercise 22.10. Let (R,m) be a DVR. Show that every fractional ideal of R is of the form mk for some
integer k. Show that for all integers k, ℓ, we have mk = mℓ ⊂ K if and only if k = ℓ.

22.5. Henselian trait. Let R be a DVR. Let K := Frac(R) and let k be the residue field of R. As a
topological space, S = Spec(R) consists of two points: the generic point η = Spec(K) and the special
point s = Spec(k). The generic point is dense, and the special point is closed. The spectrum of a DVR R is
often pictured as a (one-dimensional smooth) trait centered at s. They are among the simplest schemes
of positive dimension, and are ubiquitous in algebraic geometry.

22.6. Dedekind domain. The following statement is a direct consequence of Theorem 22.8.

Corollary-Definition 22.11. Let R be a Noetherien integral domain. The following assertions are equivalent.

(1) R is integrally closed with dim R = 1.
(2) Rm is a DVR for every maximal ideal m ⊂ R.

If R satisfies the above properties, we call R a Dedekind domain.

Exercise 22.12. Show that the ring of integers of a number field is a Dedekind domain.
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Here is the generalization of Ostrowski’s theorem to algebraic number fields; we refer to [8, Theorem
7.14] for the details.

Theorem 22.13. Let K be a number field and let OK be its ring of integer.

(1) The map{
Real or complex embeddings σ : K ↪→ R or C

}
→

{
Archimedean places on K

}
σ 7→ |x|σ := |σ(x)|

(22.2)

is bijective.
(2) The map

Spec(OK)→
{

Non-Archimedean places on K
}

p 7→ |x|p := # (OK/p)
−νp(x) .

(22.3)

is bijective.
(3) If we call the above absolute values | • |p and | • |σ normalized places, then for every x ∈ K×, we have∏

ν normalized places

|x|ν = 1.

Exercise 22.14. In the above statement, show that OK/p is finite.

23. Unique factorization of ideals in a Dedekind domain

Let R be a ring.

23.1. Chinese Remainder Theorem. Let I, J ⊂ R be ideals of R. We say that I and J are coprime if
I + J = R.

Example 23.1. Let m,n ∈ Z. Then (m) and (n) are coprime if and only if gcd(m,n) = 1.

Example 23.2. In any ring, distinct maximal ideals p, q of R are coprime.

Exercise 23.3. Let I, J ⊂ R be ideals of R. Suppose that I and J are coprime. Show that Im and Jn are also
coprime for all positive integers m and n.

Proposition 23.4 (Chinese Remainder Theorem). Let I1, . . . , In ⊂ R be ideals of R which are pairwise coprime.
Then

I := I1 · · · In =

n⋂
i=1

Ii

and the sequence

0→ I→ R
q
−→

n∏
i=1

R/Ii → 0

defined by the inclusion and the quotients is exact.

Proof. It is clear that ker q =
⋂n

i=1 Ii. We prove Proposition 23.4 by induction on n ≥ 2. For n = 2, since
I1 and I2 are coprime, we have a1 + a2 = 1 for some a1 ∈ I1 and a2 ∈ I2. So for any x1, x2 ∈ R, we have the
equalities in R/I1

x := a1x2 + a2x1 = (a1 + a2)x1 = x1,

and similarly x = x2 in R/I2. Hence R→ (R/I1) × (R/I2) is surjective. It is clear that the kernel is of the
above map is I1 ∩ I2. We always have I1I2 ⊂ I1 ∩ I2. Now if r ∈ I1 ∩ I2, then r = a1r + a2r ∈ I1I2.

We next prove Proposition 23.4 for n > 2 bases on the inductive hypothesis. Since I1 is coprime to Ii

for each index i > 1, we have ai + bi = 1 for some ai ∈ I1 and bi ∈ Ii. So

1 = (a2 + b2) · · · (an + bn) ∈ I1 + (I2 · · · In),
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namely I1 and J :=
∏n

i=2 Ii are coprime. By the induction hypothesis and, we have

R
q
−→

n∏
i=1

R/Ii
∼
−→ (R/I1) × (R/J)

and the composition is the product of the quotient map, which is surjective with kernel equal to
I1 J = I1 · · · In by the case n = 2. □

23.2. Unique factorization.

Lemma 23.5. Let R be a Noetherian integral domain with dim R = 1. Let I ⊂ R be a nonzero ideal. Suppose
that for every maximal ideal m ∈ Specm(R), we have Im = memRm for some integer em ≥ 0. Then em = 0 for all
but finitely many m, and

I = me1
1 · · ·m

ek
k ,

where m1, . . . ,mk are the maximal ideals for which ei := emi > 0.

Proof. Since R is Noetherian, R/I has finitely many associated pointsm1, . . . ,mk. As dim R = 1 and R is
an integral domain, all prime ideals of R are maximal, except for (0). As (0) < Ass(R/I) (because I , (0)),
these prime ideals m1, . . . ,mk are therefore maximal. Thus Supp(R/I) = {m1, . . . ,mk }. It follows that
em > 0 if and only if m is one of mi, hence the number of m for which em > 0 is finite.

Next we show that I ⊂ mem for each m ∈ Specm(R). Let r ∈ I. Since Im = memRm, we have sr ∈ mem

for some s ∈ R−m. Sincem is a maximal ideal, we have Spec(R/mem ) = {m/mem }, so (R/mem ,m/mem ) is a
local ring. It follows that s is invertible in R/mem , hence r ∈ mem , showing that I ⊂ mem .

It follows that
I ⊂

⋂
m∈Specm(R)

mem = me1
1 · · ·m

ek
k ,

where the equality follows from Proposition 23.4 and Exercise 23.3. Since (mei
i )m = Rm whenever m is a

maximal ideal different from mi, we have

(me1
1 · · ·m

ek
k )m = memRm.

Since Im = memRm for all m ∈ Specm(R), it follows from Corollary 10.33 that I = me1
1 · · ·m

ek
k . □

Theorem 23.6. Let R be a Dedekind domain. Every nonzero ideal I ⊂ R is a product

I = me1
1 · · ·m

ek
k

of maximal ideals m1, . . . ,mk of R. Moreover, the maximal ideals m1, . . . ,mk and the exponents e1, . . . , ek are
unique (up to permutations).

Proof. Since Rm is a DVR, Theorem 22.8 implies that Im = memRm for some em ∈ Z≥0. Thus the existence
of factorization follows from Lemma 23.5. As

(me1
1 · · ·m

ek
k )m =

mei
i Rmi if m = mi

Rm if m is different from all mi,

the uniqueness follows from Exercise 22.10. □

Exercise 23.7.

(1) Show that Z[
√
−5] is a Dedekind domain.

(2) In Z[
√
−5], we have 6 = 2 · 3 = (1 +

√
−5)(1 −

√
−5). What is the factorization of the ideal (6)?

23.3. Valuation rings. A totally ordered abelian group is an abelian group Γ endowed with a total order ≥
satisfying the following property: for all γ, γ1, γ2 ∈ Γ,

γ1 ≥ γ2 ⇒ γ + γ1 ≥ γ + γ2.

Definition 23.8. Let K be a field. A valuation of K is a map

ν : K× → Γ



24. WEIL DIVISORS AND CARTIER DIVISORS 66

to some totally ordered abelian group (Γ,≥) with ν(0) := ∞, such that for every f , 1 ∈ K, we have

• ν( f + 1) ≥ min
{
ν( f ), ν(1)

}
;

• ν( f1) = ν( f ) + ν(1).

(Here, we set∞ + x = ∞ and∞ ≥ x for all x ∈ Γ ∪ {∞}.)

Let ν be a valuation on K. The ring

Rν := { x ∈ K | ν(x) ≥ 0 }

is called the valuation ring of ν.

Exercise 23.9. Show that Rν is a local ring, with maximal ideal

mν := { x ∈ K | ν(x) > 0 } .

If a ring R is the valuation ring of some valuation ν, then we call R a valuation ring.

Exercise 23.10. Let R be an integral domain. Show that the following assertions are equivalent:

(1) R is a valuation ring.
(2) For every nonzero x ∈ K = Frac(R), either x ∈ R or x−1

∈ R.

(Hint for (2) ⇒ (1): First show that for every a, b ∈ K×, we have either (a) ⊂ (b) or (b) ⊂ (a). Show that
ν : K× → Prin(R) is a valuation.)

Exercise 23.11. Show that a valuation ring is integrally closed.

23.4. Zariski–Riemann space. You may skip this paragraph if you have not learnt algebraic geometry.
Let X be an irreducible k-variety. Let k(X) be a function field of X. For any valuation ν on k(X), the

set
Z =

{
x ∈ X

∣∣∣ OX,x ⊂ Rν
}

is either empty or an irreducible closed subset. In the latter case, the generic point of Z is called the
center of ν.

Example 23.12. Let X̃ → Speck[X,Y] be the blowup at the origin o and let E ⊂ X̃ be the exceptional
divisor. Then

f 7→ ordE( f )

defines a discrete valuation on k(X,Y), whose center on Speck[X,Y] is o.

Assume that X is proper, then Z is always nonempty by the valuative criterion of properness.
The following theorem, due to Zariski, is a higher dimensional generalization of Dedekind–Weber’s
theorem.

Theorem 23.13 (Zariski). Let X be a proper irreducible k-variety. The map

{ Valuations on k(X), trivial on k } → lim
←−−

X′→X

X′

ν 7→ center of ν on X′,
(23.1)

where X′ → X runs through every proper birational morphism, is bijective.

24. Weil divisors and Cartier divisors

Let R be an integral domain and let X := Spec(R).

24.1. Weil divisors. Let X(1) denote the set of points of X of height 1. Define

Z1(X) :=
⊕
p∈X(1)

Z · [p] ≃
⊕

D⊂Spec(R)
irreducible reduced closed subset

codimD=1

Z ·D

as the free abelian group generated by the prime ideals of R of height 1. Elements of Z1(X) are called
Weil divisors of X.
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24.2. Weil divisors and fractional ideals. Assume that R is regular in codimension 1, namely Rp is a DVR
for every prime ideal p ⊂ R of height 1; this is the case when e.g. R is a Noetherian integrally closed
domain. Then for every fractional ideal I ⊂ K := Frac(R), by Exercise 22.10 the localization Ip ≃ IRp ⊂ K
at p ∈ X(1) is of the form (pRp)ep for some integer ep.

Lemma 24.1. Suppose that R is Noetherian. Then ep = 0 for all but finitely many p ∈ X(1).

Proof. We have ( f ) ⊂ I ⊂ (1/1) ⊂ K for some nonzero f , 1 ∈ R. By Krull’s principal ideal theorem, all
the irreducible components of V( f ) and V(1) have codimension 1. Since R is Noetherian, there exist
only finitely many p ∈ X(1) such that f ∈ p or 1 ∈ p. Let p ∈ X(1) such that f , 1 < p. As localization is
exact, we have Ip = Rp. □

Thus if R is a Noetherian integral domain which is regular in codimension 1, then for every fractional
ideal I, we can define

div(I) :=
∑
p∈X(1)

ep[p] ∈ Z1(X).

Exercise 24.2. Let I, J ⊂ K be two fractional ideals. Show that

div(IJ) = div(I) + div(J).

Exercise 24.3. Let f ∈ K×. Show that

div( f ) := div(fractional ideal generated by f ) =
∑
p∈X(1)

νp( f )[p],

where νp is the valuation of the DVR Rp.

The Weil divisors of the form div( f ) are called principal Weil divisors. The quotient

Cl(R) := Z1(X)/
{

Principal Weil divisors
}

is called the class group of R.

24.3. Algebraic Hartogs’ lemma.

Theorem 24.4 (Algebraic Hartogs’ lemma). Let R be a Noetherian integrally closed domain. Then in
K := Frac(R) we have

R =
⋂
p∈X(1)

Rp.

Proof. Let x ∈
⋂
p∈X(1) Rp and let

I := { r ∈ R | rx ∈ R }

be the "ideal of denominators of x". Suppose that x < R, then I is a proper ideal of R. Let q be the
minimal prime ideal of R containing I. Then x < Rq. By the exactness of localization, we have

Iq =
{

r ∈ Rq
∣∣∣ rx ∈ Rq

}
As qRq is the only prime ideal of Rq containing Iq and Rq is Noethrian, the quotient Rq/Iq is Artinian.

So there exists an integer k ≥ 0 such that (qRq)k+1
⊂ Iq ⊊ (qRq)k. Let c ∈ (qRq)k

\Iq and z := cx. We have
z < Rq but z · q ⊂ Iq ⊂ qRq. It follows from Cayley–Hamilton that z is integral over Rq, so z ∈ Rq, which is
a contradiction. □

Corollary 24.5. Let R be a Noetherian integrally closed domain. Let p ∈ X(1). The following assertions are
equivalent.

(1) p is a principal ideal.
(2) [p] is a principal Weil divisor.

Proof. The easy direction (1)⇒ (2) is left as an exercise.
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Suppose that [p] = div( f ) for some f ∈ K×. Then f ∈ Rp for all p ∈ X(1), so f ∈ R by algebraic
Hartogs’ lemma. Let 1 ∈ p. Then νp(1) ≥ νp( f ) for all p ∈ X(1). So 1/ f ∈ R, again by algebraic Hartogs’
lemma. Hence p = ( f ). □

Algebraic Hartogs’ lemma combined with the characterization of UFDs (Theorem 21.9) also shows
that the class group is the obstruction for an integrally closed domain to be a UFD.

Corollary 24.6. Let R be an integral domain. The following assertions are equivalent.

(1) R is a UFD.
(2) R is integrally closed and Cl(R) = 0.

Exercise 24.7.

(1) Show that (2, 1 +
√
−5) is a prime ideal of Z[

√
−5] which is not principal.

(2) What is the class group of Z[
√
−5]?

24.4. Cartier divisors.

Corollary 24.8. Let R be a Noetherian integrally closed domain. Then

div : I (R)→ Z1(X)

I 7→
∑
p∈X(1)

ep[p].(24.1)

is an injective group homomorphism.

Elements in CDiv(X) := div(I (R)) are called Cartier divisors.

Proof. That div is a group homomorphism follows from Exercise 24.2.
Suppose that I ∈ I (R) is mapped to 0. Then I, I−1

⊂ R are ideals of R by algebraic Hartogs’ lemma.
Since I−1I = R, necessarily I = R. □

Not all Weil divisors are Cartier:

Exercise 24.9. Let R = C[x, y, z]/(xy − z2) (so X = Spec(R) is the quadric cone). Show that the (x, y) ⊂ R
(which defines the ruling of X) is Weil but not Cartier. Show that div(x) = 2div(x, y) (which is thus
Cartier).

24.5. Bonus: Jia-Lin Hsu’s criterion of UFD.

Theorem 24.10 (Jia-Lin Hsu). Let R be a Noetherian integrally closed domain and let K = Frac(R). The
following assertions are equivalent.

(1) R is a UFD.
(2) Every x ∈ K× can be written as f/1 for some f , 1 ∈ R such that every irreducible component of

V( f ) ∩ V(1) has codimension at least 2 in X.

Proof. (1) =⇒ (2) is easy.
Assume that R is not UFD, then there exists a prime ideal p ⊂ R of height 1 which is not principal.

Since R is Noetherian, there exists an irreducible element p ∈ p. As p is not principal, there exists
q ∈ p such that p ∤ q. Again since R is Noetherian, q has an irreducible factor; up to replacing q by this
irreducible factor we can assume that q is irreducible. As p is also irreducible and p ∤ q, we have q ∤ p.

Suppose that p/q = f/1. For every Weil divisor D, write D = D+ −D− with both D+ and D− effective
without common component. Then

Div( f ) = Div( f/1)+ = Div(p/q)+ ≤ Div(p).

So f |p by Hartogs’ lemma. Note that f is not unit: otherwise 1/ f = q/p ∈ R, contradicting p ∤ q. So
p = u f for some unit u ∈ R. Thus q = u1, showing that f , 1 ∈ p, contradicting the assumption on
V( f ) ∩ V(1). □



LECTURE 12

Differentials

25.

25.1. Tangent vectors and derivations on smooth manifolds. Let M be a manifold. Recall that a
derivation at a point p ∈M is an R-linear map

C∞M,p → R

f 7→ f ′(p)

satisfying the Leibniz rule
( f1)′(p) = f ′(p)1(p) + f (p)1′(p).

Derivations at p form an R-vector space, canonically isomorphic to the tangent space TM,p of M at p.
Note that the Leibniz rule together with the R-linearity implies that f ′(p) = 0 if f is constant. So a

derivation is determined by its restriction
m→ R

to the maximal ideal m of C∞M,p. Also, note that if f , 1 ∈ m, then ( f1)′ = 0 by the Leibniz rule. Thus the
derivation descends to an R-linear map

m/m2
→ R.

Exercise 25.1. Show that the above construction defines an isomorphism of R-linear spaces.

TM,p ≃ (m/m2)∨.

25.2. Affine cones. Let k be an algebraically closed field. Then k× acts on kd by scalar multiplication.
If Z ⊂ kd is an algebraic closed subset which is stable under the k×-action, we call Z an affine cone.

Exercise 25.2. Show that an algebraic closed subset Z ⊂ kd is an affine cone if and only if I(Z) is a
homogeneous ideal, defined in the following exercise.

Exercise 25.3. Let R• be a Z≥0-graded ring and let I ⊂ R• be an ideal.

(1) Show that the following assertions are equivalent.
(a) I is generated by homogeneous elements (namely elements of Rd for some d).
(b) I =

⊕
d≥0 Id where Id = Rd ∩ I.

A homogeneous ideal is an ideal I ⊂ R• satisfying the above properties.
(2) Let I ⊂ R• be an homogeneous ideal. Show that the graded ring structure on R• induces a

graded ring structure on the direct sum
⊕
∞

d=0 Rd/Id of abelian groups, and that the natural
map

∞⊕
d=0

Rd/Id → R•/I

is a ring isomorphism. Thus defines a graded ring structure on R•/I.

25.3. Tangent cone of an affine variety. Let f ∈ C[X1, . . . ,Xn] and let

X =
{

x ∈ Cn
∣∣∣ f (x) = 0

}
.

Suppose that X contains the origin o ∈ Cn and that we want to take a photo of X centered at o. If we
zoom in on o, which corresponds to the coordinate change x′ = x/ε for some small ε > 0, then the shape
we see is approximately a cone. Indeed, suppose that k is the lowest degree monomial appearing in f ,
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and write
f =

∑
ℓ≥k

fℓ

where fℓ is the sum of all the monomials of degree ℓ of f , then x′ ∈ Cn

∣∣∣∣∣∣∣ f (ε · x′) =
∑
ℓ≥k

εℓ fℓ(x′) = 0


is approximately {

x′ ∈ Cn
∣∣∣ fk(x′) = 0

}
when ε→ 0. We call it the tangent cone of X at o.

More generally, let k be a field and let I ⊂ R := k[X1, . . . ,Xd] be an ideal. Suppose that V(I) contains
the origin o ∈ Ad

k. Then the tangent cone of Spec(R/I) at o is naturally defines as the scheme Spec(R/I#)
where

I# =
{
1 ∈ R

∣∣∣ 1 is the lowest degree homogeneous component of some f ∈ I
}
.

The tangent cone of Spec(R/I) at any closed point z ∈ V(I) is the tangent cone of Spec(R/J) at the origin,
where J =

{
f (x − z)

∣∣∣ f ∈ I
}

is the translation of I by z.

25.4. Tangent cone of (the spectrum of) a local ring. Let (R,m) be a local ring. The tangent cone of
X := Spec(R) at the closed point p ∈ X is defined as

CX,p := Spec

 ∞⊕
k=0

mk/mk+1

 .
Example 25.4. Suppose that R is the localization of k[X1, . . . ,Xd] at the origin o ∈ Ad

k. Then
⊕
∞

k=0m
k/mk+1

is isomorphic to k[X1, . . . ,Xd] as graded rings.

Example 25.5. More generally, let I be an ideal of R := k[X1, . . . ,Xd]. Then the tangent cone of the affine
scheme Spec(R/I) at some closed point p is the tangent cone of the localization of R/I at p.

Indeed, suppose that p is the origin. Let m̃ := (X1, . . . ,Xd) and let m be the maximal ideal of the
localization of R/I at m̃/I. Then

md

md+1
≃ (md)|m ≃

(
m̃d

m̃d ∩ I

)
|m̃mod I ≃

m̃d

(I ∩ m̃d) + m̃d+1

by Exercise 11.1. Note that
(I ∩ m̃d) + m̃d+1 = I#

d + m̃
d+1,

so we have ring isomorphisms

R/I#
≃

∞⊕
d=0

m̃d

I#
d + m̃

d+1
≃

∞⊕
d=0

md

md+1
.

Exercise 25.6. Suppose that I is the vanishing ideal of a linear subspace X ⊂ Ad
k. With the same notations

as in the previous example, show that we have ring isomorphisms

R/I ≃ Sym•(m/m2) ≃
∞⊕

k=0

mk/mk+1.

25.5. Tangent space. Let k be an algebraically closed field and let Z ⊂ kd be an affine variety containing
the origin o. We define the tangent space TZ,o of Z at o to be the linear hull of the tangent cone CZ,o:
namely, the smallest linear subsapce of kd containing CZ,o as a scheme.

Exercise 25.7. Show that TZ,o is defined by the linear terms of the elements of I(Z). Deduce that if Z is
defined by the polynomials f1, . . . , fm ∈ k[X1, . . . ,Xd], then TZ,o is defined by the linear equations

d∑
i=1

Xi∂Xi f1 = · · · =
d∑

i=1

Xi∂Xi fm = 0.
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Exercise 25.8. Let k be an algebraically closed field. Let X and Y denote the coordinates of k2. Describe
the tangent cones and the tangent spaces of the three affine curves C ⊂ k2 at the origin defined
respectively by the following equations.

(1) Y2 = X.
(2) Y2 = X3 + X2.
(3) X2 = Y3.

More generally, for any local ring (R,m), the tangent space of X := Spec(R) at the closed point p ∈ X
is defined as

TX,p := Spec(Sym•(m/m2)).

We have an embedding CX,p ⊂ TX,p induced by the projection

Sym•(m/m2)↠
∞⊕

k=0

mk/mk+1.

The closed points of TX,p form a vector space over k := R/m, canonically isomorphic to (m/m2)∨ =
Homk(m/m2,k). By Exercise 25.6, this generalizes the previous definition of the tangent space of an
affine variety.

25.6. Cotangent space and the module of differentials. The study of an affine scheme Spec(R) consists
of the study of R, namely the ring of regular functions on Spec(R). From the algebraic perspective,
instead of studying the "tangent vectors" of Spec(R), it would be more natural to consider "differential
forms". This is already hinted when we mention that closed points of the tangent space of an affine
variety at a closed point m is canonically identified with the vector space (m/m2)∨. We thus define the
cotangent space of (the spectrum of) a local ring (R,m) at the closed point m to be m/m2.

In addition to cotangent space, we also define cotangent module ΩA/R of an R-algebra A; this is the
analog of the cotangent bundle over a manifold. We will see in Proposition 25.18 that over a rational
point p, the fiber (ΩA/R)|p coincides with the cotangent space mp/m2

p.

Definition 25.9. Let R→ A be an R-algebra. The module of (relative) differentials ΩA/R of A over R is the
quotient of the free A-module generated by the symbols d f for all f ∈ A, quotient by the A-submodule
generated by the relations

(1) dr = 0 for all r ∈ R (i.e. the functions pulled back from SpecR have vanishing differentials);
(2) d( f + 1) = d f + d1;
(3) (Leibniz’ rule) d( f1) = f · d1 + 1 · d f .

We also call ΩA/R the module of Kähler differentials.

Exercise 25.10. Let R be a ring and let A = R[X1, . . . ,Xn]/( f1, . . . , fm). Show that ΩA/R is the quotient of
the free A-module generated by dX1, . . . , dXn, quotient by the relations d f1 = · · · d fm, or precisely

d∑
i=1

(∂Xi f1)dXi = · · · =

d∑
i=1

(∂Xi fm)dXi = 0.

Exercise 25.11. Show that if R → A is a finitely generated (resp. finitely presented) A-algebra, then
ΩA/R is a finitely generated (resp. finitely presented) A-module. Here, an R-algebra A is called finitely
presented if A is the quotient of R[X1, . . . ,Xn] by a finitely generated ideal.

25.7. Cotangent exact sequence. Recall that if π : M→ N is a submersion of manifolds, then we have
a short exact sequence of vector bundles

0→ TM/N → TM → π∗TN → 0,

defining the relative tangent bundle TM/N. The following the is analogous statement for cotangent
modules, which also explains why ΩA/R is called module of relative differentials.
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Proposition 25.12. Let R→ A→ B be ring homomorphisms. We have an exact sequence of B-modules

B ⊗A ΩA/R
b⊗(da)7→b·da
−−−−−−−−→ ΩB/R

db 7→db
−−−−→ ΩB/A → 0.

Proof. It is clear that ΩB/R → ΩB/A is surjective. The composition of the two maps in the sequence
is zero, because da = 0 in ΩB/A for every a ∈ A. Finally, it follows from the defining relations of the
modules of differentials that the kernel ofΩB/R → ΩB/A is the B-submodule generated by da for all a ∈ A,
and this is exactly the image of B ⊗A ΩA/R → ΩB/R. □

Exercise 25.13. Let L/K be a field extension with finite transcendental degree.

(1) Compute ΩL/K when L/K is purely transcendental.
(2) Show that ΩL/K = 0 if and only if L/K is an algebraic separable extension.

25.8. Conormal modules. Recall that if Z ⊂M is a closed submanifold of a manifold M, then we have
a short exact sequence of vector bundles

0→ TZ → TM |Z → NZ/M → 0,

defining the normal bundle NZ/M of Z in M.
Here is the analogous statement for cotangent modules.

Proposition 25.14. Let R be a ring and let A→ B be a surjective morphism of R-algebras. Let I := ker(A→ B).
We have an exact sequence of B-modules

I/I2 i 7→1⊗(di)
−−−−−−→ B ⊗A ΩA/R

b⊗(da) 7→b·da
−−−−−−−−→ ΩB/R → 0.

In the above statement, we call I/I2 the conormal module of Spec(B) in Spec(A).

Proof. First we note that since B = A/I, the map I/I2
→ B ⊗A ΩA/R is well defined by the Leibniz rule.

Since A→ B is surjective, we haveΩB/A = 0, so B⊗AΩA/R → ΩB/R is surjective by Proposition 25.12.
It is clear that the composition of the two maps in the sequence is zero. Finally, the first map is isomorphic
to B ⊗A I→ B ⊗A ΩA/R defined by b ⊗ i 7→ b ⊗ di, so its cokernel Q is generated as a B-module by 1 ⊗ db
for all b ∈ B. We verify that the defining relations ΩB/R can also be lifted to the defining relations of Q,
hence Q ≃ ΩB/R. □

25.9. Derivation and universal property. Let R be a ring and let A be an R-algebra. Let M be an
A-module. An R-derivation from A to M is a map D : A→M satisfying the following properties.

(1) Dr = 0 for all r ∈ R;
(2) D( f + 1) = D f +D1 for all f , 1 ∈ A;
(3) (Leibniz’ rule) D( f1) = f ·D1 + 1 ·D f for all f , 1 ∈ A.

Equivalently and more concisely, an R-derivation is an R-linear morphism D : A→ M which satisfies
Leibniz’ rule as above. The R-derivations from A to M form an A-module, denoted by DerR(A,M).

For instance, the map d : A→ ΩA/R is an R-derivation; this is the universal one.

Proposition 25.15 (Universal property of modules of differentials). For any A-module M, the map

HomA(ΩA/R,M)→ DerR(A,M).

ϕ 7→ ϕ ◦ d
(25.1)

is an isomorphism of A-modules.

Exercise 25.16. Prove Proposition 25.15.

As a consequence, if D : A → N is an R-derivation such that the universal property stated in
Proposition 25.15 holds for D instead of d : A→ ΩA/R, then there is a unique isomorphismϕ : N ∼−→ ΩA/R

of A-modules such that ϕ ◦D = d.
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Exercise 25.17. Let k be a field and let R be a k-algebra. Let m ⊂ Specm(R) be a closed point such that
R/m ≃ k (as k-algebras); such a point is called a k-point, or a rational point of Spec(R). Show that the map

Derk(R,k)→ Homk(m/m2,k)

sending D to its restriction to m is well defined and is a k-linear isomorphism. (The argument should
be similar to that of Exercise 25.1.)

25.10. Cotangent space at a rational point. Let k be a field and let R be a finitely generated k-algebra.

Proposition 25.18. For every k-point x ∈ Spec(R) which corresponds to the maximal ideal m ∈ R, the map

m/m2 ∼
−→ (ΩR/k)|x

defined by f 7→ (d f )|x is a k-linear isomorphism.

Proof. That m/m2
→ (ΩA/k)|x is well defined follows from the Leibniz rule. We will instead show that

the dual of m/m2
→ (ΩA/k)|x is an isomorphism.

We have canonical isomorphisms of k-vector spaces

Homk(ΩR/k ⊗R k,k) ≃ HomR(ΩR/k,k) ≃ Derk(R,k) ≃ Homk(m/m2,k),

where the first isomorphism is the adjunction of extension-restriction of scalars, the second isomor-
phism is the universal property of modules of differentials, and the third isomorphism is the one in
Exercise 25.17. We verify that the dual of the composition of the above isomporhisms is f 7→ (d f )|x. □

Exercise 25.19. Let x ∈ Spec(R) be a k-point and let ϕ : R→ k be the induced quotient map. Show that

HomR(ΩR/k,k)→
{

k-algebra factorizations R
ϕ̃
−→ k[ε]/(ε2)→ k of ϕ

}
.

ψ 7→ (ϕ̃ : f 7→ ϕ( f ) + εψ( f ))
(25.2)

is a bijection. Thus morphisms of schemes Spec(k[ε]/(ε2))→ Spec(R) over k can be regarded as tangent
vectors on Spec(R).

25.11. Pullback and localization. Let

(25.3) A // A′

R
f
//

OO

R′

OO

be a commutative diagram of ring homomorphisms. It induces an morphism of A′-modules

ϕ : A′ ⊗A ΩA/R → ΩA′/R′

sending a′ ⊗ da to a′ · da.

Exercise 25.20.

(1) Show that the morphism ϕ : A′ ⊗A ΩA/R → ΩA′/R′ introduced above is well defined, and is the
image of the R-derivation A→ A′ → ΩA′/R′ under

DerR(A,ΩA′/R′ ) ≃ HomA(ΩA/R,ΩA′/R′ ) ≃ HomA′ (A′ ⊗A ΩA/R,ΩA′/R′ ),

where the first isomorphism is the universal property of modules of differentials, and the
second isomorphism is the adjunction of extension-restriction of scalars.

(2) Suppose that (25.3) is a co-cartesian square (namely A′ ≃ A ⊗R R′), show that

ϕ : A′ ⊗A ΩA/R
∼
−→ ΩA′/R′

is an isomrophism.
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Exercise 25.21. Let f : R→ A be a ring homomorphism. Let S ⊂ R and T ⊂ A be multiplicative subsets
such that f (S) ⊂ T. Show that

T−1ΩA/R ≃ ΩT−1A/S−1R.

25.12. The cotangent module is the conormal module of the diagonal. Let R be a ring and let A be an
R-algebra. Let

X := Spec(A) ×Spec(R) Spec(A) ≃ Spec(A ⊗R A)

The diagonal of X is the subscheme ∆ ⊂ X defined by the ideal I∆ ⊂ A ⊗R A generated by

a := a ⊗ 1 − 1 ⊗ a : a ∈ A.

Exercise 25.22. Show that I∆ is the kernel of A ⊗R A→ A defined by a ⊗ a′ 7→ aa′. Hint: observe that if∑
i aia′i = 0, then ∑

i

ai ⊗ a′i =
∑

i

(1 ⊗ a′i )(ai ⊗ 1 − 1 ⊗ ai).

Exercise 25.23. Show that

δ : A→ I∆/I2
∆.

A 7→ a ⊗ 1 − 1 ⊗ a mod I2
∆

(25.4)

is an R-derivation.

We thus have a factorization
δ : A d

−→ ΩA/R
ϕ
−→ I∆/I2

∆

of δ, by the universal property ofΩA/R. Note that since da for all a ∈ A generate the A-moduleΩA/R, the
morphism ϕ of A-modules is surjective.

Exercise 25.24. Show that ψ : I∆/I2
∆
→ ΩA/R defined by a ⊗ b 7→ a · db is well-defined, and ψ ◦ ϕ = Id.

The above statements lead to the following:

Proposition 25.25. The map ϕ : ΩA/R → I∆/I2
∆

is an isomorphism of A-modules.

26. Dimension of the tangent cone

Let (R,m) be a Noetherian local ring.

Theorem 26.1. Let (R,m) be a Noetherian local ring. Let k = R/m. The function

HR,m : i 7→: dimkm
i/mi+1

is polynomial for i≫ 0, and the degree is equal to dim R − 1. As a consequence,

dim R = dim CR,m.

26.1. Hilbert–Samuel function. We will derive Theorem 26.1 as a consequence of a more general
statement (Theorem 26.17) that we will prove by induction. For this reason, we consider the following
functions which generalize HR,m.

Let M be a finitely generated R-module. An ideal I ⊂ R is called a parameter ideal of M if Supp(M/IM) =
{m}. This generalizes the notion of parameter ideal of a local ring. If I is a parameter ideal of M, then
for all n ∈ Z≥0, by Exercise 17.16 the R-module InM/In+1M has finite length. The Hilbert–Samuel function
is defined as

HM,I : n 7→ lgR(InM/In+1M).

26.2. Associated graded ring and module. Let I ⊂ R be an ideal. We define The associated graded ring
of R and associated graded module of M by

grIR :=
∞⊕

n=0

In/In+1, grIM :=
∞⊕

n=0

InM/In+1M.
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We regard grIM as a graded grIR-module as follows: for any r ∈ Iℓ/Iℓ+1 and m ∈ InM/In+1M, we first lift
them to r̃ ∈ Iℓ and m̃ ∈ InM, then r̃m̃ ∈ Iℓ+nM modulo Iℓ+n+1M is independent of the liftings.

Lemma 26.2. If M is finitely generated over R, then grIM is finitely generated over grIR.

Proof. Since M/IM is finitely generated over R and InM/In+1M = (In/In+1) · (M/IM), Lemma 26.2
follows. □

Lemma 26.3. If R is Noetherian, then grIR is also Noetherian.

Proof. Since I is a finitely generated ideal, by construction grIR is a finitely generated R/I-algebra. As
R/I is Noetherian, it follows that grIR is also Noetherian. □

26.3. Hilbert functions. Let R =
⊕
∞

d=0 Rd be a graded ring and let M =
⊕

d∈Z Md be a graded R-module;
in these lectures, a graded ring is always Z≥0 but a graded module is Z-graded. Each Md is thus an
R0-module. Suppose that each Md is an R0-module of finite length, the function

HM : i 7→ lgR0
Md

is called the Hilbert function of the graded R-module M.

Exercise 26.4. Let I ⊂ R be a parameter ideal of the R-module M. Show that

HM,I = HgrIM

where grIM is regarded as a graded module over grIR.

26.4. Polynomiality of Hilbert functions. Let R be a graded ring. We say that R is finitely generated in
degree 1 if there exist r1, . . . , rn ∈ R1 which generate R as an R0-algebra.

Theorem 26.5. Let R be a graded ring. Suppose that R is generated in degree 1 by k elements. Let M be a finitely
generated R-module such that each R0-module Md has finite length (this is the case when e.g. R0 is Artinian).
Then there exist an integer n0 ≥ 0 and a polynomial PM ∈ Q[x] with deg P < k such that

HM(n) = PM(n)

for all n ≥ n0.

The polynomial PM is called the Hilbert polynomial of the graded R-module M.

Proof. We prove Theorem 26.5 by induction on k. Suppose that k = 0. Then R = R0. Since M is finitely
generated over R, we have Md = 0 for d sufficiently large. Hence P = 0 works.

Suppose that R is generated by x1, . . . , xk ∈ R1 as an R0-algebra. Consider the exact sequence

0→ K→M
×x1
−−→M(1)→ Q→ 0

where M(d) is the graded module defined by M(d)i :=Md+i, and K and Q are the kernel and the cokernel
of M

×x1
−−→M(1). Since M

×x1
−−→M(1) preserves the grading, both K and Q are graded R-modules. Since the

length function is additive, we have HM(n+ 1)−HM(n) = HQ(n)−HK(n). Note that x1 annihilates both K
and Q, we can regard them as modules over R/(x1). So by the induction hypothesis, n 7→ HQ(n) −HK(n)
is a rational polynomial function when n≫ 0. We conclude by Lemma 26.8 below. □

Corollary 26.6. Let R be a local ring and let M be a finitely generated R-module. Let I ⊂ R be a parameter
ideal of M. Then there exists a polynomial PM,I ∈ Q[x] such that HM,I(n) = PM,I(n) for n≫ 0. Moreover, if I is
generated by k elements, then deg PM,I < k.

Proof. It suffices to show that deg PM,I = deg PM,m. Up to replacing R by R/Ann(M), we can assume
that Supp(M) = Spec(R). Then Ann(M/IM) = I, and thus V(I) = Supp(M/IM) = {m}. So dim R/I = 0.
Since R is Noetherian, R/I is thus Artinian, and we conclude by Theorem 26.5 and Exercise 26.4. □
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26.5. Polynomial differences. For any k ∈ Z≥0, define the polynomial

x 7→
(
x
k

)
:=

x(x − 1) · · · (x − k + 1)
k!

Exercise 26.7. For any k,n ∈ Z≥0, show that(
n
k

)
=

n−1∑
m=0

(
m

k − 1

)
Lemma 26.8. Let H : Z→ Z be a function. Suppose that there exist n0 ≥ 0 and a polynomial Q ∈ Q[x] such
that

H(n + 1) −H(n) = Q(n)

for all n ≥ n0, then there exists a polynomial P ∈ Q[x] such that

H(n) = P(n)

for all n ≥ n0. Moreover deg P = deg Q + 1.

Proof. By translation, we can assume that n0 = 0. For every n ≥ 0, we have

H(n) = H(0) +
n−1∑
i=0

Q(i).

Since Q is a Q-linear combination of the polynomials x 7→
(x

k
)

follows from Exercise 26.7. □

26.6. A variant of the Hilbert–Samuel function. We also consider the following variant of the Hilbert–
Samuel function:

H̃M,I : n 7→ lgR(M/InM).

We have
HM,I(n) = H̃M,I(n + 1) − H̃M,I(n).

So there exists a polynomial P̃M,I ∈ Q[x] such that H̃M,I(n) = P̃M,I(n) for n≫ 0 and deg P̃M,I = 1+deg PM,I.

26.7. Upper bound of the degree of the Hilbert polynomial. Let R be a local ring and let M be an
R-module.

Lemma 26.9. The degree of the Hilbert–Samuel polynomial PM,I does not depend on the parameter ideal I.

Proof. It suffices to show that deg PM,I = deg PM,m. As we did in the proof of Corollary 26.6, up to
replacing R by R/Ann(M), we can assume that Supp(M) = Spec(R). This implies that R/I is Artinian, so
there exists some integer d > 0 such that

md
⊂ I ⊂ m.

Since
H̃M,m(n) ≤ H̃M,I(n) ≤ H̃M,md (n),

we have
P̃M,m(n) ≤ P̃M,I(n) ≤ P̃M,m(dn)

for n≫ 0. Hence deg P̃M,I = deg P̃M,m, which finishes the proof. □

Corollary 26.10. We have deg PM,I ≤ dim Supp(M) − 1.

Proof. Up to replacing R by R/Ann(M), we can assume that Supp(M) = Spec(R). By Exercise 21.6, some
parameter ideal I is generated by dim R elements. It follows from Theorem 26.5 and Lemma 26.9 that
deg PM,I ≤ dim R − 1 = dim Supp(M) − 1. □

26.8. Blowup algebra. Let R be a ring and let I ⊂ R be an ideal. The blowup algebra (or the Rees algebra)
of I is R is the graded R-algebra

BlIR :=
∞⊕

d=0

Id.



26. DIMENSION OF THE TANGENT CONE 77

Remark 26.11. In this remark we assume some background in algebraic geometry. Suppose that I is
finitely generated. Then the morphism The blowup Proj RBlIR → Spec(R) defined by the R-algebra
structure of BlIR is the blowup of Spec(R) along I, which is why BlIR is called the blowup algebra. Note
that we have a surjective morphism

BlIR↠ CR,I :=
∞⊕

d=0

Id/Id+1,

and the kernel is the ideal I · BlIR = I ⊕ I2
⊕ · · · . The the ideal I · BlIR cuts out a Cartier divisor E in

Proj RBlIR, called the exceptional divisor. The divisor E is isomorphic to the projectivized normal cone
Proj CR,I of I in R.

Let M be an R-module. A filtration

I : M =M0 ⊃M1 ⊃ · · ·

is called an I-filtration if IMd ⊂Md+1 for all index d. Let

BlI M :=
∞⊕

d=0

Md,

regarded as a BlIR-module in a natural way.

Proposition 26.12. Let I : M =M0 ⊃M1 ⊃ · · · be an I-filtration of M such that each Md is finitely generated
over R. The following assertions are equivalent.

(1) BlI M is finitely generated over BlIR.
(2) There exists an integer n0 such that Mn+1 = IMn for every n ≥ n0.

If the filtration I satisfies (2) in Proposition 26.12, we call I an I-stable filtration.

Proof. It is clear that (2) implies (1). Suppose that BlI M is finitely generated over BlIR: we can assume
that BlI M is generated by homogeneous elements of degree ≤ n0. Then for every i ∈ Z≥0 and every
m ∈Mn0+i we have

m =
n0∑
j=0

s j∑
ℓ=0

r(ℓ)
n0+i− jm

(ℓ)
j

for some r(ℓ)
n0+i− j ∈ Rn0+i− j and m(ℓ)

j ∈M j. Hence

Mn0+i ⊂

n0∑
j=0

In0+i− jM j ⊂ IiMn0 .

So Mn0+i = IiMn0 , which shows that Mn+1 = IMn for every n ≥ n0. □

Corollary 26.13 (Artin–Rees lemma). Let R be a Noetherian ring and let M be a finitely generated R-module
with an I-filtration

I : M =M0 ⊃M1 ⊃ · · · .

Let M′ ⊂M be a R-submodule. If I is I-stable, then the I-filtration

I ′ =M′ ∩I : (M′ ∩M0) ⊃ (M′ ∩M1) ⊃ · · ·

is also I-stable.

Proof. Since R is Noetherian and BlIR is a finitely generated R-algebra, BlIR is also Noetherian. By
Proposition 26.12, BlI M is finitely generated over BlIR, so BlI ′M′ is also finitely generated over BlIR.
Hence I ′ is I-stable by Proposition 26.12. □

Corollary 26.14 (Krull’s intersection theorem). Let (R,m) be a Noetherian local integral domain. We have⋂
n≥0

mn = 0.



26. DIMENSION OF THE TANGENT CONE 78

Proof. Let I ⊂ R be an ideal. Applying the Artin–Rees lemma to I endowed with the m-filtration

I ⊃ (m ∩ I) ⊃ (m2
∩ I) ⊃ · · ·

shows that for n≫ 0, we have
mn+1

∩ I = m(mn
∩ I).

For I =
⋂

n≥0m
n, we thus have I = mI, hence I by the Nakayama lemma. □

Remark 26.15. Note the the conclusion of Krull’s intersection theorem does not hold for the local ring
(C∞0,R,m), because md is the ideal of germs of smooth functions f with f (0) = f ′(0) = · · · = f (d−1)(0) = 0,
but x 7→ exp(−1/x2) has vanishing derivatives at 0 of all orders.

26.9. An additivity result of the Hilbert–Samuel function.

Lemma 26.16. Let R be a local ring and let

0→M′ →M→M′′ → 0

be a short exact sequence of R-modules. Let I be a parameter ideal of both M and M′. Then there exists Q ∈ Q[x]
with positive leading coefficient and deg Q ≤ deg P̃M′,I − 1 such that

P̃M,I(n) = P̃M′,I(n) + P̃M′′,I(n) −Q(n),

for n≫ 0.

Proof. We have an exact sequence

0→
M′ ∩ InM

InM′
→

M′

InM′
→

M
InM

→
M′′

InM′′
→ 0,

which yields
P̃M,I(n) = P̃M′,I(n) + P̃M′′,I(n) −Q(n),

where Q is a polynomial such that

Q(n) := lgR

(M′ ∩ InM
InM′

)
for n≫ 0.

By Artin–Rees, there exsits an integer n0 such that for all positive integer i > 0, we have

M′ ∩ In0+iM = Ii(M′ ∩ In0 M′) ⊂ IiM′.

So
Q(n) ≤ H̃M′,I(n) − H̃M′,I(n − n0),

for n≫ 0, showing that the polynomial Q satisfies deg Q ≤ deg P̃M′,I − 1. □

26.10. Lower bound of the degree of the Hilbert polynomial.

Theorem 26.17. Let (R,m) be a local ring and let M be a finitely generated R-module. We have

deg P̃M,m = dim Supp(M).

Proof. By Corollary 26.10, it remains to show that deg P̃M,m ≥ dim Supp(M).
We can assume that M , 0. We prove Theorem 26.17 by induction on dim Supp(M) ≥ 0. Suppose

that dim Supp(M) = 0. Then P̃M,m , 0 (otherwise, M = mM, which is impossible by Nakayama’s lemma).
So we always have deg P̃M,m ≥ 0.

Let p ∈ Spec(R) be the generic point of an irreducible component of Supp(M) of maximal dimension.
In particular p ∈ AssR(M), so p = Ann(m) for some m ∈ M, and therefor M contains an R-submodule
isomorphic to R/p. Since P̃R/p,m(n) ≤ P̃M,m(n) for n ≫ 0, we can assume that M = R/p. Furthermore,
since

lgR
R

p +mn = lgR/p
R/p
mn/p

,

we can assume that M = R and that R is a local integral domain.
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Let x ∈ R be a nonzero element. Applying Lemma 26.16 to the short exact sequence

0→ R ×x
−−→ R→ R/(x)→ 0

yields
deg P̃R,m ≥ 1 + deg P̃R/(x),m,

so deg P̃R,m ≥ 1 + dim R/(x) by the induction hypothesis. Since x , 0 and R is an integral domain, we
have dim R = 1 + dim R/(x) by the principal ideal theorem, which finishes the proof. □

26.11. Regular local rings.

Definition 26.18. A Noetherian local ring (R,m) is called regular if at the closed point m, the tangent
cone is equal to the tangent space.

Exercise 26.19. Let (R,m) be a Noetherian local ring of dimension d. Let k = R/m Show that the
following assertions are equivalent.

(1) R is regular.
(2) m is generated by exactly d elements.
(3) dimkm/m2 = d.

Exercise 26.20. Let (R,m) be a Noetherian local ring.

(1) Suppose that dim R = 0. Show that R is regular if and only if R is a field.
(2) Suppose that dim R = 1. Show that R is regular if and only if R is a DVR.



LECTURE 13

Projective modules and flat modules

Let R be a ring.

27. Extensions

27.1. The set of extensions. Let M and N be R-modules. We can always produce a new R-module from
them by considering M ⊕N. It sits in the middle of a short exact sequence of the form

(27.1) 0→ N→ E→M→ 0

but not all R-module E fitting in (27.1) is isomorphic to M ⊕N, for instance we have the exact sequence

0→ Z ×2
−−→ Z→ Z/2Z→ 0.

This is the main reason why R-modules are much more complicated then vector spaces over a field.
A short exact sequence (27.1) is called an extension of M by N. We let

ExtR(M,N) :=
{

extensions of M by N
}
/equivalence,

where two extensions N → E → M and N → E′ → M are equivalent if there exists an isomorphism
ϕ : E ∼−→ E′ of R-modules such that the diagram

N // E

ϕ≀
��

// M

N // E′ // M

commutes.

Exercise 27.1. Let d > 0 be an integer. What is the cardinal of ExtZ(Z/d,Z)?

The above exercise imply in particular that equality in ExtR(M,N) doesn’t imply that the middle
terms are isomorphic.

27.2. Pullback and pushout. Let f : L→M and 1 : L→ N be morphisms of R-modules. Define

M
∐

L

N := coker
(
L

x 7→( f (x),−1(x))
−−−−−−−−−−→M ⊕N

)
.

Exercise 27.2. Show that M
∐

L N satisfies the universal property of the fiber coproduct of M and N over
L.

Let f : M→ L and 1 : N→ L be morphisms of R-modules. Define

M ×L N := ker
(
M ⊕N

(m,n)7→ f (m)−1(n)
−−−−−−−−−−−−→ L

)
.

Exercise 27.3. Show that M×L N satisfies the universal property of the fiber product of M and N over L.

27.3. Functoriality of ExtR(M,N). Let M and N be R-modules. Every morphism of R-modules f : N →
N′ defines a natural map

ExtR(M,N)→ ExtR(M,N′)

80
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sending N→ E→M to the second line of the natural commutative diagram

0 // N

f
��

// E

��

// M // 0

0 // N′ // E
∐

N N′ // M // 0

Likewise, every morphism of R-modules 1 : M→M′ defines a natural map

ExtR(M′,N)→ ExtR(M,N)

sending N→ E→M′ to the first line of the natural commutative diagram

0 // N // E ×M′ M

��

// M

1

��

// 0

0 // N // E′ // M′ // 0

Exercise 27.4. Verify that
ExtR(•, •) : (ModR)op

×ModR → Set

is a bifunctor.

27.4. The Baer sum. Let E1,E2 ∈ ExtR(M,N). We have the commutative diagram

0 // N ⊕N

(n,n′)7→n+n′

��

// E1 ⊕ E2

��

// M ⊕M // 0

0 // N // E′ // M ⊕M // 0

0 // N // E1 + E2

OO

// M

m 7→(m,m)

OO

// 0

where E′ is the R-module such that upper-left square is co-cartesian and E1 + E2 is the R-module such
that lower-right square is cartesian; the horizontal arrows are the natural ones

Exercise 27.5. Prove the following statements.

(1) The horizontal sequences are exact.
(2) ExtR(M,N) endowed with the addition defined by (E1,E2) 7→ E1 + E2 is an abelian group.

27.5. The R-module structure on ExtR(M,N). The extension group ExtR(M,N) has a natural R-module
structure defined as follows. For every r ∈ R and every extension e ∈ ExtR(M,N) which corresponds to
the exact sequence

0→ N
ϕ
−→ E

ψ
−→M→ 0,

the product r · e ∈ ExtR(M,N) is defined by the pushout construction

0 // N

×r
��

// E

��

// M // 0

0 // N // E
∐

N N // M // 0

Exercise 27.6. Show that r · e ∈ ExtR(M,N) is also represented by the extension obtained by the pullback
construction

0 // N // E ×N N

��

// M

×r
��

// 0

0 // N // E // M // 0

Exercise 27.7. Given morphisms of R-modules M→M′ and N→ N′, show that the maps ExtR(M,N)→
ExtR(M,N′) and ExtR(M′,N)→ ExtR(M,N) are morphisms of R-modules.
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27.6. The Yoneda product between Hom and Ext. Let M,N,N′ be R-modules. Consider the map

µ : HomR(M,N) × ExtR(N,N′)→ ExtR(M,N′)

sending a morphism 1 : M → N and an extension e ∈ ExtR(M,N′) to the image of e under the
homomorphism ExtR(N,N′)→ ExtR(M,N′) induced by 1.

Exercise 27.8. Show that µ is R-bilinear.

27.7. Extending the exact sequence. Let M be an R-module. We know that the functors HomR(M, •)
and HomR(•,M) are left-exact, but not necessarily right exact. However, we can extend the induced
exact sequence from the right by a few terms involving Ext.

Exercise 27.9. Let N be an R-module and let

0→M′ →M→M′′ → 0

be a short exact sequence of R-modules. Show that we have exact sequences

0→ HomR(N,M′)→ HomR(N,M)→ HomR(N,M′′)→ ExtR(N,M′)→ ExtR(N,M)→ ExtR(N,M′′)

and

0→ HomR(M′′,N)→ HomR(M,N)→ HomR(M′,N)→ ExtR(M′′,N)→ ExtR(M,N)→ ExtR(M′,N),

where the maps between Hom and Ext are defined by the Yoneda product.

27.8. Computing Hom. Let M and N be R-modules. Every R-module M is defined by generators and
relations, and this is how HomR(M,N) is usually computed. Precisely, we have an exact sequence

R⊕J
→ R⊕I

→M→ 0,

which induces a short exact sequence

0→ HomR(M,N)→ HomR(R⊕I,N)→ HomR(R⊕J,N).

Note that we have HomR(R⊕I,N) ≃
∏

I N.

27.9. Computing Ext. Next we compute ExtR(M,N) Start with an exact sequence

0→ K→ F0 →M→ 0

where F0 is a free R-module (of generators of M, so K is the submodule of relations).

Exercise 27.10. Let F be a free module. Show that ExtR(F,N) = 0.

By Exercise 27.9, we have a short exact sequence

HomR(F0,N)→ HomR(K,N)→ ExtR(M,N)→ 0.

We can compute HomR(F0,N)→ HomR(K,N), again using generators and relations of K. Precisely, start
with an exact sequence

F2 → F1 → K→ 0

or equivalently, an exact sequence
F2 → F1 → F0 →M→ 0

where F1 and F2 are free R-modules, we then have

ExtR(M,N) ≃ coker(HomR(F0,N)→ HomR(K,N)) ≃
ker(HomR(F1,N)→ HomR(F2,N))
Im(HomR(F0,N)→ HomR(F1,N))

.

28. Higher Ext-groups

28.1. Free resolutions and higher Ext. Any R-module M has a free resolution, namely an exact sequence
of R-modules

· · · → F1 → F0 →M→ 0
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where Fi are free R-modules; the sequence can be unbounded from the left. The previous discussion
motivates us to consider free resolutions of R-modules, and use them to define higher Ext-groups
Exti

R(M,N) and further extend the exact sequences in Exercise 27.9.
We will see that the key property in the construction of Exti

R(M,N), is that the functor Hom(Fi, •) is
exact. An R-module P such that Hom(P, •) is (right-)exact is called a projective module, and it is thus more
natural to consider more generally projective resolutions of M: these are exact sequences of R-modules

· · ·
d
−→ P1

d
−→ P0 →M→ 0 (R)

such that each Pi is a projective module.

Proposition 28.1. Let P be an R-module. The following assertions are equivalent.

(1) P is projective.
(2) ExtR(P,N) = 0 for every R-module N.
(3) P is a direct summand of a free module.

Proof. Assume (1). Then for any extension e ∈ ExtR(P,N) represented by the exact sequence

0→ N→ E
ψ
−→ P→ 0,

the morphism ψ has a section, showing that e is equivalent to the trivial extension N ⊕ P.
Assume (2). Choose any surjective morphism ϕ : F ↠ P of R-modules from a free R-module F.

Then (2) implies that the extension ker(ϕ)→ F→ P is trivial, so P is a direct summand of F.
Finally assume that (3). Then the identity Id : P→ P has a factorization P ↪→ F↠ P through a free

R-module F. This induces for any R-module N, a factorization

HomR(P,N)→ HomR(F,N)→ HomR(P,N)

of the identity map. Therefore if N ↠ N′ is a surjective morphism of R-modules, since HomR(F,N)→
HomR(F,N′) is surjective (because F is free), necessarily the induces map HomR(P,N)→ HomR(P,N′) is
surjective. □

Given such a projective resolution R of M, define for each i ∈ Z the R-module

Exti
R(M,N)R := Hi(HomR(P•,N));

we set Pi = 0 if i < 0. Here, for any complex of R-modules C•, namely a sequence of morphisms of
R-modules

· · · → Ci−1 di−1

−−→ Ci di

−→ Ci+1
→ · · ·

such that di
◦ di−1 = 0), the ith cohomology of C• is defined as

Hi(C•) :=
ker di

Imdi−1
.

28.2. Functoriality and independence of the projective resolutions. Let M′ be another R-module and
let

· · ·
d
−→ P′1

d
−→ P′0 →M′ → 0 (R′)

be a projective resolution of M′. For any morphism f : M→M′ of R-modules, since each Pi is projective,
we can lift f to a morphism F : P• → P′• of complexes, namely a commutative diagram of R-modules

· · · // P2

F2

��

// P1

F1

��

// P0

F0

��

// M

f
��

· · · // P′2
// P′1

// P′0
// M′.

It induces a morphism of R-modules

Exti
R(M′,N)R′ → Exti

R(M,N)R.
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Exercise 28.2. Two morphisms of complexes F,G : P• → P′• are called homotopic if there exists for each
index i a morphism of R-modules hi : Pi → P′i+1 such that

Fi − Gi = dhi + hi−1d.

Show that if F,G : P• → P′• are homotopic, then the morphism Exti
R(M′,N)R′ → Exti

R(M,N)R they
induce are the same.

Exercise 28.3. Let
· · ·

d
−→ P′1

d
−→ P′0 →M→ 0 (R′)

be another projective resolution of M. Show that all lifts P• → P′• of the identity Id : M → M are
homotopic. This provides a canonical isomorphism

Exti
R(M,N)R′ ≃ Exti

R(M,N)R

Thanks to the previous exercise, we can set by a slight abuse of notation

Exti
R(M,N) := Exti

R(M,N)R.

28.3. Induced long exact sequence. Let N be an R-module. A short exact sequence

0→M′ →M→M′′ → 0

of R-modules induces a long exact sequence of R-modules

0→ HomR(M′′,N)→ HomR(M,N)→ HomR(M′,N)

→ Ext1
R(M′′,N)→ Ext1

R(M,N)→ Ext1
R(M′,N)

→ Ext2
R(M′′,N)→ Ext2

R(M,N)→ Ext2
R(M′,N)

→ · · ·

(28.1)

constructed as follows. First we choose any projective resolutions P′• →M′ and P′′• →M′′.

Exercise 28.4 (Horseshoe lemma). Show that there exists a resolution P• → M of M together with an
exact sequence

0→ P′• → P• → P′′• → 0

of complexes such that
P′0

ε′

��

// P0

ε

��

// P′′0

ε′′

��
M′ // M // M′′

commutes. (Hint: Let P0 = P′0 ⊕ P′′0 and let P0 → M be the sum of ε′ and a lifting P′′0 → M of ε′′. The
snake lemma shows that 0→ ker ε′ → ker ε→ ker ε′′ → 0 is exact and let ε is surjective. Continue by
induction.)

For every i, the maps P′• → P• → P′′• thus induce morphisms

Exti
R(M′′,N)→ Exti

R(M,N)→ Exti
R(M′,N).

The map δ : Exti
R(M′,N)→ Exti+1

R (M′′,N) in (29.1) is constructed as follows. Let α ∈ Exti
R(M′,N) and let

α′ ∈ HomR(P′i ,N) be a representative of α. Since P′′i is projective, by Proposition 28.1 and Exercise 27.9
applied to the short exact sequence

0→ P′i → Pi → P′′i → 0

show that α′ can be lifted to β ∈ HomR(Pi,N). Since α′ maps to 0 in HomR(P′i+1,N), the image
γ ∈ HomR(Pi+1,N) of β maps to 0 in HomR(P′i+1,N). Therefore γ is the image of some element
γ′ ∈ HomR(P′′i+1,N), and γ′ maps to 0 in HomR(P′′i+2,N). We define δ(α) to be the class of γ′ in
Exti+1

R (M′′,N).
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Exercise 28.5. Show that the morphisms in (29.1) are well-defined (namely, independent of all choices
of we made in the constructions) and that (29.1) is an exact sequence.

Exercise 28.6. Show that the second exact sequence in Exercise 27.9 is isomorphic to the first six terms
of (29.1).

28.4. Injective modules and injective resolutions. An R-module I is called injective if Hom(•, I) is
(right-)exact. An injective resolution of an R-module N is an exact sequence of R-modules

0→ N→ I0 d
−→ I1 d

−→ I2
→ · · · (I )

where each I j is an injective module.
Given such an injective resolution I of N, for every R-module M and every i ∈ Z, we define the

R-module
Exti

R(M,N)I := Hi(HomR(M, I•));

we set Ii = 0 if i < 0.

28.5. Comparison of Ext-groups.

Proposition 28.7. Let M and N be R-modules. Let (R) be a projective resolution of M and let (I ) be an injective
resolution of N. For each i, we have a canonical isomorphism

Exti
R(M,N)R ≃ Exti

R(M,N)I .

Proof. Let K•,• be the double complex defined by Kp,q := HomR(Pp, Iq). It follows from the exercise
below that we have canonical isomorphisms

Hi(HomR(P•,N)) ≃ Hi(Tot(K•,•)) ≃ Hi(HomR(M, I•)).

□

Exercise 28.8. Let K•,• be a double complex of R-modules, namely a collection of R-modules Kp,q indexed
by (p, q) ∈ Z2 together with morphisms of R-modules

d′ : Kp,q
→ Kp+1,q, d′′ : Kp,q

→ Kp,q+1

for each p, q ∈ Z such that
d′2 = d′′2 = 0, d′d′′ = d′′d′.

The total complex Tot(K•,•) associated to K•,• is the complex K• defined by

Kn := ⊕p+q=nKp,q

and d : Kn
→ Kn+1 is defined by

dx = d′x + (−1)pd′′x

for all x ∈ Kp,q.
Suppose that Kp,q = 0 whenever p < 0 or q < 0. Let

X• := ker(d : K•,0 → K•,1), Y• := ker(d : K0,•
→ K1,•).

Show that for each i, we have canonical isomorphisms

Hi(X•) ≃ Hi(Tot(K•,•)) ≃ Hi(Y•).

28.6. Ideal-theoretic criteria for injectivity.

Proposition 28.9. Let N be an R-module. The following assertions are equivalent.

(1) N is injective.
(2) For every ideal I ⊂ R, we have Ext1

R(R/I,N) = 0.
(3) For every ideal I ⊂ R, every R-linear morphism I ⊂ N extends to an R-linear morphism R→ N.
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Proof. It is clear that (1) implies (3). Applying HomR(•,N) to the short exact sequence

0→ I→ R→ R/I→ 0

and note that Ext1
R(R,N) = 0, we obtain an exact sequence

HomR(R,N)→ HomR(I,N)→ Ext1
R(R/I,N)→ 0,

showing that (2) and (3) are equivalent.
The proof of (3)⇒ (1) uses Zorn’s lemma; see [12, 0AVF]. □

Exercise 28.10. Let M be a Z-module (i.e. an abelian group). Show that M is injective if and only if M
is divisible: namely for any m ∈ M and any nonzero integer n, there exists m′ ∈ M such that we have
m = n ·m′.

We admit the following proposition.

Proposition 28.11. Any R-module N has an injective resolution. Namely, there exists an exact sequence of
R-modules

0→ N→ I0 d
−→ I1 d

−→ I2
→ · · · (I )

where each I j is an injective module.

Proof. See [12, Section 01D8]. □

As a consequence, we can always compute Exti
R(M,N) using injective resolutions of N. Exactly the

"dual" argument of § 28.3 show that for every R-module M, a short exact sequence

0→ N′ → N→ N′′ → 0

of R-modules induces a long exact sequence of R-modules

0→ HomR(M,N′)→ HomR(M,N)→ HomR(M,N′′)

→ Ext1
R(M,N′)→ Ext1

R(M,N)→ Ext1
R(M,N′′)

→ Ext2
R(M,N′)→ Ext2

R(M,N)→ Ext2
R(M,N′′)

→ · · ·

(28.2)

28.7. Aside: the Eilenberg–Mazur swindle. The following argument

0 = (1 − 1) + (1 − 1) + · · · = 1 + (−1 + 1) + (−1 + 1) + · · · = 1

showing that 0 = 1 is obviously incorrect. But the similar idea sometimes works in other contexts. Here
is an example.

Proposition 28.12. For every projective R-module P, there exists a free module F such that

P ⊕ F ≃ F.

Proof. Take an R-module Q such that P ⊕Q is free. Then

F := (P ⊕Q) ⊕ (P ⊕Q) ⊕ · · · = P ⊕ (Q ⊕ P) ⊕ (Q ⊕ P) ⊕ · · · ≃ P ⊕ F.

□

29. Flat modules

Definition 29.1. An R-module M is called flat if M ⊗R • is left-exact.

Lemma 29.2. Let M be an R-module. If M is projective, then M is flat.
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Proof. Since M is projective, there exists an R-module Q such that M⊕Q =: F is free. For every injective
morphism of R-modules N→ N′, we have the commutative diagram

M ⊗R N

��

// M ⊗R N′

��
F ⊗R N // F ⊗R N′

Since F is free, F⊗R N→ F⊗R N′ is injective. As M is a direct summand of F, the map M⊗R N→ F⊗R N
is also injective. Hence M ⊗R N→M ⊗R N′ is injective. □

29.1. Tor functor. A flat resolution of an R-module M: is an exact sequence of R-modules

· · ·
d
−→ P1

d
−→ P0 →M→ 0 (R)

such that each Pi is a flat module. Given such a resolution R and another R-module N, define

TorR
i (M,N)R := Hi(P• ⊗N);

here, for any complex of R-modules

· · · → Ci+1
di+1
−−→ Ci

di
−→ Ci−1 → · · · ,

the ith homology of C• is defined as

Hi(C•) :=
ker di

Imdi+1
.

By the same argument and construction as in § 28.2, TorR
i (M,N)R is also functorial in M and in N, and

we have a canonical isomorphism TorR
i (M,N)R ≃ TorR

i (M,N)R′ if (R′) is another flat resolution of M.
By a slight abuse of notation we set

TorR
i (M,N) := TorR

i (M,N)R.

Exactly as in § 28.5, we can also compute TorR
i (M,N) using flat resolutions of N.

Finally, the same argument as in § 28.3 shows that every short exact sequence

0→ N′ → N→ N′′ → 0

of R-modules induces a long exact sequence of R-modules

· · · → TorR
2 (M,N′)→ TorR

2 (M,N)→ TorR
2 (M,N′′)

→ TorR
1 (M,N′)→ TorR

1 (M,N)→ TorR
1 (M,N′′)

→M ⊗R N′ →M ⊗R N→M ⊗R N′′ → 0.

(29.1)

Exercise 29.3. Show that we have isomorphisms

TorR
i (M,N) ≃ TorR

i (N,M)

which are natural in M and in N.

Example 29.4. Let r ∈ R which is not a zero-divisor. For every R-module M, using the projective
resolution

0→ R r
−→ R→ R/(r)→ 0

of R/(r), we obtain

(29.2) TorR
i (M,R/(r)) ≃


M/rM if i = 0

{m ∈M | rm = 0 } if i = 1

0 if i ≥ 2.

29.2. Basic facts of flat modules.
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Exercise 29.5 (Base change preserves flatness). Let M be an R-module and let ϕ : R → A be a ring
homomorphism. Show that the A-module M ⊗R A is flat.

Let ϕ : R→ A be a ring homomorphism, which defines an R-module structure on A. We say that ϕ
is flat, or A is flat over R, if this R-module A is flat.

Exercise 29.6 (Transitivity of flatness). Let R→ A be a ring homomorphism and let M be an A-module.
Suppose that M is flat over A and that A is flat over R. Show that M is flat over R.

Exercise 29.7. Let S ⊂ R be a multiplicative subset. Show that the localization R→ S−1R is flat.

Exercise 29.8. Let f : R→ A be a flat ring homomorphism. Let p ∈ Spec(A) and let q = f−1(p) ∈ Spec(R).
Show that the induced morphism Rq → Ap is also flat.

29.3. Flatness is a local property.

Proposition 29.9. Let M be an R-module. The following assertions are equivalent.

(1) M is flat over R.
(2) Mp is flat over Rp for every prime ideal p ⊂ R.
(3) Mm is flat over Rm for every maximal ideal m ⊂ R.

Proof. By Exercise 29.7, it remains to prove (3) ⇒ (1). Let f : N → N′ be an injective morphism of
R-modules. Then for every maximal ideal m ⊂ R,

( f ⊗ IdM)m : (N ⊗R M)m ≃ Nm ⊗Rm Mm

fm⊗IdMm
−−−−−−→ N′m ⊗Rm Mm ≃ (N′ ⊗R M)m

is injective; here the isomorphisms are the ones defined in Exercise 10.9. Hence f ⊗ IdM is injective. □

Exercise 29.10. Show that locally free R-modules are flat.

29.4. Ideal-theoretic criteria for flatness.

Proposition 29.11. Let M be an R-module. The following assertions are equivalent.

(1) M is flat over R.
(2) For every finitely generated ideal I ⊂ R, the natural map I ⊗R M → M is injective; therefore we have

I ⊗R M ≃ IM.
(3) For every finitely generated ideal I ⊂ R, we have TorR

1 (M,R/I) = 0.

Proof. It is clear that (1)⇒ (3)⇒ (2).
Assume (2). First we note that I ⊗R M → M is injective for every ideal. Indeed, suppose that∑k

j=1 r j ⊗m j 7→ 0. Let I′ := (r1, . . . , rk). Then the composition

I′ ⊗R M→ I ⊗R M→M

is the natural map, which is injective. Hence
∑k

j=1 r j ⊗m j = 0 in I ⊗R M. Therefore applying • ⊗R M to

0→ I→ R→ R/I→ 0

together with TorR
1 (R,M) = 0 shows that

TorR
1 (M,R/I) = 0.

We need to show that for every injective morphism of R-module f : N ↪→ N′, the map 1 := f ⊗ IdM

is also injective. Note that it suffices to prove the case where N′/N is finitely generated. Indeed, if
1(

∑k
j=1 n j ⊗m j) = 0, then

∑k
j=1( f (n j),m j) is some element in the module of relations defining the tensor

product N′ ⊗R M, which involves only finitely many n′1, . . . ,n
′

ℓ ∈ N′. Thus
∑k

j=1 n j ⊗ m j = 0 in N ⊗R M
follows from the injectivity of

N ⊗R M→

N +
ℓ∑

i=1

R · n′i

 ⊗R M.
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By induction on the number of generators of Q := N′/N, it suffices to show that 1 : N⊗R M→ N′⊗R M
is injective in the case where Q is generated by one element. In this case, we have Q ≃ R/Ann(Q).
Applying • ⊗R M to the short exact sequence

0→ N→ N′ → R/Ann(Q)→ 0

together with TorR
1 (M,R/Ann(Q)) = 0 shows that 1 : N ⊗R M→ N′ ⊗R M is injective. □

29.5. Flatness and torsion-freeness. An R-module M is called torsion free if for every r ∈ R and m ∈M,
rm = 0 implies that either m = 0 or r is a zero-divisor in R. The name "Tor" is partly due to the following
result.

Proposition 29.12. Flat modules are torsion free.

Proof. Let M be a flat R-module. Let r ∈ R which is not a zero-divisor. Then R ×r
−→ R is injective, so by

flatness of M, its tensorization M ×r
−→M with M is also injective. □

Exercise 29.13. Suppose that R is a PID. Show that an R-module M is flat if and only if M is torsion free.

29.6. Finite projective modules.

Proposition 29.14. Let M be a finitely presented R-module. The following assertions are equivalent.

(1) M is locally free.
(2) M is projective.
(3) M is flat.

Proof. By Exercise 29.10, we have (2)⇒ (3).
Assume (3). Let p ⊂ R be a prime ideal. Let d := dimκ(p) M|p By the Nakayama lemma, there exists

a surjective morphism f : Rd
p ↠ Mp such that f |p : Rd

|p
∼
−→ M|p. Since Mp is flat over Rp, we have

TorRp
1 (•,Mp) = 0, so tensoring κ(p) to the exact sequence

0→ ker( f )→ Rd
p →Mp → 0

shows that ker( f )|p = 0. Since Mp is finitely presented, ker( f ) is finitely generated. Thus ker( f )p = 0
by the Nakayama lemma, which shows that Mp is free. Again since M is finitely presented, M is thus
locally free.

Finally we show (1) ⇒ (2). Let ϕ : N → N′ be an surjective morphism of R-modules. We show
that the induced morphism ϕM : HomR(M,N)→ HomR(M,N′) is surjective. Let p ∈ Spec(R) be a prime
ideal By Proposition 10.15, the localization (ϕM)p is isomorphic to the morphism

HomRp (Mp,Np)→ HomRp (Mp,N′p)

induced by ϕp : Np → N′p. Since Mp is free, (ϕM)p is thus surjective. Hence ϕM is surjective. □

29.7. Going-down for flat morphisms. As a geometric consequence of flatness, we have the following
statement.

Proposition 29.15 (Going-down property for flat morphisms). Let R→ A be a flat morphism of rings. Let
f : Spec(A) → Spec(R) be the induced morphism of affine schemes. Let p ⊂ p′ ⊂ R be a pair of nested prime
ideals of R. If there exists q′ ∈ f−1(p′), then there exists q ∈ f−1(p) such that q ⊂ q′.

We will prove Proposition 29.15 after we introduce and discuss about the notion of faithfully flat
modules.

29.8. Faithfully flat modules. An R-module M is called faithfully flat if for any morphism of R-modules
f : N→ N′,

N
f
−→ N′ is injective ⇔ N ⊗M

f⊗IdM
−−−−→ N′ ⊗M is injective.

Exercise 29.16. Let M be a flat R-module. Show that the following statements are equivalent.
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(1) M is faithfully flat.
(2) M ⊗R N = 0 implies N = 0 for any R-module N.

Exercise 29.17. Let M be an R-module. Show that the following statements are equivalent.

(1) M is faithfully flat.

(2) For any sequence of morphisms of R-modules N1
f
−→ N2

1
−→ N3,

N1
f
−→ N2

1
−→ N3 is exact ⇔ N1 ⊗M

f⊗IdM
−−−−→ N2 ⊗M

1⊗IdM
−−−−→ N3 ⊗M is exact.

The following statement shows that a flat module M is faithfully flat if and only if

Proposition 29.18. Let M be a flat R-module. The following assertions are equivalent.

(1) M is faithfully flat.
(2) M|p , 0 for any prime ideal p ⊂ R.
(3) M|m , 0 for any maximal ideal m ⊂ R.

Proof. By Exercise 29.16 we have (1) =⇒ (2). (2) =⇒ (3) is clear. Now assume (3). Let N be any
nonzero R-module. By Exercise 29.16, it suffices to show that M ⊗R N , 0. Let x ∈ N which is nonzero.
Since M is flat, the morphism (R · x) ⊗R M→ M ⊗R N is injective. Since x , 0, Ann(x) is a proper ideal
of R, so contained in a maximal ideal m. As R · x ≃ R/Ann(x)↠ R/m, we have a surjective morphism
(R · x) ⊗R M↠M|m. Since M|m , 0 by assumption, we conclude that M ⊗R N , 0. □

29.9. Faithfully flat morphisms. Let f : R→ A be a ring homomorphism, which defines an R-module
structure on A. We say that f is faithfully flat, or A is faithfully flat over R, if this R-module A is faithfully
flat.

Exercise 29.19. Let f : R → A be a ring homomorphism. Show that the following statements are
equivalent.

(1) f is faithfully flat.
(2) f is flat and Spec(A)→ Spec(R) is surjective.
(3) f is flat and every closed point of Spec(R) is in the image of Spec(A)→ Spec(R).

(Hint: Lemma 10.30.)

Proof of Proposition 29.15. By Exercise 29.8, the morphism f ′ : Rp′ → Aq′ induced by f is flat. Since
f ′−1 takes the maximal ideal q′Aq′ to the maximal ideal p′Rp′ , it follows from Exercise 29.19 that
Spec(Aq′) → Spec(Rq′) induced by f ′ is surjective. In particular, pRp′ has a pre-image q ∈ Spec(Aq′).
Hence the pre-image q ⊂ A of q satisfies q ⊂ q′ and f−1(q) = p. □
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Completion

The final lecture of Modern Algebra II is devoted to completion. Due to time limit, some proofs
are omitted. Reading the relevant details in the literature, such as [5, Chapter 7] or the Stack Project, is
strongly recommended.

30. Examples and definition

Let p be a prime number.

30.1. p-adic integers. We’ve seen that C[X] and Z share some similarities. At every point p ∈ C, every
polynomial function f ∈ C[X] has a unique expansion

f (X) = a0 + a1(X − p) + · · · + an(X − p)n

with ai ∈ C. Likewise, for any prime number p, any positive number N can be written in a unique way
in base p:

N = a0 + a1 · p + · · · + an · pn

with an ∈ {0, . . . , p − 1}. According to this dictionary, the analogue of formal power series are p-adic
integers:

Zp :=

 formal infinite series
∞∑

i=0

ai · pi

∣∣∣∣∣∣∣ ai = 0, . . . , p − 1


Formal power series appear when we develop at a point p a rational function f which doesn’t

have a pole at p. Likewise, p-adic integers already when we try to develop fractions f such that the
denominator of its reduced form is not divisible by p (i.e. f ∈ Z(p)). Infinite sum appears already when
we develop negative integers, e.g.

−1 =
∞∑

i=0

(p − 1) · pi.

The development of f ∈ Z(p), is based on the isomorphism Z/pnZ ≃ Z(p)/pnZ(p): the corresponding p-adic
expansion

f =
∞∑

i=0

ai · pi

is a p-adic integer satisfying

f =
n∑

i=0

ai · pi mod pn+1

for all n.

30.2. p-adic numbers. The analogue of formal Laurent series are p-adic numbers:

Qp :=

 formal infinite series
∑
i≥i0

ai · pi

∣∣∣∣∣∣∣ i0 ∈ Z; ai = 0, . . . , p − 1

 .
Just as we can develop a rational function into a formal Laurent series, we can develop a rational number
f into a p-adic number as follows. First we write

f = 1 · pm

91
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with 1 ∈ Z(p). If
∑
∞

i=0 ai · pi is the p-adic expansion of 1, then the p-adic expansion of f is
∞∑

i=m

ai−m · pi

30.3. The implicit function theorem, Newton’s method, and Hensel’s lemma.

Theorem 30.1 (Formal implicit function theorem). Let f (x, y) ∈ C[[x, y]]. If f (0, 0) = 0 and ∂y f (0, 0) , 0,
then there exists y(x) ∈ C[[x]] such that

f (x, y(x)) = 0.

For instance, if f (x, y) = (y − 1)2
− x − 1, then

y = 1 + power series expansion of
√

x + 1 at 0

works. Theorem 30.1 can be proven using Newton’s method.
Hensel’s lemma is the analogue of the implicit function theorem for Zp.

Theorem 30.2 (Hensel’s lemma). Let f ∈ Zp[x] and let f ∈ Fp[x] be its reduction modulo p. Suppose that
b ∈ Fp is a root of f and

f
′

(b) , 0.

Then there exists a unique lift a ∈ Zp of b to a root of f , namely

f (a) = 0 and a = b mod p.

Exercise 30.3. Is 7 a square in Z3?

30.4. Qp as a topological completion. Recall R is the completion of Q with respect to the usual absolute
value.

Theorem 30.4. Qp is the completion of Q with respect to the p-adic absolute value.

31. Completion

31.1. Definition and basic properties. Let R be a ring and let I be an ideal. The I-adic completion of R
is defined as

R̂ := lim
←−−

R/In =

 (an) ∈
∞∏

n=0

R/In

∣∣∣∣∣∣∣ an = an+1 mod In

 .
It is an R-subalgebra of

∏
∞

n=0 R/In.

Exercise 31.1. Show that

(1) R[[X]] ≃ ̂R[X](X)

(2) Zp ≃ Ẑ(p),

where the completions are defined with respect to the maximal ideals. Show that Zp is a DVR.

Exercise 31.2. Let m ⊂ R be a maximal ideal. Show that the m-adic completion of R is a local ring, with
maximal ideal m · R̂.

Similarly, if M is an R-module, its I-adic completion is defined as

M̂ := lim
←−−

M/InM =

 (mn) ∈
∞∏

n=0

M/InM

∣∣∣∣∣∣∣ mn = mn+1 mod InM

 .
Exercise 31.3. Show that the (

∏
∞

n=0 R/In)-structure on
∏
∞

n=0 M/InM induces an R̂-module structure on
M̂.

For any morphism of R-modules f : M → N, the completion naturally induces a morphism of
R̂-modules f̂ : M̂→ N̂. Therefore the I-adic completion defines a functor from the category of R-modules
to itself.
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Lemma 31.4. Let f : M → N be a morphism of R-modules. If f : M/IM → N/IN is surjective (e.g. if f is
surjective), then f̂ : M̂→ N̂ is also surjective.

Lemma 31.5. Let
0→ K→M→ N→ 0

be an exact sequence. If N is flat, then the completion

0→ K̂→ M̂→ N̂→ 0

is also exact.

Remark 31.6. In general, Completion is not an exact functor. It is not even right-exact.

Exercise 31.7. Show that the natural map M ⊗R R̂→ M̂ is surjective.

If the canonical morphism M→ M̂ is an isomorphism, then we say that M is I-adically complete.

Lemma 31.8. M̂ is I-adically complete.

31.2. Complete local rings are Henselian. Let (R,m) be a local ring with residue field κ. We call (R,m)
a Henselian ring if the following property holds: for any monic polynomial f ∈ R[X] and any root a0 ∈ κ

of its reduction f ∈ κ[X] modulo m such that

f
′

(a0) , 0,

there exists a ∈ R such that
a = a0 mod m and f (a) = 0.

Theorem 31.9. A complete local ring is henselian.

Proof. Let f ∈ R[X] be a monic and let a0 ∈ κ be a root of f ∈ κ[X] such that f
′

(a0) , 0. We prove by
induction that a lifts to a root an ∈ R/mn+1 of

fn := f mod mn+1
∈ (R/mn+1)[X]

using Newton’s method.
Suppose that an ∈ R/mn+1 is constructed. Let b ∈ R/mn+2 be any lift of an. Then fn+1(b) ∈ mn+1/mn+2.

Asm is the maximal ideal of the local ring R, only units of R/mn+2 can map to units of R/m. Thus f ′n+1(b)
is invertible in R/mn+2. Now set

an+1 := b −
fn+1(b)
f ′n+1(b)

.

□

32. Completion of Noetherian rings

In this section, we assume that the ring R is Noetherian. Let I be an ideal.

32.1. Basic properties.

Proposition 32.1. The I-adic completion R̂ of R is also Noetherian.
In particular, R[[X]] is also Noetherian.

Proposition 32.2. Completion of finite R-modules is an exact functor.

Proposition 32.3. The ring morphism R→ R̂ is flat. If (R,m) is a local ring and I ⊂ m, then R→ R̂ is faithfully
flat.

32.2. Tangent cone of the completion. Let (R,m) be a Noetherian local ring, and let R̂ be the m-adic
completion.

Proposition 32.4. We have a graded ring isomorphism

gr
m̂

R̂ ≃ gr
m

R.
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32.3. Formal neighborhood. Let k be an algebraically closed field. The polynomial

y2
− x2(x + 1)

is irreducible in k[x, y](x,y), but not in k[[x, y]] (because x+ 1 has a square root). The tangent cone at (0, 0)
of the curve defined by y2

− x2(x + 1) also has two branches.
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