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Convention

We assume the axiom of choice together with its consequence, e.g. the Zorn lemma.

Theorem 0.1 (Zorn’s lemma). Let Σ be a nonempty partially ordered set. Assume that every totally ordered
subset of Σ has an upper bound in Σ. Then Σ has a maximal element.
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LECTURE 1

Group actions and examples

"Numbers measure size, groups measure symmetry."

— M. A. Armstrong (Groups and symmetry)

1. Group actions

Let G be a group.

1.1. The category of G-sets. A G-action on a set X is a group homomorphism G Ñ BijpXq, often denoted
by G ýX. Explicitly, it is a map

G ˆ X Ñ X

p1, xq ÞÑ 1 ¨ x
(1.1)

such that x ÞÑ 1 ¨ x is bijective self-map of X for every 1, and

1 ¨ ph ¨ xq “ p1hq ¨ x

for any 1, h P G and x P X.
A set X endowed with a G-action is also called a G-set. A morphism of G-sets is a map f : X Ñ Y

between G-sets such that
1 ¨ f pxq “ f p1 ¨ xq

for all 1 P G and x P X. If α : G Ñ BijpXq and β : G Ñ BijpYq are the group homomorphisms defining
the G-actions on X and Y, then a morphism f : X Ñ Y of G-sets gives rise to a commutative diagram

BijpXq
ϕ ÞÑ f ˝ϕ˝ f ´1

// Bijp f pXqq

G

α

bb

β

;;

An isomorphism of G-sets is a bijective morphism of G-sets.

1.2. Example: the set of cosets. Let H ď G be a subgroup. For any 1 P G and any (left-)coset 11H, define

1 ¨ p11Hq :“ p111qH.

Exercise 1.1. Verify that this defines a group action G ýG{H.

Proposition 1.2. Let H and H1 be two subgroups of G. The following assertions are equivalent.

(i) G{H » G{H1 as G-sets;
(ii) H is conjugate to H1.

Proof. Recall that for any 1, 11 P G, we have

(*) 1H “ 11H if and only if 1´111 P H;

we will repeatedly use this fact after. First we prove the following statement.

Claim. Let ϕ : G{H Ñ G{H1 be a morphism of G-sets. Then ϕ is surjective and we have

H Ă 1H11´1

for some 1 P G.
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Proof. We have ϕpHq “ 1H1 for some 1 P G, so

ϕp11Hq “ ϕp11 ¨ Hq “ 11 ¨ ϕpHq “ 111H1

for every 11 P G, which shows that ϕ is surjective. For every h P H, the cosets

ϕpHq “ 1H1 and ϕphHq “ h1H1

are equal, so 1´1h1 P H1 by (*), which proves that H Ă 1H11´1. □

Exercise 1.3. In the above Claim, show that H “ 1H11´1 if and only if ϕ is injective. Complete the proof
of Proposition 1.2.

□

1.3. Stabilizers. Let G ýX be a group action and let x P X. The subset G ¨ x Ă X is called the orbit of x.
The stabilizer of an element x P X is the subgroup

Stabpxq :“ t 1 P G | 1 ¨ x “ x u .

The G-action G ýX restricts to a G-action on G ¨ x. Define

µ : G{Stabpxq Ñ G ¨ x

1 ¨ Stabpxq ÞÑ 1 ¨ x.
(1.2)

This is a well-defined map: if 1 ¨ Stabpxq “ 11 ¨ Stabpxq, then 1´111 P Stabpxq, so

1 ¨ x “ 1 ¨ p1´111q ¨ x “ 11 ¨ x.

We verify that µ is a morphism of G-sets.

Theorem 1.4 (Orbit-stabilizer theorem). µ defines an isomorphism of G-sets

G{Stabpxq
„
ÝÑ G ¨ x.

Proof. We verify easily that µ is surjective. Now suppose that 1, 11 P G are two elements such that
1 ¨ x “ 11 ¨ x. Then 1´111 P Stabpxq, so 1 ¨ Stabpxq “ 11 ¨ Stabpxq. Thus µ is injective. □

A G-action G ýX is called transitive if is has exactly one orbit.1 The following statement is an
immediate consequence of Theorem 1.4.

Corollary 1.5. A G-action G ýX is transitive if and only if X » G{H as G-sets for some subgroup H ď G.

1.4. Partition a G-set into orbits. Let G ýX be a group action. For every x, y P X, we have either

G ¨ x “ G ¨ y or G ¨ x X G ¨ y “ H.

Thus the set of orbits
OrbpG ýXq :“ t G ¨ x | x P X u

forms a partition of X. Together with Corollary 1.5, we deduce that

(1.3) X »
ğ

G¨x P OrbpG ýXq

G{Stabpxq

as G-sets. In particular, we have the following statement:

Corollary 1.6 (Burnside’s lemma). Assume that both G and X are finite, then

|X|

|G|
“

ÿ

G¨x P OrbpG ýXq

1
|Stabpxq|

.

Informally, the above formula provides in some sense a more correct way of counting "X{G" by
taking into account the symmetry of the objects, than just counting the number of orbits. For instance,

1Thus an empty G-set is not transitive.
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if G acts on a point X “ t˚u, then the "number" of X{G should be 1 divided by |G| (the number of
symmetries of the point).

1.5. Burnside rings. Let G be a finite group. The Burnside ring of G is the Z-module BpGq defined as
follows. First let

ΛpGq :“ ZrIsomorphism classes of finite G-setss

be the free Z-module generated by all isomorphism classes finite G-sets. For any G-set X, let rXs denote
its class in ΛpGq. Define the product

rX1s ¨ rX2s “ rX1 ˆ X2s

for any pair of G-sets X1 and X2, then extend it linearly to the whole ΛpGq. This turns ΛpGq into a
commutative ring with 1 “ rG ýt˚us.

Now consider the subgroup of ΛpGq generated by

rX1 \ X2s ´ rX1s ´ rX2s,

which forms an ideal (of relations) R of ΛpGq. The Burnside ring is defined as

BpGq :“ ΛpGq{R.

For instance, we have rG ýHs “ 0 in BpGq.
The Z-module structure of BpGq is easy to describe.

Exercise 1.7. Show that as Z-modules,

(1.4) BpGq »
à

ZrG{Hs

where the direct sum runs through all conjugacy classes of subgroups of G, and H is a representative
for each conjugacy class.

The product operation of BpGq is more complicated.

Exercise 1.8. Describe BpS3q as a ring. For instance, describe BpS3q using (1.4), and compute the
multiplication table of the generators.

1.6. Double cosets. Let G be any group and let K,H ď G be subgroups of G. How to describe the
G-orbits of pG{Kq ˆ pG{Hq?

The double cosets K1H with 1 goes through G form a partition of G. Let KzG{H be the set of double
cosets.

Exercise 1.9. Show that
KzG{H Ñ Orb pG ýpG{Kq ˆ pG{Hqq

sending K1H to G ¨ pK, 1Hq, and
KzG{H Ñ Orb pK ýpG{Hqq

sending K1H to K ¨ p1Hq are both bijections.

2. Symmetry group

2.1. The linear isometry group on Rn. Let Rn be the n-dimensional Euclidean space. The Euclidean
inner product p‚|‚q on Rn defines a metric on Rn, and a linear transformation 1 P GLpn,Rq is an isometry
if and only if 1 preserves p‚|‚q, namely 1 is in the orthogonal group Opn,Rq.

The orthogonal group Opn,Rq has two connected components: these are the preimages of the
determinant

det : Opn,Rq Ñ t˘1u.

The kernel of det is called the special orthogonal group, denoted by SOpn,Rq. Equivalently, SOpn,Rq is
the subgroup of orientation-preserving elements of Opn,Rq. Formally this means that if we fix any basis
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e1, . . . , en of Rn, an element 1 P Opn,Rq is in SOpn,Rq if and only if

1pe1 ^ ¨ ¨ ¨ ^ enq “ e1 ^ ¨ ¨ ¨ ^ en P

n
ľ

Rn.

Elements of SOpn,Rq are also called rotations.

2.2. Decomposition group, inertia group. Let G ýX be a group action on a set X. Let Y Ă X be a
subset. The decomposition group and the inertia group of Y with respect to G ýX are defined as

DecpYq :“ t 1 P G | 1pYq “ Y u ,

InepYq :“ t 1 P G | 1pyq “ y for all y P Y u “
č

yPY

Stabpyq.

For instance, the subgroup Opn,Rq Ă GLpn,Rq is also the decomposition of a sphere Sn´1 Ă Rn

centered at the origin, with respect to the linear action GLpn,Rq ýRn. The inertia group of a line L in
R3 for the action SOp3,Rq ýR3 consists of the rotations with axis L.

In these lectures, the decomposition group of Y Ă Rn with respect to Opn,Rq ýRn is called the
symmetry group of Y. Replacing Opn,Rq with SOpn,Rq, we call the resulting decomposition group the
rotational symmetry group (or chiral symmetry group) of Y.

Exercise 2.1. What is the symmetry group and the rotational symmetry group of a plane R2 Ă R3?

2.3. The symmetry of regular polygon. Let Π Ă R2 be a regular n-gon centered at the origin. Then the
rotation ρ with angle 2π{n preserves Π. The reflection σ with respect to the line passing through the
origin and a vertex of Π (or the midpoint of an edge) also preserves Π.

Exercise 2.2.

(1) Show that the rotational symmetry group of Π is the cyclic group of rotations with with angle
2π
n ¨ Z.

(2) Show that the symmetry group of Π is generated by ρ and σ, and consists of rotations with
angle 2π

n ¨ Z and reflections. The latter group is called the dihedral group and is denoted by Dn.
What is the order of Dn?

(3) Show that the dihedral group is defined by generators and relations as follows:

Dn “ă r, s | rn “ s2 “ prsq2 “ 1 ą .

(4) Classify the finite subgroups of SOp2,Rq and Op2,Rq.

2.4. Tetrahedraon. Let T Ă R3 be a tetrahedron centered at origin.

Exercise 2.3. By considering group actions on the vertices of T, show that:

(1) The symmetry group of T is isomorphic to the permutation group S4.
(2) The rotational symmetry group of T is isomorphic to the alternating groupA4. (Hint: otherwise,

it contains a transposition, so an element fixing two vertices of T.)

2.5. Cube and octahedron. Let C Ă R3 be a cube centered at origin.

Exercise 2.4.

(1) Show that the rotational symmetry group of C is isomorphic to the permutation group of the
set of four diagonals of C.

(2) Find a tetrahedron T inscribed in C, and identify A4 Ă S4 as the subgroup preserving T.
(3) Show that a cube and an octahedron have the same symmetry group. (Hint: cube and

octahedron are "dual" solids.)

2.6. Dodecahedron and icosahedron. Let D Ă R3 be a dodecahedron centered at origin.

Exercise 2.5.
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(1) We define a needle to be a vertex of D together with an edge adjacent to it. Show that the
rotational symmetry group G of D acts freely and transitively on the set of needles. Deduce
that |G| “ 60.

(2) Show that there are exactly 5 tetrahedra inscribed in D. Show that permutations of these
tetrahedra yield an injective homomorphism G ãÑ S5.

(3) Show that for each pair i ‰ j, there exists a unique pair of vertices of Ti Y T j such that the line
L passing through them is a diagonal of D.

(4) Deduce that the rotations of D preserving Ti and T j yields cyclic permutations of the three
remaining tetrahedra. Conclude that the image of G ãÑ S5 does not contain any transposition.

(5) Show that An is the unique subgroup of index 2 of Sn, and conclude that G » A5. (Hint: show
that the only surjective homomorphismSn ↠ t˘1u onto t˘1u is the signature homomorphism;
recall that transpositions are all conjugates and they generate Sn.)

(6) Show that a dodecahedron and an icosahedron have the same symmetry group.

2.7. Finite subgroups of SOp3,Rq.

Theorem 2.6. A finite subgroup of SOp3,Rq is isomorphic to one of the following.

(1) Z{nZ (rotations of a regular n-gon).
(2) Dn (rotations + reflections of a regular n-gon).
(3) A4 (rotations of a tetrahedron).
(4) S4 (rotations of a cube or an octahedron).
(5) A5 (rotations of a dodecahedron or an icosahedron).

Exercise 2.7. The aim of this exercise is to prove the above theorem. Let G ď SOp3,Rq be a finite
subgroup.

(1) Consider the G-action on the unit sphere S2. Show that the stabilizer of a point p P S2 is a cyclic
group Z{mpZ and that mh¨p “ mp for every h P G.

(2) A point p P S2 is called a pole if p is fixed by some nontrivial 1 P G. Let p1, . . . , pk be
representatives of the orbits of G ýtpolesu and let mi :“ mpi . Show that

|G| ´ 1 “
1
2

k
ÿ

i“1

|G|

mi
pmi ´ 1q.

(3) Prove Theorem 2.6.
(4) Prove the following corollary.

Corollary 2.8 (Euclid). There exist exactly five regular polyhedra in R3.

3. Counting flags via group actions

3.1. Flag varieties. Let k be a field and let V be an n-dimensional k-vector space. A flag variety is the
set of nested linear subspaces of some fixed dimensions (draw picture)

Flpi1 ă i2 ă ¨ ¨ ¨ ă ik,Vq :“
␣

Vi1 Ă Vi2 Ă ¨ ¨ ¨ Ă Vik Ă V
ˇ

ˇ Vi j linear subspace of V with dim Vi j “ i j
(

.

Grassmannians
Grpm,Vq :“ t W Ă V | dim W “ m u

are particular examples of flag varieties.
The linear group action GLpVq ýV induces a GLpVq-action on each flag variety. Since scalar

matrices stabilize each flag, GLpVq ýFlp¨ ¨ ¨ ,Vq descends to PGLpVq ýFlp¨ ¨ ¨ ,Vq.

Exercise 3.1. Show that the GLpVq-actions on flag varieties are transitive.

3.2. Counting flags. Now let k “ Fq be a finite field of cardinal q. Then flag varieties are finite sets.
Using the GLpVq-actions on flag varieties we can count the number of flags.
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Exercise 3.2.

(1) Show that
|GLpn,Fqq| “ pqn ´ 1qpqn ´ qq ¨ ¨ ¨ pqn ´ qn´1q.

(2) Count the number of stabilizers of an m-dimensional W Ă V for the GLpVq-action.
(3) Deduce that

|Grpm,Vq| “
pqn ´ 1qpqn ´ qq ¨ ¨ ¨ pqn ´ qm´1q

pqm ´ 1qpqm ´ qq ¨ ¨ ¨ pqm ´ qm´1q
.

As a consequence, the fraction in the above formula is an integer.
We can count the cardinal number of any flag variety in a similar way.

3.3. Asides: q-analog. Regarding q as a formal variable, the q-analog of an integer n is defined as

rnsq “ 1 ` q ` ¨ ¨ ¨ ` qn´1 “
1 ´ qn

1 ´ q
.

When q P R, the "classical n" is obtained by taking the limit

lim
qÑ1

rnsq “ n.

Likewise, we define
rnsq! :“ r1sqr2sq ¨ ¨ ¨ rnsq.

Then

|Grpm,Vq| “

ˆ

n
m

˙

q
:“

rnsq!
rn ´ msq!rmsq!

.

3.4. Examples: PGLp3, F2q, or the finite simple group with 168 elements. Let V “ pF2q3. Then V has 7
lines and 7 planes, which correspond to 7 points and 7 lines in the projectivization

PpVq :“ pV ´ 0q{kˆ.

Exercise 3.3. Draw the incidence relations of these points and lines.

We can also identify the set of 7 lines in PpVq (together with the PGLp3,F2q-action) with the dual
projective space

PpV_q :“ pV_ ´ 0q{kˆ.

Exercise 3.4. Let V „
ÝÑ V_ be the isomorphism defined by the standard basis of V “ pF2q3. This induces

a bijection PpVq
„
ÝÑ PpV_q. Let p P PpVq and let ℓ P PpV_q be its image.

(1) Let M P GLp3,F2q. Show that

M ¨ p “ p if and only if tM ¨ ℓ “ ℓ.

(2) Let H ď GLp3,F2q be the stabilizer of p for the GLp3,F2q-action on PpVq. Show that H is not
conjugate to tH.

(3) Show that the group actions

PGLp3,F2q ýPpVq and PGLp3,F2q ýPpV_q

are not isomorphic.

3.5. Examples: PGLp2, F5q andA5. Let V be a two-dimensional k-vector space. We have an identification

PpVq “ t ra : bs | a, b P k, pa, bq ‰ p0, 0q u { „

where pa, bq „ pa1, b1q whenever pλa, λbq “ pa1, b1q for some λ P kˆ. Sending ra : bs to a{b (with 8 :“ a{0)
defines another identification

PpVq » k Y t8u.
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Exercise 3.5. Show that PGLp2,kq ýPpVq is identified with
«

a b
c d

ff

: z ÞÑ
az ` b
cz ` d

through PpVq » k Y t8u.

Now let k “ F5. Consider the labelling of faces on a dodecahedron as follows:

Figure 1. Unfolded dodecahedron from D. Speyer’s answer in [5]

Exercise 3.6.

(1) Show that the action of the symmetry group G of a dodecahedron D on the labelled faces
defines a faithful G-action on F5 Y t8u.

(2) Show that this G-action is isomorphic to PGLp2,F5q ýF5 Y t8u. Deduce that

PGLp2,F5q » A5.



LECTURE 2

Quiver representations

4. Definitions and examples

4.1. Objects. A quiver Q is a finite directed graph. Suppose that V (resp. E) is the set of vertices (resp.
edges) of Q. A representation of Q over a field k is a collection of data pVi, fαq consisting of

‚ finite dimensional k-vector spaces Vi, one for each i P V;
‚ k-linear transformations ρe : Vtpαq Ñ Vhpαq, one for each edge α P E; here tpαq and hpαq denote

the tail and the head of α respectively.

4.2. Morphisms. A morphism ϕ : pVi, fαq Ñ pV1
i , f 1

αq of representations of Q is a collection of k-linear
transformations ϕi : Vi Ñ V1

i indexed by i P V such that

f 1
α ˝ ϕhpαq “ ϕtpαq ˝ fα

for every α P E. A morphism ϕ of representations of Q is called isomorphism if each ϕi is an isomorphism.
If each ϕi : Vi Ñ V1

i is the inclusion of a subspace of V1
i , then we call pVi, fαq a sub-representation of

pV1
i , f 1

αq.
The category of representations of Q over a field k is denoted by ReppQ,kq.

4.3. Indecomposable representations. A nonzero representation pVi, fαq of Q is called indecomposable if
pVi, fαq is not isomorphic to the direct sum

pV1
i , f 1

αq ‘ pV2
i , f 2

α q :“ pV1
i ‘ V2

i , f 1
α ‘ f 2

α q

of non-trivial representations of Q. Here, we say that a representation pVi, fαq is trivial if Vi “ 0 for all
vertex i.

We will prove the following theorem in the future.

Theorem 4.1 (Krull–Schmidt theorem). Every representation pVi, fαq of Q can be decomposed into a finite
direct sum of indecomposable representations:

pVi, fαq “

n
à

j“1
pVp jq

i , f p jq
α q.

Moreover, the decomposition is unique, up to permutation of the index j and up to isomorphism of each factor
pVp jq

i , f p jq
α q.

4.4. A1-quiver and A2-quiver. Consider the quiver Q “ . Then ReppQ,kq is equivalent to the category
of k-vector spaces. It has only one isomorphism class of indecomposable representation, which is k.

Consider the quiver Q “ ‚ Ñ ‚. Then a representation of Q is nothing but a k-linear morphism
ϕ : V Ñ W of finite dimensional k-vector spaces. If V1 Ă V is a supplement of kerpϕq and W1 Ă W a
suppliment of Impϕq, then

pV
ϕ
ÝÑ Wq » pkerϕ Ñ 0q ‘ pV1 ϕ

ÝÑ Impϕqq ‘ p0 Ñ W1q.

Note that V1 ϕ
ÝÑ Impϕq is an isomorphism, so each V

ϕ
ÝÑ W is isomorphic to a direct sum of copies of

pk Ñ 0q, pk Id
ÝÑ kq, p0 Ñ kq.

The above representations are indecomposable.

13
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4.5. A3-quivers. Consider a quiver Q whose underlying undirected graph is . We want to decom-
pose a representation of Q into indecomposable representations, in particular finding all indecomposable
representations. There are two cases to be studied:

‚ Ñ ‚ Ð ‚, ‚ Ñ ‚ Ñ ‚.

Let’s start with the first case. First of all by splitting away the kernels, a quiver representation of
the form ‚ Ñ ‚ Ð ‚ is isomorphic to a direct sum of quiver representations of the form

‚ ãÑ ‚ Ðâ ‚, k Ñ 0 Ð 0, 0 Ñ 0 Ð k.

By splitting away the common subspace of ‚ ãÑ ‚ Ðâ ‚, the later is isomorphic to a direct sum of quiver
representations of the form

U ãÑ V Ðâ W, k “ k “ k

with U X W “ 0. If V1 is a supplement of U ‘ W in V, then

pU ãÑ V Ðâ Wq “ pU “ U Ðâ 0q ‘ p0 ãÑ W “ Wq ‘ p0 ãÑ V1 Ðâ 0q.

Hence every quiver representation of Q is isomorphic to a direct sum of

p0 Ñ 0 Ð kq, p0 Ñ k Ð 0q, pk Ñ 0 Ð 0q, p0 Ñ k “ kq, pk “ k Ð 0q, pk “ k “ kq,

which are all irreducible.

Exercise 4.2. Do the case ‚ Ñ ‚ Ñ ‚ and compare with the previous result.

4.6. Jordan quiver. The Jordan quiver is a quiver Q with one loop ý‚. A representation of Q is the
same as an endomorphism ϕ : V Ñ V of a finite dimensional k-vector space V. Two endomorphisms
ϕ1, ϕ2 P EndpVq define isomorphic representation of Q if and only if ϕ1 is conjugate to ϕ2.

A Jordan quiver thus have infinitely many indecomposable representations: for instance if k is
infinite, then

k ˆλ
ÝÝÑ k

for λ P k are non-isomorphic indecomposable representations.

Exercise 4.3. Construct infinitely many non-isomorphic indecomposable representations of Q when k
is a finite field.

5. Dynkin quivers

5.1. Gabriel’s theorem. Let Q be a quiver.

Theorem 5.1 (Gabriel). Let k be any field and let Q be a quiver. The following assertions are equivalent.

(1) ReppQ,kq has only finitely many isomorphism classes of indecomposable representations.
(2) The underlying undirected graph of Q is one of the ADE Dynkin diagrams:

An :

Dn :

E6 :

E7 :

E8 :

A quiver as in the above theorem is called a quiver of finite type or a Dynkin quiver. Note that whether
or not a quiver Q is of finite type only depends on the underlying undirected graph.

We will prove p1q ùñ p2q in Theorem 5.1 assuming that k is algebraically closed.
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5.2. Conjugation. Let Q be a quiver, and let V (resp. E) be the set of vertices (resp. edges) of Q. For
every vertex i of Q, we fix a k-vector space Vi. Let

ReppQ,k; Viq “
ź

αPE

HomkpVtpαq,Vhpαqq

be the space of quiver representations of Q of the form pVi, fαq. Then

G :“
ź

iPV

GLpViq ýReppQ,k; Viq

defined by conjugation:
p1iqiPV ¨ pVi, fαq “ pVi, 1hpαq ˝ fα ˝ 1

´1
tpαq

q.

By construction, two representations pVi, fαq, pV1
i , f 1

αq of Q lie in the same G-orbit if and only if they are
isomorphic.

Let di “ dim Vi; we call d :“ pdiqiPV the dimension vector of pVi, fαq.

Lemma 5.2. Assume that k is algebraically closed. Let W be a k-vector space. Suppose that W admits a linear
action G ýW by G “

ś

iPV GLpViq with only finitely many orbits. Then

dim W ď
ÿ

iPV

d2
i .

The idea of the proof is simple with some algebraic geometry.

Proof (you may just concentrate on the idea if you haven’t followedModern Algebra II). Since
G ýW has only finitely many orbits, at least one of them G ¨ x is Zariski dense in W (namely, not
contained in any proper subsets of W defined as the zero locus of a system of polynomials with
coefficients in k). Since G Ñ G ¨ x is a surjective morphism of affine varieties over k, we have

ÿ

iPV

d2
i “ dim G ě dimpG ¨ xq “ dim W.

□

Proposition 5.3. Suppose that ReppQ,kq has only finitely many isomorphism classes of indecomposable
representations. Then

ÿ

αPE

dtpαqdhpαq ă
ÿ

iPV

d2
i .

as long as di is not all 0.

Proof. Since ReppQ,kq has only finitely many isomorphism classes of indecomposable representations,
Theorem 4.1 implies that ReppQ,k; Viq has only finitely many isomorphism classes of representations
of Q. In particular, the conjugation action G ýReppQ,k; Viq has only finitely many orbits.

Consider the linear action
G ýReppQ,k; Viq ‘ k

defines as the direct sum of the conjugation action G ýReppQ,k; Viq and the action G ýk defined by
the determinant

p1iqiPV ¨ λ “

˜

ź

iPV

detp1iq

¸

¨ λ.

For every µ P kˆ, the actions p1iqiPV ýReppQ,k; Viq and pµ ¨ 1iqiPV ýReppQ,k; Viq are the same, but
p1iqiPV ýk and pµ ¨ 1iqiPV ýk differ by a factor of µ

ř

i di . Since
ř

i di ą 0, it follows that for every
pVi, fαq P ReppQ,kq, the pairs

ppVi, fαq;λq P ReppQ,k; Viq ‘ k

lie in the same G-orbit whenever λ ‰ 0. This implies that G ýReppQ,k; Viq ‘ k also has only finitely
many orbits.

We apply Lemma 5.2 to conclude. □
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5.3. Cartan matrix. Let Γ be a finite undirected graph and let V be the set of vertices. Define the adjacent
matrix ApΓq “ pai jqi, jPV as follows:

(5.1) ai j “

$

&

%

the number of edges between i and j if i ‰ j

2 ¨ pthe number of loops at iq if i “ j.

Let
CpΓq “ 2 ¨ Id ´ ApΓq.

It is a symmetric matrix, so defines a quadratic form qΓ on RV. Explicitly,

(5.2)
1
2

qΓpdi; i P Vq “
ÿ

iPV

d2
i ´

ÿ

αPE

dtpαqdhpαq

Corollary 5.4. If Γ underlies a quiver of finite type, then qΓ is definite positive.

When the quadratic form qΓ is definite positive, we call CpΓq the Cartan matrix of Γ.

Proof. By Proposition 5.3, we have qΓpdq ą 0 for every nonzero d P ZV
ě0. Since q is a quadratic form,

the same holds for every nonzero d P QV
ě0. As q is continuous and Q is dense in R, the same holds for

every nonzero d P RV
ě0. Finally for every nonzero d P RV, by (5.2) we have

qΓpdq ě qΓp|di|; i P Vq ą 0.

□

Exercise 5.5.

(1) Compute CpΓq for a cycle graph Γ. Show that det CpΓq “ 0.
(2) Deduce that for any finite graph Γ, if qΓ is definite positive, then Γ is a tree.
(3) Compute CpΓq for the ADE Dynkin diagrams. Show that the associated quadratic form qΓ is

definite positive.

(Hint: use Sylvester’s criterion.)

5.4. ADE Dynkin diagrams. Let Γ be a finite undirected graph.

Theorem 5.6. The quadratic form qΓ is definite positive if and only if Γ is an ADE Dynkin diagram.

The "if" part is covered by Exercise 5.5. The following exercise proves the "only if" part.

Exercise 5.7. Suppose that Γ is a tree such that qΓ is definite positive.

(1) Show that the associated quadratic form of the graph

is not definite positive. Deduce that Γ cannot contain a vertex with at least four incoming
edges, or two vertices which have each of them at least three incoming edges.

(2) Show that Γ does not contain the following graphs:
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(3) Conclude.

The implication p1q ùñ p2q of Theorem 5.1 then follows from Corollary 5.4 and Theorem 5.6 (for k
algebraically closed).



LECTURE 3

Categories

6. Definitions and examples

6.1. Categories. A (locally small) category C consists of

‚ A class ObpC q (or C by abuse of notation) of objects;
‚ For all X,Y P ObpC q a set of morphisms

HompX,Yq “ tϕ : X Ñ Yu;

‚ A collection of maps

HompX,Yq ˆ HompY,Zq
˝
ÝÑ HompX,Zq

p f , 1q ÞÑ 1 ˝ f .
(6.1)

for all X,Y,Z P ObpC q,

subject to the following conditions:

(1) The sets HompX,Yq are pairwise disjoint;
(2) For every X P ObpC q, there exists IdX P HompX,Xq such that

IdX ˝ f “ f and 1 ˝ IdX “ 1

for all f P HompY,Xq and 1 P HompX,Yq;
(3) For all morphisms f , 1, h in C , we have

p f ˝ 1q ˝ h “ f ˝ p1 ˝ hq

whenever the compositions are defined.

Exercise 6.1. Show that IdX is unique for every X P ObpC q.

A morphism ϕ : X Ñ Y in C is called an isomorphism if there exists ψ : Y Ñ X such that

ϕ ˝ ψ “ Id and ψ ˝ ϕ “ Id.

In this case, we say that X and Y are isomorphic.

6.2. Examples. Fix a field k.

(1) The category of sets: objects are sets and morphisms are maps between sets.
(2) The category of groups: objects are groups and morphisms are group homomorphisms.
(3) The category of k-vector spaces: objects are k-vector spaces and morphisms are linear trans-

formations.
(4) Fix a group G. We’ve defined the category of G-sets before.
(5) The category of field extensions L{k over k. A morphism from L{k to L1{k is a morphism of

k-algebras L Ñ L1.
(6) Sometimes morphisms are not maps in the set-theoretical sense. For instance, fix a topological

space X. We can consider the category whose objects are points of X, and morphisms p Ñ q
between two points p, q P X are paths from p to q up to reparameterization. Composition is
defined by concatenation.

18
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6.3. Functors. A covariant functor F : C Ñ D between two categories C and D consists of

‚ A map

ObpC q Ñ ObpDq

X ÞÑ FpXq ;
(6.2)

‚ A map

HomC pX,Yq Ñ HomDpFpXq,FpYqq

ϕ ÞÑ Fpϕq
(6.3)

for every X,Y P ObpC q,

such that
Fpϕ ˝ ψq “ Fpϕq ˝ Fpψq and FpIdXq “ IdFpXq

for all X P ObpC q and morphisms ϕ and ψ such that ϕ ˝ ψ is defined.

Exercise 6.2. Show that F sends isomorphisms to isomorphisms.

A contravariant functor F : C Ñ D is defined similarly, with

HomC pX,Yq Ñ HomDpFpYq,FpXqq

ϕ ÞÑ Fpϕq
(6.4)

for every X,Y P ObpC q.

6.4. Examples. Again, we fix a field k.

(1) Fix N P Zą0

GLN : Fields{k Ñ Groups

L{k ÞÑ GLNpLq
(6.5)

is a covariant functor.
(2) Forgetful functor: for instance

k-vector spaces Ñ Groups Ñ Sets

are covariant functors.
(3) For any category C and any A P ObpC q,

Homp‚,Aq : C Ñ Sets

B ÞÑ HompB,Aq
(6.6)

is a contravariant functor.
(4) Let Vectk denote the category of k-vector spaces. Taking dual

p‚q_ : Vectk Ñ Vectk

V ÞÑ V_
(6.7)

is a contravariant functor.

6.5. Full functors, faithful functors. A (covariant) functor F : C Ñ D is called

‚ full if HomC pX,Yq Ñ HomDpFpXq,FpYqq is surjective;
‚ faithful if HomC pX,Yq Ñ HomDpFpXq,FpYqq is injective.

Exercise 6.3. Let F : C Ñ D be a fully faithful functor. For every f P HomC pX,Yq show that f is an
isomorphism if and only if Fp f q is an isomorphism.

6.6. Subcategories. A subcategory D Ă C of a category C is a category D such that

‚ ObpDq Ă ObpC q;
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‚ HomDpX,Yq Ă HomC pX,Yq for all X,Y P ObpDq, which is compatible with compositions and
identities.

We call D Ă C a full subcategory if HomDpX,Yq “ HomC pX,Yq for all X,Y P ObpDq.

7. Equivalence of categories

We start with a guiding example. Fix a filed k and consider the category Vectk, f of finite dimensional
k-vector spaces. Let N be the full subcategory of Vectk, f with

ObpN q “
␣

kN
ˇ

ˇ N P Zě0
(

.

We want N ãÑ Vectk, f to be an equivalence of categories.
As a first attempt, we start with a definition, which is actually too strong to be useful. We say that

two categories A and B are isomorphic if there exist functors F : A Ñ B and G : A Ñ B such that
F ˝ G “ IdB and G ˝ F “ IdA . If two categories A and B are isomorphic, then F and G define a bijection
between ObpA q and ObpBq. For instance the category C above is not isomorphic to Vectk, f .

A more natural definition is the following.

Definition 7.1. A functor F : A Ñ B is called an equivalence of categories if

‚ F is fully faithfull;
‚ F is essentially surjective: namely for any Y P B, there exists X P A such that FpXq is isomorphic

to Y.

Exercise 7.2. Show that the category N is equivalent to Vectk, f .

Example 7.3. Let F : C Ñ D be a fully faithful functor. Then C is equivalent to a full subcategory of D .

7.1. Natural transformations. Let F,G : A Ñ B be a two functors. A natural transformation f : F Ñ G
is a collection of morphisms f pXq : FpXq Ñ GpXq for each X P ObpA q such that for every morphism
ϕ : X Ñ Y in A , the diagram

FpXq
f pXq
//

Fpϕq

��

GpXq

Gpϕq

��
FpYq

f pYq
// GpYq

commutes.
Natural transformations are the morphisms in the category FunctpA ,Bq of functors from A and

B.

Exercise 7.4. Show that the bidual functor p‚q__ : Vectk, f Ñ Vectk, f is isomorphic to the identity functor
Id : Vectk, f Ñ Vectk, f .

7.2. Equivalence of categories: an equivalent definition. Let A and B be categories.

Theorem 7.5. The following assertions are equivalent.

(1) A and B are equivalent.
(2) There exist functors F : A Ñ B and G : B Ñ A such that F ˝ G » IdB and G ˝ F » IdA .

We refer to [1, Theorem II.2.7] for a proof. By Theorem 7.5, we see that both isomorphism of
categories and equivalence of categories are about the existence of some functors F : A Ñ B and
G : B Ñ A . For the equivalence of categories, instead of F ˝ G “ Id, we only require F ˝ G » Id.

Exercise 7.6. Show that the category N is equivalent to Vectk, f , using Theorem 7.5 (2) instead of the
definition.
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7.3. Example: Galois theory. Let k be a field. Fix a separable closure ks of k. The absolute Galois
group Galpks{kq is defined to be the group of of automorphisms of ks as a k-algebra. For every finite
Galois extension L{k in ks, an automorphism of ks fixing k restricts to an automorphism of L, which
gives rise to a group homomorphism.

Galpks{kq Ñ GalpL{kq.

Exercise 7.7. Show that
Galpks{kq “ lim

ÐÝ
L{k

GalpL{kq,

where the projective limit runs through all finite extensions L{k in ks. Explicitly, Galpks{kq is the
subgroup

Galpks{kq ď
ź

L{k

GalpL{kq

consisting of p1Lq P
ś

L{k GalpL{kq such that for every pair of finite Galois extensions L{k and L1{k such
that L1 Ă L, the image of 1L under GalpL{kq Ñ GalpL1{kq is 1L1 .

Exercise 7.8. Let k be a finite field. Show that

Galpks{kq » Ẑ :“ lim
ÐÝ

nPZą0

Z{nZ.

(Hint, recall that every finite extension of Fp for a prime number p is of the form Fp Ñ Fpn .)

The absolute Galois group Galpks{kq is thus a profinite group, and is endowed with the profinite
topology (namely, the topology induced from the product topology of

ś

L{k GalpL{kq, with each GalpL{kq

endowed with the discrete topology). This makes Galpks{kq into a topological group (i.e. the product
G ˆ G Ñ G and the inverse G Ñ G are both continuous.)

Exercise 7.9. Show that open subgroups of Galpks{kq have finite index.

Remark 7.10. In general, finite index subgroups of Galpks{kq are not open. See Proposition 7.29
in https://www.jmilne.org/math/CourseNotes/FT.pdf for some construction of such subgroups in
GalpQ{Qq using the axiom of choice.

A k-algebra L is called finite étale if L » k1 ˆ ¨ ¨ ¨ ˆ kn where each ki is a finite separable extension of
k. Note that if k is perfect, this is equivalent to the condition that L is reduced (i.e. L has no non-trivial
nilpotent elements).

Theorem 7.11 (Galois–Grothendieck correspondence). We have an equivalence of categories:

t Finite étale k-algebras u
„
ÝÑ t Finite sets with a continuous Galpks{kq-action u

L ÞÑ t L Ñ ks morphisms of k-algebras u .
(7.1)

Here for any topological group (e.g. Galpks{kq endowed with the profinite topology), we say that a
G-action on a finite set S is continuous if the map G ˆ S Ñ S is continuous with S endowed with the
discrete topology.

Exercise 7.12. Show that a Galpks{kq-action on a finite set S is continuous if and only if the stabilizer of
each element of S is open in Galpks{kq.

Exercise 7.13. Deduce the Galois–Grothendieck correspondence from the Galois theory (for finite
extensions) you’ve learned in undergraduate algebra.

Remark 7.14. (For those who know some algebraic geometry) For every k-algebra L, k-algebra mor-
phisms L Ñ ks are ks-points of ZL :“ SpecpLq and vice versa. So L ÞÑ ZLpksq is another way of describing
the Galois–Grothendieck correspondence.

https://www.jmilne.org/math/CourseNotes/FT.pdf


LECTURE 4

Representations of associative algebras

Group representations and quiver representations are different, but they have a common generaliza-
tion: we can regard both of them as representations of associative algebras. The later also encompasses
Lie algebra representations (which we wouldn’t be able to explain this semester). This also explains
why group representations and quiver representations share some similar properties. Working with
representations of associative algebras allows us to prove these properties for both situations at the
same time.

We first explain how group representations and quiver representations arise as examples of repre-
sentations of associative algebras.

8. Associative k-algebras

Throughout these notes, unless otherwise specified a ring A is always assumed to be unital (i.e.
there exists an element 1 P A such that 1 ¨ x “ x ¨ 1 “ x for any x P A). We don’t assume that A is
commutative in general. A morphism of rings f : A Ñ B always maps 1 to 1.

Let k be a field.

8.1. Associative algebras. An (associative) k-algebra is a ring A together with a ring homomorphism
k Ñ A, whose image is contained in the center ZpAq of A. A morphism between two k-algebras A and
B is a ring homomorphism f : A Ñ B which commutes with the structural morphisms:

A
f

// B

k

__ ??

Here are some examples of k-algebras.

‚ (Endomorphism algebra) The endomorphism ring EndpVq of a k-vector space is a k-algebra.
‚ (Free algebra) Let S be a set. The free associated algebra kxSy generated by S is defined as

follows. As a k-vector space, kxSy is the k-vector space generated by all finite words

c1 ¨ ¨ ¨ cn ; c1, . . . cn P S.

The product of two words is defined by concatenation, which extends k-linearly to a product
on kxSy. The unit of kxSy is the empty word.

‚ (Group ring) Let G be a group. The group ring krGs with coefficient in k is defined as follows.
As a k-vector space, krGs is the k-vector space generated by the symbols

X1 p1 P Gq.

For every 1, h P G, define
X1 ¨ Xh “ X1h,

and extends k-linearly to a product on krGs.
‚ (Path algebra) Let Q be a quiver; the set of vertices and edges are denoted by V and E

respectively. The path algebra kQ of Q with coefficients in k is defined as follows. As a
k-vector space, kQ is the k-vector space generated by the directed paths in Q (namely finite
sequences en ¨ ¨ ¨ e1 of E with hpe jq “ tpe j`1q for all j), including the trivial paths pi for each i P V.

22
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The product PP1 of Given two paths P and P1, define the product

(8.1) PP1 “

$

&

%

the concatenation of P1 by P if the head of P1 is the tail of P

0 otherwise.

The above definition extends k-linearly to a product on kQ, turning kQ into a k-algebra. Note
that the unit of kQ is

ř

iPV pi.

8.2. Ideals and quotients. Let A be an associative k-algebra. A left-ideal (resp. right-ideal) of A is an
additive subgroup I Ă A such that aI Ă I (reps. Ia Ă I) for all a P A. A two-sided ideal is a subset I Ă A
which is both a left-ideal and a right-ideal. For instance, the kernel

ker f Ă A

of a morphism of k-algebra f : A Ñ B is a two-sided ideal.
Let I Ă A be a two-sided ideal. Since I is in particular a k-linear subspace of A, we have the quotient

k-vector space A{I; let π : A Ñ A{I be the quotient map. For every x, y P A and λ P k, define

πpxqπpyq :“ πpxyq.

Exercise 8.1. Show that πpxqπpyq is well defined, namely

πpxyq “ πpx1y1q

if πpxq “ πpx1q and πpyq “ πpy1q.

This makes A{I into an associative k-algebra, and π : A Ñ A{I into a morphism of k-algebras.

Exercise 8.2. Let f : A Ñ B be a morphism of k-algebras. Show that f pAq » A{ kerp f q as k-algebras.

8.3. Generators and relations. Let A be a k-algebra and let S Ă A be a subset. The k-subalgebra generated
by S is the smallest k-subalgebra B Ă A containing S. If B “ A, then we say that S is a set of generators of
A.

Suppose that S is a set of generators of A. Then we have a surjective morphism of k-algebras

kxSy Ñ A

sending s P S to s P A. The kernel I is also called the ideal of relations. By Exercise 8.2, we have
A » kxSy{I. In particular, every k-algebra is the quotient of a free algebra by a two-sided ideal (of
relations).

Exercise 8.3. Let Q be a quiver, with the set of vertices and edges denoted by V and E respectively.
Show that kQ is defined by generators and relations as follows.

‚ Generators: E and t pi | i P V u (trivial paths)
‚ Relations: the two-sided ideal "generated by"

(1)
ř

iPV pi “ 1;
(2) p2

i “ pi, pip j “ 0 if i ‰ j.
(3) For every e P E epi “ e if i is the tail of e and 0 otherwise.
(4) pie “ e if i is the head of e and 0 otherwise.

9. Representations of associative algebras

Let k be a field and let A be an associative k-algebra.

9.1. Objects and morphisms. A representation of A (or a left A-module) is a k-vector space V together
with a k-algebra homomorphism

ρ : A Ñ EndpVq.

For every a P A and v P V, we also write

a ¨ v :“ ρpaqpvq.
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Informally, a left A-module is a k-vector space V, but we enlarge the coefficients from k to A.
Let V and W be two left A-modules. A morphism from V to W is a k-linear map f : V Ñ W such

that for every a P A and v P V, we have

f pa ¨ vq “ a ¨ f pvq.

The space of morphisms between V and W is denoted by HomApV,Wq.
The category of left A-modules is denoted by A-Mod.

9.2. Right modules, bimodules. The opposite algebra Aop is defined to be Aop :“ A as a k-vector space,
with a ¨ b in Aop defined to be b ¨ a in A. A right A-module is defined to be a left Aop-modules V. If
ρ : Aop Ñ EndpVq is the structural morphism, we also write

v ¨ a :“ ρpaq ¨ v

for every a P A and v P V. The category of right A-modules is denoted by Mod-A.

Exercise 9.1. Show that Aop » EndApAq as k-algebras.

Let B be another k-algebra. An (A,B)-bimodule is a k-vector space V equipped with a left A-module
structure and a right B-module structure, such that

pavq ¨ b “ a ¨ pvbq

for every a P A, b P B and v P V.

Remark 9.2. Two k-algebras A and B are called Morita equivalent if we have an equivalence of categories

A-Mod » B-Mod.

In general, a k-algebra A is not Morita equivalent to its opposite Aop. The Brauer group Brpkq is in
bijection with the Morita equivalence classes of central simple algebras over k, and A ÞÑ Aop corresponds
to taking inverse on Brpkq. In general Brpkq contains nontrivial elements of order not equal to 2 (e.g.
when k “ Q). We would provide more explanations in the future if time permits.

Unless otherwise specified, we use the term "A-module" for left A-module.

9.3. Example: group representations. Let G be a group. A group representation of G over k is a group
action G ýV on a k-vector space such that 1 : V Ñ V is k-linear for every 1 P G. A morphism between
two representations G ýV and G ýW over k is a k-linear map V Ñ W of G-sets. The category of
group representation of G over k is denoted by ReppG,kq

We can associate every group representation ρ : G Ñ GLpVq a morphism of k-algebras

krGs Ñ EndpVq
ÿ

1PG

λ1 ¨ 1 ÞÑ
ÿ

1PG

λ1 ¨ ρp1q,(9.1)

where λ1 P k and λ1 “ 0 for all but finitely many 1 P G.

Exercise 9.3. Show that the above construction extends to an equivalence of categories

ReppG,kq » krGs-Mod.

9.4. Example: quiver representations. Let Q be a quiver. We can associate every quiver representation
pVi, fαq a morphism of k-algebras. For every path p “ en ¨ ¨ ¨ e1 of Q, define

ρppq :“ fen ˝ ¨ ¨ ¨ ˝ fe1 : Vtpe1q Ñ Vhpenq,

and ρppiq :“ IdVi for each trivial path pi at the vertex i.

kQ Ñ Endp‘iViq
ÿ

p path

λp ¨ p ÞÑ
ÿ

p path

λp ¨ ρppq,(9.2)
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where λp P k and λp “ 0 for all but finitely many paths p.

Exercise 9.4. Show that the above construction extends to an equivalence of categories

ReppQ,kq » kQ-Mod.

9.5. Weyl algebra and polynomial differential operators. The (first) Weyl algebra is defined by

A1 :“
kxx, yy

xy ´ yx ´ 1
.

It is also the algebra of polynomial differential operators on krts: defining

x ¨ f “ t f , y ¨ f “ Bt f ,

gives rise to an A1-module structure on krts thanks to the Leibniz rule.
Using the A1-representation on krts, we can prove the following.

Proposition 9.5. The elements xiy j for all i, j ě 0 form a basis of the k-vector space A1.

Proof assuming k “ C. As yx “ xy ´ 1, we can show by induction that A1 is generated by these xiy j as
a C-vector space.

Now let D P A1 and write

D “

n
ÿ

j“0

P jpxqy j

where P j P Crxs with Pn ‰ 0. Suppose that D “ 0. Then D ¨ tN “ 0 for all positive integer N. In other
words, we have for N large,

n
ÿ

j“0

NpN ´ 1q ¨ ¨ ¨ pN ´ j ` 1q ¨ P jptqtN´ j “ 0

in Crts, so
n
ÿ

j“0

NpN ´ 1q ¨ ¨ ¨ pN ´ j ` 1q ¨ P jptqt´ j “ 0

in Crt, t´1s. Considering the limit of the coefficients of Laurent polynomials, we have

lim
NÑ8

1
Nn

n
ÿ

j“0

NpN ´ 1q ¨ ¨ ¨ pN ´ j ` 1q ¨ P jptqt´ j “ Pnptqt´n,

so Pnptq “ 0, which is a contradiction. □

Exercise 9.6. Prove Proposition 9.5 for any field k (Hint: consider N as a variable and let A1 acting on
krN, ts ¨ tN. Each element of krN, ts ¨ tN is a linear combination of tn`N with coefficients in krNs, and
y ¨ tn`N :“ pn ` Nqtn´1`N.)

Likewise the nth Weyl algebra is defined by

An :“
kxxi, y j | 1 ď i, j ď ny

xiy j ´ y jxi ´ δi j, xix j ´ x jxi, yiy j ´ y jyi

where δi j is the Kronecker delta. It is the algebra of polynomial differential operators on krt1, . . . , tns.
The following conjecture is still open.

Conjecture 9.7 (Dixmier conjecture).

EndpAnq “ AutpAnq.

9.6. Example: Regular representation. The (left) regular representation of a k-algebra A is

A Ñ EndpAq

a ÞÑ pv ÞÑ a ¨ vq.
(9.3)
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For instance, if G is a group, then the G-representation which corresponds to the regular representation
is

G ý
à

1PG
k ¨ e1

with 1 ¨ eh “ e1h.

9.7. Example: quotients by left-ideals. Let I Ă A be a left-ideal. The multiplication by k defines
k-vector space structures on A and I. The quotient A{I is thus a k-vector space. Let π : A Ñ A{I be the
quotient map.

For every a, b P A, define
a ¨ πpbq :“ πpabq.

Since I is a left-ideal, the product a ¨πpbq is well defined, which defines a left A-module structure on A{I.

Exercise 9.8. Let V be an A-module and let v P V. Let

I “ Annpvq :“ t a P A | a ¨ v “ 0 u

be the annihilator of v. Show that I is a left-ideal of A and that

A{I » A ¨ v

as left A-modules.

9.8. Some basic properties of A-Mod.

‚ HomApV,Wq is an abelian group for every A-modules V,W, and compositions are bi-additive.
‚ The zero vector space is also an A-module, called the trivial or zero A-module.
‚ The direct sum V ‘ W of two A-modules is still an A-module. This turns A-Mod into an

additive category.
‚ For every f P HomApV,Wq Ă HomkpV,Wq, the kernel ker f (resp. coker f ) inherits an A-module

structure from V (resp. W). In particular, given an A-submodule W Ă V (namely a k-linear
subspace such that A ¨ W “ W), the quotient V{W inherits a A-module structure from V.

Exercise 9.9. Show that the A-submodules of A are the left-ideals of A.

9.9. Faithful representation. A representation ρ : A Ñ EndkpVq of A is called faithful if ρ is injective.
Any representation ρ : A Ñ EndkpVq, is a faithful representation over A{ kerρ.

9.10. Generators and relations. Let V be a A-module and let S Ă V be a subset. The A-submodule
generated by S is the smallest A-subalgebra W Ă V containing S. If W “ V, then we say that S is a set of
generators of V. In this case, if S is finite, then we say that V is finitely generated.

Suppose that S is a set of generators of W. Then we have a surjective morphism of A-algebras
à

S
A Ñ V

from the direct sum of regular A-representations, sending 1 P A in the "s P S factor" to s P A. The
A-modules of the form

À

S A are called free A-modules (of rank |S|). Thus every A-module V is the
quotient of a free A-module by a A-submodule (of relations). If V is finitely generated, we can choose
the free A-module to have finite rank.

10. Irreducible modules, indecomposable modules

10.1. Exact sequences. A sequence of morphisms of A-modules

U
f

ÝÑ V
1

ÝÑ W

is called exact if kerp1q “ Imp f q. A sequence of morphisms of A-modules of the form

(10.1) 0 Ñ U
f

ÝÑ V
1

ÝÑ W Ñ 0
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which is exact at each term is called a short exact sequence. For instance,

(10.2) 0 Ñ U
uÞÑpu,0q
ÝÝÝÝÝÑ U ‘ W

pu,wqÞÑw
ÝÝÝÝÝÑ W Ñ 0

is a short exact sequence.
We say that a short exact sequence (10.1) splits if there exists a morphism h : W Ñ V such that

1 ˝ h “ Id.

Exercise 10.1. Show that (10.1) splits if and only if (10.1) is isomorphic to (10.2). In other words, U (or
equivalently W) is a direct summand of V.

Exercise 10.2.

(1) For A “ k, show that every short exact sequence of A-modules splits.
(2) For A “ krXs, show that

0 Ñ krXs
f ÞÑX¨ f

ÝÝÝÝÑ krXs
f ÞÑ f p0q

ÝÝÝÝÑ k Ñ 0

is a short exact sequence of A-modules which does not split.

10.2. Irreducible modules and indecomposable modules. A nonzero A-module V is called irreducible
(resp. indecomposable) if V has no A-submodules (resp. direct summand) different from V and 0. Irre-
ducible modules are indecomposable, but the converse does not hold in general (see e.g. Exercise 10.2).
Irreducible A-modules are also called simple A-modules.

Exercise 10.3. Let V and W be indecomposable A-modules. Suppose that f : V Ñ W and 1 : W Ñ V
are two morphisms such that f ˝ 1 “ IdW . Show that f and 1 are isomorphisms.

Proposition 10.4. An A-module V is simple if and only if V is isomorphic to A{m for some maximal left-idealm.

Proof. Let m Ă A be a maximal left-ideal and let π : A Ñ A{m be the projection. Let W Ă A{m be an
A-submodule. Then π´1pWq Ă A is a left-ideal, so either π´1pWq “ m or π´1pWq “ A. Hence W is
either 0 or A{m.

Let V be a simple A-module. Choose a nonzero element v P V, we then have A ¨ v “ V. So if
m :“ Annpvq, then A{m » V as left A-modules. For every ideal I Ă A containing m, the quotient A{I is
a quotient of A{m » V, so is either 0 or A{m. Hence I “ A or I “ m, which shows that m is a maximal
ideal. □

10.3. Schur’s lemma.

Proposition 10.5 (Schur’s lemma). Let f : V Ñ W be a nonzero morphism of A-modules.

(1) If V is irreducible, then f is injective.
(2) If W is irreducible, then f is surjective.

Proof. Since f ‰ 0, we have ker f ‰ V and coker f ‰ W. If V (resp. W) is irreducible, then the
submodule ker f Ă V (resp. coker f Ă W) is zero, so f is injective (resp. surjective). □

As a consequence, the endomorphism ring D :“ EndApVq of an irreducible A-module is a division
ring, namely every nonzero element f P D has a multiplicative inverse: an element f ´1 P D such that
f f ´1 “ f ´1 f “ 1. Division rings are also called skew-fields. Thus an irreducible A-module is naturally a
left module over the division ring D.

To some extent, a division ring behaves like a field.

Exercise 10.6. Let D be a division k-algebra. Prove the following properties.

(1) The regular representation of D is irreducible.
(2) Every D-module V is free.
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Corollary 10.7. Assume that k is algebraically closed. Let V be an irreducible A-module such that dimk V ă 8

and let f : V Ñ V be a morphism of A-modules. Then f “ λ ¨ Id for some λ P k. As a consequence,

EndApVq » k.

Proof. Since k is algebraically closed and dimk V ă 8, the k-linear map f has a nonzero eigenvector
v P V. Suppose that f pvq “ λv. Then f ´λId : V Ñ V is a morphism of A-modules which is not injective.
As V is irreducible as an A-module, we have f “ λId by Schur’s lemma. □

Exercise 10.8. Reformulate Corollary 10.7 for group representations and quiver representations.

Corollary-Exercise 10.9. Suppose that k is algebraically closed and A is a commutative k-algebra. If V is an
irreducible A-module with dimk V ă 8, then V » k as k-vector spaces.

Exercise 10.10. Find a counterexample of Corollary 10.7 if we drop the assumption that k is algebraically
closed. (Hint, you may consider the regular representation of the R-algebra C.)

10.4. Finite dimensional division algebras over R. Commutative division algebras over R are fields
extensions of R, and those with finite degree are R and C.

An example of noncommutative division algebras over R is the quaternion algebra H over R. As a
vector space, H is 4-dimensional, generated by 1 and the symbols i, j, k. The product on H is defined by

i2 “ j2 “ k2 “ i jk “ ´1.

Exercise 10.11. Write down the multiplication table of 1, i, j, k.

Proposition 10.12. A finite dimensional division algebra D over R is isomorphic to either R, C, or H.

Proof. If D is commutative, we’ve already seen that D is isomorphic to either R or C.
Assume that D is noncommutative. Then there exists x P DzR. As the subalgebra Rrxs Ă D

generated by x is commutative, we have Rrxs » C. Consider i :“
?

´1 P C Ă D and the R-linear map
ϕ : D Ñ D defined by

ϕpyq “ i ¨ y ¨ i´1.

As ϕ2 “ Id, we have an R-linear decomposition

D “ D` ‘ D´

where D˘ is the eigenspace of ϕ of eigenvalue ˘1. For every nonzero z P D´, the left-multiplication
by z defines an isomorphism from D` to D´, so dimR D` “ dimR D´. Note that for every y P D`, the
subalgebra Crys Ă D is commutative, thus Crys “ C, which implies D` “ C. It follows that dimR D “ 4.

Let z P D´ be a nonzero element. Then z2 P D` “ C. Since D is a division algebra, we have z2 ‰ 0.
Choose

j :“
z

?
´z2

and let k :“ i j. Then 1, i, j, k are linearly independent, and

j2 “ k2 “ i jk “ ´1.

□

Let A be an R-algebra and let V be an A-module with dimR V ă 8. By Schur’s lemma and
Proposition 10.12, the R-algebra EndApVq is isomorphic to R, C, or H. According to the isomorphism
type of EndApVq, we call V a real representation, complex representation, quaternionic representation
of A.

11. Finite dimensional representations

Let k be a field and let A be an associative k-algebra. We say that an A-module V has finite dimension
if V is a finite dimensional k-vector space.
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11.1. Endomorphisms of indecomposable representations. We could compare the following proposi-
tion with Schur’s lemma.

Proposition 11.1. Let V be a finite dimensional A-module. Suppose that V is indecomposable. Then every
f P EndpVq is either an isomorphism or a nilpotent (i.e. f n “ 0 for some integer n ą 0).

Proof. Since dimk V ă 8, there exists an integer n ą 0 such that both

kerp f nq Ă kerp f n`1q and Imp f n`1q Ă Imp f nq

are equalities. It follows that kerp f nq X Imp f nq “ 0, so

(11.1) V “ kerp f nq ‘ Imp f nq

as a k-vector space. Since both kerp f nq and Imp f nq are A-submodules, (11.1) is also a decomposition of
A-modules. Thus either kerp f nq “ 0 or Imp f nq “ 0. In the former (resp. latter) case f is an isomorphism
(resp. nilpotent). □

11.2. The Krull–Schmidt theorem.

Theorem 11.2 (Krull–Schmidt theorem). Every finite dimensional A-module V can be decomposed into a finite
direct sum of indecomposable representations:

V “

m
à

j“1
V j.

Moreover, the decomposition is unique, up to permutation of the index j and up to isomorphism of each factor V j.

Proof. The existence follows from dimk V ă 8.
Suppose that

V “

m
à

j“1
V j “

n
à

j“1
V1

j

are decompositions of V into indecomposable A-modules. We prove by induction on m that m “ n and
V j » V1

j up to permutation of the indices j. The case m “ 1 is clear.
For every index j, let

ı j : V j ãÑ V, ı1j : V1
j ãÑ V, p j : V ↠ V j, p1

j : V ↠ V1
j

be the natural inclusions and projections. We have
n
ÿ

j“1

ı1jp
1
j “ IdV,

so
n
ÿ

j“1

p1ı
1
jp

1
jı1 “ IdV1 .

The following lemma implies that p1ı1jp
1
jı1 : V1 Ñ V1 is an isomorphism for some j.

Lemma 11.3. Let W be an indecomposable A-module and let f1, . . . , fk P EndApWq. Suppose that f “
řk

i“1 fi
is an isomorphism. Then one of fi is an isomorphism.

Proof. By induction, it suffices to prove for the case k “ 2. Up to replacing fi by fi ˝ f ´1, we can assume
that f1 ` f2 “ Id, so f1 commutes with f2. Assume that both f1 and f2 are not isomorphisms. Then they
are nilpotent by Proposition 11.1. But then Id “ p f1 ` f2qN “ 0 for large N, which is a contradiction. □

Up to permuting the indices of V1
j, we can assume that p1ı11p1

1ı1 is an isomorphism. It follows from
Exercise 10.3 that p1

1ı1 : V1
„
ÝÑ V1

1. Thus V1 X kerpp1
1q “ 0. As

dim ker p1 “ dim V ´ dim V1 “ dim V ´ dim V1
1 “ dim ker p1

1,
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we have
V “ V1 ‘ kerpp1q “ V1 ‘ kerpp1

1q.

It follows that kerpp1q » kerpp1
1q. We conclude by the induction hypothesis. □

For any quiver Q, thanks to the equivalence of categories ReppQ,kq » kQ-Mod, Theorem 4.1 is a
particular case of Theorem 11.2.

11.3. The Jordan–Hölder theorem.

Theorem 11.4 (Jordan–Hölder theorem). Let V be a finite dimensional A-module. Then there exists a finite
chain

(11.2) 0 “ V0 Ĺ V1 Ĺ ¨ ¨ ¨ Ĺ Vn “ V

of A-submodules such that each Vi`1{Vi is simple. Moreover, if

0 “ V1
0 Ĺ V1

1 Ĺ ¨ ¨ ¨ Ĺ V1
n “ V

is another chain of A-submodules satisfying the same property, then there exists a permutation of indices σ such
that

Vi`1{Vi » V1

σpiq`1{V1

σpiq

for each i.

The chain of submodules (11.2) is called a Jordan–Hölder filtration of V. The quotients Vi`1{Vi are
called the Jordan–Hölder factors of V.

Proof. We construct (11.2) by induction on dim V. Since dimk V ă 8, V has an irreducible submodule
V1. The induction hypothesis implies that the Jordan–Hölder filtration exists for V{V1. Together with
V1, the latter filtration lifts to a Jordan–Hölder filtration of V.

For the uniqueness (up to permutations) of the Jordan–Hölder factors, we argue again by induction
on dimk V. If V1 “ V1

1 as subspaces in V, then the Jordan–Hölder factors of V{V1 “ V{V1
1 are unique

by the induction hypothesis, so the statement follows. Suppose that V1 ‰ V1
1. Since V1 and V1

1 are
irreducible, we have V1 X V1

1 “ 0. Consider W :“ V{pV1 ‘ V1
1q and let W1, . . . ,Wk be its Jordan–Hölder

factors. Then both
V2{V1, . . . ,Vn{Vn´1 and V1

1,W1, . . . ,Wk

are the Jordan–Hölder factors of V{V1, so these two series of factors are isomorphic by induction
hypothesis. Likewise, the two series of factors

V1
2{V1

1, . . . ,V
1
n{V1

n´1 and V1,W1, . . . ,Wk

are also isomorphic, which finishes the proof. □

Exercise 11.5. Construct a nonzero A-module V which does not have any irreducible submodule. (For
instance, the regular representation of CrXs.)

Exercise 11.6. Let V be a finite dimensional A-module and let W Ă V be a submodule. Show that the
multiset of isomorphism classes of the Jordan–Hölder factors of V is the union of that of W and V{W.

Remark 11.7. Suppose that A is a k-algebra admitting a morphism D Ñ A from a division k-algebra,
so that any A-module V has an induced D-module structure. Recall from Exercise 10.6 that D-modules
are free. All the results in § 11 hold more generally with the same proof for any A-module V which has
finite rank as a D-module.

12. Semisimple modules

12.1. Definition. An A-module V is called semisimple if every submodule of V is a direct summand.

Proposition 12.1. Every submodule and quotient of a semisimple A-module V is also semisimple.
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Proof. We prove the statement for submodules; the argument for quotients is similar.
Let W Ă V be a submodule of V. For every submodule Z Ă W, we have V “ Z ‘ Z1 for some

submodule Z1. The projection π : V Ñ Z satisfies pπ|Wq|Z “ π|Z “ IdZ, so Z is a direct summand of
W. □

Exercise 12.2. Let V be a finite dimensional semisimple A-module.

(1) Show that V is isomorphic to the direct sum
Àn

i“1 Vi of its Jordan–Hölder factors.
(2) Show that any A-submodule of V is isomorphic to

à

iPS
Vi

for some subset S P t1, . . . ,nu.

12.2. The existence of maximal ideals and irreducible submodules. A left-ideal I of A is called maximal
if the only left-ideals of A containing I are I and A.

Proposition 12.3. Every left-ideal I of A is contained in a maximal left-ideal of A.

Proof. Let Σ be the set of ideals of A containing I which is not A. The inclusion defines a partial order
on Σ. For every totally ordered subset S Ă Σ, the union

rJ :“
ď

JPS

J

is a left-ideal of A and does not contain 1 (otherwise, one of J P S would be A). So rJ P Σ, and it is an
upper bound of S. We conclude by Zorn’s lemma. □

Corollary 12.4. Every nonzero semisimple A-module V has an irreducible submodule.

Proof. Let v P V be a nonzero element. Then Annpvq ‰ A and we have A ¨ v » A{Annpvq. By
Proposition 12.3, there exists a maximal left-ideal m containing Annpvq, so we have a quotient map
A ¨v Ñ A{m onto a simple A-module. By Proposition 12.1, A{m is a direct summand of A ¨v, in particular
it is isomorphic to a submodule of V. □

12.3. Semisimple modules are completely reducible.

Proposition 12.5. Let V be an A-module. The following assertions are equivalent.

(1) V is semisimple.
(2) V “

ř

iPS Vi for a collection of simple A-submodules Vi Ă V.
(3) V “

À

iPS Vi for a collection of simple A-submodules Vi Ă V.

Proof. For we prove p1q ùñ p3q. Let S be the set of all simple submodules of V and let

Σ :“

#

S 1 Ă S

ˇ

ˇ

ˇ

ˇ

ˇ

ÿ

WPS 1

W “
à

WPS 1

W

+

.

Note that for every totally ordered subset tSiuiPI of Σ, we have
ÿ

WPYiPISi

W “
à

WPYiPISi

W,

so Σ has a maximal element S0 by Zorn’s lemma. Let

V1 :“
à

WPS0

W.

Suppose that V1 ‰ V. Then V “ V1 ‘V2 for some submodule V2. Since V2 contains a simple submodule
V1, we have V1 X V1 “ 0, which contradicts the maximality of S0. Hence V “ V1, which implies (3).

p3q ùñ p2q is obvious. Now we prove p2q ùñ p1q. Let W Ă V be a submodule. By Zorn’s lemma,
there exists a maximal subset S0 Ă S such that

W X
ÿ

iPS0

Vi “ 0.
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Let W1 :“
ř

iPS0
Vi. If W ‘ W1 ‰ V, then there exists j P S such that V j Ć W ‘ W1 (so j R S0). As V j is

simple, we have V j X pW ‘ W1q “ 0, so W X pW1 ` V jq “ 0, which contradicts the maximality of S0. □

12.4. Semisimple k-algebras.

Corollary 12.6. An A-module V is semisimple if and only if every finitely generated A-submodule of V is
semisimple.

Proof. The "only if" part follows from Proposition 12.1.
Assume that every finitely generated A-submodule of V is semisimple. Since V is a sum of finitely

generated A-submodules Vi, which are semisimple, it follows from Proposition 12.5 that V is a sum of
simple A-submodules of V. Thus V is semisimple by Proposition 12.5. □

A k-algebra A is called semisimple if every A-module V is semisimple.

Corollary 12.7. A k-algebra A is semisimple if and only if the regular A-representation is semisimple.

Proof. The "only if" part is immediate.
Assume that the regular A-representation is semisimple. Then by Proposition 12.5, any free

A-module is semisimple. Since any A-module V is a quotient of a free A-module, it follows from
Proposition 12.1 that V is semisimple. □

Corollary 12.8. Let A and B be semisimple k-algebra. Then A ˆ B is also semisimple.

Proof. Since A and B are semisimple, by Proposition 12.5 we have

A “
à

iPS
Vi and B “

à

jPS1

W j

for a collection of simple A-submodules Vi Ă A and simple B-submodules W j Ă A. Then Vi ˆ 0 and
0 ˆ W j are simple pA ˆ Bq-modules and

A ˆ B “
à

iPS
pVi ˆ 0q ‘

à

jPS1

p0 ˆ W jq.

Hence A ˆ B is semisimple by Corollary 12.7. □

12.5. Example: representations of finite groups. Let G be a finite group.

Theorem 12.9 (Maschke). Assume that charpkq does not divide |G| (so |G| is invertible in k). Any finite
dimensional representation V of G over k is semisimple. As a consequence, the group algebra krGs is semisimple.

Proof. Let W Ă V be a subrepresentation. Choose a k-linear map P : V Ñ W such that P|W “ IdW . Let

P :“
1

|G|

ÿ

1PG

1P1´1 : V Ñ W.

We have P|W “ IdW , so V “ W ‘ kerpPq.
For every v P kerpPq and every h P G, since 1 ÞÑ h´11 is a permutation of G, we have the first

equality of
ÿ

1PG

1P1´1hpvq “
ÿ

1PG

h1P1´1pvq “ h

¨

˝

ÿ

1PG

1P1´1pvq

˛

‚“ 0.

Thus kerpPq is G-stable, and hence a subrepresentation of G.
For the final statement, note that since G is finite, we have dimk krGs ă 8, so every finitely generated

krGs-module V has finite dimk V. We conclude by Corollary 12.6. □

12.6. Example: the ring of matrices. Let D be a division k-algebra (e.g. D “ k). Let n be a positive
integer and let A “ MatnpDq be the k-algebra of n ˆ n matrices with coefficients in D.

Proposition 12.10.
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(1) The only irreducible A-module is V :“ Dn, with MatnpDq acting on the space Dn of column matrices
by left-multiplication.

(2) MatnpDq is semisimple and as A-modules,

MatnpDq » Vn.

(3) Every finitely generated A-module is of the form Vm for some m P Zě0.

Proof. For any nonzero v P V and w P V, there exists M P MatnpDq such that Mv “ w. Thus V is
irreducible. Regarding MatnpDq as a direct sum of n spaces of column matrices, we have A » Vn. It
follows from Corollary 12.7 that A is semisimple.

Now let W be a finitely generated A-module. Then W is a quotient of AN and as a D-module, W
has finite rank. Since V is the unique Jordan–Hölder factor (where we apply Remark 11.7 to obtain
the existence of the Jordan–Hölder filtration and the uniqueness of the Jordan–Hölder factors) of A, by
Exercise 11.6 it is also the unique Jordan–Hölder factor of W. Since W is semisimple, we have W » Vm

for some m P Zě0. □

Together with Corollary 12.8, we obtain the following.

Corollary 12.11. Let D1, . . . ,Dn be division k-algebra and let m1, . . . ,mn be positive integers. The product

Matm1 pD1q ˆ ¨ ¨ ¨ ˆ Matmn pDnq

is a semisimple k-algebra.

12.7. The endomorphism ring of finite direct sums.

Exercise 12.12. Let V,W1,W2 be A-modules. Show that

HomApV,W1 ‘ W2q » HomApV,W1q ‘ HomApV,W2q

and
HomApW1 ‘ W2,Vq » HomApW1,Vq ‘ HomApW2,Vq

as k-vector spaces.

Lemma 12.13. Let V be an A-module and let R :“ EndApVq. Then

EndApVnq » MatnpRq

as k-algebras.

Proof. Write Vn “ ‘n
i“1Vi with Vi “ V. Then

EndApVnq “

n
à

i, j“1
HomApVi,V jq »

n
à

i, j“1
R

as k-vector spaces. Regarding elements of the pi, jq-summand R as the pi, jq coefficient of a matrix, the
composition in EndApVnq becomes matrix product. □

Exercise 12.14. Let V and W be A-modules such that HomApV,Wq “ 0 and HomApW,Vq “ 0. Show that

EndApV ‘ Wq “ EndApVq ˆ EndApWq

as k-algebras.

Proposition 12.15. Let V1, . . . ,Vn be irreducible A-modules which are pairwise non isomorphic. Let Di :“
EndApViq. Given n positive integers m1, . . . ,mn, we have

EndA

˜

n
à

i“1
Vmi

i

¸

» Matm1 pD1q ˆ ¨ ¨ ¨ ˆ Matmn pDnq

as k-algebras.
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Proof. For every pair of indices i ‰ j, since Vi and V j are irreducible and Vi fi V j, we have HompVi,V jq “

0 by Schur’s lemma. Hence Proposition 12.15 follows from Lemma 12.13 and Exercise 12.14. □

12.8. The Wedderburn–Artin theorem. The following structural theorem shows that up to isomor-
phisms, the k-algebras in Corollary 12.11 are all the semisimple k-algebras.

Theorem 12.16 (Wedderburn–Artin). Let A be a semisimple k-algebra. There exists division k-algebra
D1, . . . ,Dn such that

A » Matm1 pD1q ˆ ¨ ¨ ¨ ˆ Matmn pDnq

as k-algebras.

Proof. Since A is semisimple, its regular representation is semisimple. So

A »
à

iPS
Vi

for some simple modules Vi. We have 1 “
ř

iPS1 vi for some finite subset S1 Ă S and vi P Vi, which
implies S “ S1. So

A »

n
à

i“1
Vi

for finitely many simple A-modules.
Let Di :“ EndApViq, which is a division ring because Vi is simple. By Exercise 9.1 and Proposi-

tion 12.15, we have
Aop » EndApAq » Matm1 pD1q ˆ ¨ ¨ ¨ ˆ Matmn pDnq.

For any division k-algebra D, the opposite algebra Dop is also a division ring and for any positive integer
n, we have an isomorphism

MatnpDqop Ñ MatnpDopq

pci jq ÞÑ tpci jq,
(12.1)

as k-algebras. This concludes the proof. □

12.9. The structure of regular representation of a semisimple ring.

Corollary 12.17. Let A be a semisimple k-algebra.

(1) There exist only finitely many isomorphism classes of irreducible A-modules V1, . . . ,Vn.
(2) We have

A “ EndD1 pV1q ‘ ¨ ¨ ¨ ‘ EndDn pVnq,

where Di :“ EndApViq.

Proof. We have
A » Matm1 pDop

1 q ˆ ¨ ¨ ¨ ˆ Matmn pDop
n q

as in the Wedderburn–Artin theorem. Let Vi :“ Dmi
i . By Proposition 12.10, Vi is a simple Matmi pDiq-

module, so it is also a simple A-module (through the projection A Ñ Matmi pDiq). As Matmi pDop
i q »

EndDi pViq as k-algebras, we have

A » EndD1 pV1q ˆ ¨ ¨ ¨ ˆ EndDn pVnq.

Note that Vi fi V j as A-modules whenever i ‰ j, because Matmi pDiq acts non trivially on Vi but trivially
on V j. It remains to show that V1, . . . ,Vn are all the simple A-modules up to isomorphisms.

Let V be an irreducible A-module. Let v P V be a nonzero element. Then A ¨ v “ V and we have a
surjective morphism

A Ñ A ¨ v “ V

of A-modules. Since

(12.2) A “ Vm1
1 ‘ ¨ ¨ ¨ ‘ Vmn

n
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the restriction of A↠ V to one of Vi is nonzero. As both V and Vi are irreducible, we have Vi » V. □

12.10. A consequence on finite group representations.

Corollary 12.18. Let G be a finite group. Suppose that charpkq does not divide |G| and that k is algebraically
closed.

(1) G has only finitely many isomorphism classes of irreducible representations V1, . . . ,Vn over k.
(2) We have

krGs » EndkpV1q ‘ ¨ ¨ ¨ ‘ EndkpVnq

as G-representations. As a consequence,

|G| “

n
ÿ

i“i

pdim Viq
2.

Proof. The first statement follows from Corollary 12.17, by noticing that since k is algebraically closed,
we have EndApViq » k by Schur’s lemma. The isomorphism in (2) is also an isomorphism of k-vector
spaces, which implies |G| “ dimk krGs “

řn
i“ipdim Viq

2. □

12.11. Radicals. Let A be a k-algebra with dimk A ă 8. We define the radical of A to be

RadpAq :“ t a P A | a ¨ V “ 0 for every irreducible A-modules V u .

Proposition 12.19.

(1) We have
RadpAq “ t a P A | a nilpotent u .

(2) RadpAq is a nilpotent two-sided ideal, and every nilpotent two-sided ideal of A is contained in RadpAq.

Here, an element a Ă A is called nilpotent if there exists a positive integer n such that an “ 0. A
two-sided ideal I Ă A is called nilpotent if there exists a positive integer n such that a1 ¨ ¨ ¨ an “ 0 for all
a1, . . . an P I.

Proof. It is clear that RadpAq is a two-sided ideal. Since A is finite dimensional, as an A-module it
admits a Jordan–Hölder filtration. Let V1, . . . ,Vn be the Jordan factors of A. Since a ¨ Vi “ 0 for every
a P RadpAq and every Vi, it follows that a1 ¨ ¨ ¨ an “ 0 for all a1, . . . an P RadpAq. Hence RadpAq is nilpotent.

Note that if a P A is a nilpotent (namely, aN “ 0 for some positive integer N), then a P RadpAq.
Indeed, for every x P AzRadpAq, there exists an irreducible A-module V such that x ¨ V ‰ 0. By Schur’s
lemma, V xˆ

ÝÑ V is injective, so xN ‰ 0 for every positive integer N. This proves (1). As every element
of a nilpotent two-sided ideal is nilpotent, (1) implies the second statement of (2). □

Proposition 12.20. A is semisimple if and only if RadpAq “ 0.

Proof. Suppose that A is semisimple. Then A “
À

i Vi where Vi are irreducible A-modules. It follows
that RadpAq ¨ A “ 0, so RadpAq “ RadpAq ¨ 1 “ 0.

Suppose that A is not semisimple. Then by the Krull–Schmidt theorem, some indecomposable
A-submodule B Ă A is not semisimple. Let V Ă B be an irreducible B-submodule. Then V » B{m for
some maximal left-ideal m of B. Let x P m be a nonzero element. We have x ¨ V “ 0, so x¨ : B Ñ B is
not an isomorphism. As B is indecomposable, x is nilpotent by Proposition 11.1. Hence x P RadpAq by
Proposition 12.19, which shows that RadpAq ‰ 0. □

Exercise 12.21. Show that A{RadpAq is semisimple.

13. Grothendieck groups and characters

13.1. Grothendieck groups. Let A-Mod f be the category of finite dimensional A-modules. The
Grothendieck group of A-Mod f is the Z-module K0pA-Mod f q defined by generators and relations as
follows.
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‚ Generators: finite dimensional A-modules V.
‚ Relations: the submodule generated by rVs ´ rUs ´ rWs, whenever we have a short exact

sequence of A-modules
0 Ñ U Ñ V Ñ W Ñ 0.

We can also define the additive Grothendieck group Kadd
0 pA-Mod f q of A-Mod f : the definition is the

same as K0pA-Mod f q except for the relations, which is the submodule generated by rVs ´ rUs ´ rWs

whenever we have
V » U ‘ W.

Exercise 13.1. Show that K0pA-Mod f q (resp. Kadd
0 pA-Mod f q) is isomorphic to the free abelian group

generated by the isomorphism classes of irreducible (resp. indecomposable) A-modules.

13.2. Characters. Let ρ : A Ñ EndkpVq be a finite dimensional representation of A. The character of ρ is
defined as

χV : A Ñ k

a ÞÑ Trpρpaqq.
(13.1)

Note that χV is k-linear, and since Trp f1q “ Trp1 f q for any f , 1 P EndkpVq, the character χV descends to
a k-linear map

χV : A{rA,As Ñ k,

where rA,As is the k-linear subspace generated by

ra, bs :“ ab ´ ba P A

for all a, b P A.

Exercise 13.2. Let G be a group and let A “ krGs. Show that

HomkpA{rA,As,kq » t maps CpGq Ñ k u ,

where CpGq is the set of conjugacy classes of G.

Exercise 13.3. Let V be a finite dimensional A-module and let W Ă V be a submodule. Show that

χV “ χW ` χV{W .

We have group homomorphisms

Kadd
0 pA-Mod f q Ñ K0pA-Mod f q Ñ HomkpA{rA,As,kq

V ÞÑ χV.
(13.2)

We will prove the following, as a consequence of the Jacobson density theorem.

Corollary 13.4. Assume that k is either algebraically closed or chark “ 0. Let V1, . . . ,Vn be irreducible
A-modules which are pairwise non isomorphic. Then

χV1 , . . . , χVn P HomkpA{rA,As,kq

are linearly independent.

As a consequence, it follows from Exercise 13.1 that if k is as in Corollary 13.5 and chark “ p ě 0,
then character map

K0pA-Mod f q b Z{pZ Ñ HomkpA{rA,As,kq

is injective.

Corollary 13.5. Assume that chark “ 0. Up to isomorphisms, a finite dimensional semisimple representation
V of A is uniquely determined by its character χV.
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13.3. The Jacobson density theorem. Let A be any k-algebra and let ρ : A Ñ EndkpVq be an irreducible
representation of A. Let D :“ EndApVq. Then for every a P A, f P D and v P V, we have

f pavq “ a f pvq.

It follows that multiplication by a is D-linear, so the image of ρ : A Ñ EndkpVq lies in EndDpVq.
The Jacobson density theorem asserts that when V is finite dimensional the image of ρ is exactly

EndDpVq. Here we prove a slightly more general statement.

Theorem 13.6 (Jacobson density theorem). Let A be any k-algebra and let V1, . . . ,Vn be finitely many
finite dimensional irreducible A-modules such that Vi fi V j whenever i ‰ j. Let Di :“ EndApViq and let
µi : A Ñ EndDpViq be the map sending a to vi ÞÑ avi. Then

µ : pµ1, . . . , µnq : A Ñ EndD1 pV1q ˆ ¨ ¨ ¨ ˆ EndDn pVnq

is surjective.

Proof. Since each Vi satisfies dimk Vi ă 8 and Di is a k-algebra, we have mi :“ rankDi Vi ă 8. As
A-modules, we have

EndD1 pV1q ˆ ¨ ¨ ¨ ˆ EndDn pVnq » Vm1
1 ‘ ¨ ¨ ¨ ‘ Vmn

n ,

which is a direct sum decomposition into irreducible A-modules. Thus by Exercise 12.2, we have

A :“ µpAq » Vℓ1
1 ‘ ¨ ¨ ¨ ‘ Vℓn

n

as A-modules for some integers ℓ j ď m j. It also follows that

A
op

»

n
à

i“1
EndApVℓi

i ,V
ℓi
i q »

n
à

i“1
Matℓi pDiq

as A-modules. Since
n
ÿ

i“1

dimk Vℓi
i “ dimk A “ dimk A

op
“

n
ÿ

i“1

dimk Matℓi pDiq,

we have
n
ÿ

i“1

ℓimi ¨ dimk Di “

n
ÿ

i“1

ℓ2
i ¨ dimk Di,

which shows that ℓi “ mi for all i. Hence A “ EndDpVq. □

Exercise 13.7. Deduce the following consequence of the Jacobson density theorem. Let V be a finite
dimensional semisimple A-module and let R :“ EndApVq. For every v1, . . . , vn and s P EndRpVq, there
exists a P A such that

a ¨ vi “ spviq

for all i.

13.4. Independence of characters.

Proof of Corollary 13.5. Suppose that
n
ÿ

i“1

λi ¨ χVi “ 0

for some λi P k. Let Di :“ EndApViq and let

(13.3) µ : pµ1, . . . , µnq : A Ñ EndD1 pV1q ˆ ¨ ¨ ¨ ˆ EndDn pVnq

be the surjective map as in Theorem 13.6.
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First we assume that chark “ 0. Since (13.3) is surjective, for every i there exists ai P A such that
µipaiq “ IdVi and µ jpaiq “ 0 for every j ‰ i. Thus

0 “

n
ÿ

i“1

λi ¨ χVi paq “ λi ¨ dim Vi,

showing that λi “ 0.
Now assume that k is algebraically closed. Then Di » k for all k, so the surjectivity of (13.3) provides

again ai P A for each i such that Trpµipaiqq “ 1 and µ jpaiq “ 0 for all j, showing that λi “ 0. □

Remark 13.8. Without assuming that k is algebraically closed or chark “ 0, there exist irreducible
representations V with χV “ 0. For instance, there exist division algebras D over some field k of
characteristic p ą 0 such that dimk D is a power of p2 [4, Theorem 4.7.3], and we have χD “ 0 for the
regular representation of D (see e.g. [2, Proposition 2.6.3]).

13.5. The character map for semisimple rings.

Theorem 13.9. Assume that k is algebraically closed. Let A be a semisimple k-algebra with dimk A ă 8, and
let V1, . . . ,Vn be the finite dimensional irreducible A-modules (up to isomorphisms). Then χV1 , . . . , χVn form a
basis of HomkpA{rA,As,kq.

In other words, for k and A as in the theorem, the character map

K0pA-Mod f q b Z{pZ „
ÝÑ HomkpA{rA,As,kq

is an isomorphism by Exercise 13.1.

Proof. By Corollary 13.5, it remains to show that χV1 , . . . , χVn generate HomkpA{rA,As,kq. Since k is
algebraically closed, we have HomApVi,Viq » k be Schur’s lemma. Thus

A » Matm1 pkq ˆ ¨ ¨ ¨ ˆ Matmn pkq

as k-algebras for some positive integers m1, . . . ,mn. It follows from Exercise 13.10 that A{rA,As » kn as
k-vector spaces. AsχV1 , . . . , χVn are k-linearly independent, necessarily that generate HomkpA{rA,As,kq.

□

Exercise 13.10. Let n be a positive integer.

(1) Ei j be the n ˆ n elementary matrix whose pi, jq entry is 1. Compute rEi, j,Ek,ℓs for all indices
i, j, k, ℓ.

(2) Show that
rMatnpkq,Matnpkqs “ slnpkq :“ kerpTr : Matnpkq Ñ kq.

13.6. A symmetric bilinear form on the space of characters. Assume that k is algebraically closed
of characteristic zero. Let A be a finite dimensional semisimple k-algebra, and let V1, . . . ,Vn be the
irreducible A-modules. The character of these representationsχi :“ χVi form a basis of the k-vector space
HomkpA{rA,As,kq by Theorem 13.9. Let p‚, ‚q be the symmetric bilinear form on HomkpA{rA,As,kq

having χ1, . . . , χn as an orthonormal basis. This bilinear form is useful to organize some information
about finite dimensional A-modules, as we now explain.

Every finite dimensional A-module V is uniquely isomorphic to

V » V‘m1
1 ‘ ¨ ¨ ¨ ‘ V‘mn

n .

We call mi the multiplicity of Vi in V.

Exercise 13.11. Show that mi “ pχi, χVq.

Proposition 13.12. Assume that k is algebraically closed. Let V and W be finite dimensional A-modules. We
have

pχV, χWq “ dimk HomApV,Wq.
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Proof. Write
V » V‘m1

1 ‘ ¨ ¨ ¨ ‘ V‘mn
n and W » V‘m1

1
1 ‘ ¨ ¨ ¨ ‘ V‘m1

n
n .

Then

dimk HomApV,Wq “ dimk HomApV‘mi
i ,V‘m1

i
i q “

n
ÿ

i“1

mim1
i “ pχV, χWq,

where the second equality follows from Schur’s lemma. □

Introducing the bilinear form p‚, ‚q does not add new pieces of information, unless we can explicitly
compute it. We will provide an explicit formula for representations of finite groups.

13.7. Over nonclosed fields. We continue the setting in § 13.6, but without assuming that k is alge-
braically closed. We can generalize § 13.6 as follows.

The characters χi :“ χVi are still k-linearly independent in HomkpA{rA,As,kq, and we let

XpAq :“
n
à

i
k ¨ χi Ă HomkpA{rA,As,kq.

Let p‚, ‚q be the symmetric bilinear form on XpAq defined by

pχi, χ jq “ dimk HomApVi,V jq.

Exercise 13.13. Show that χ1, . . . , χn are orthogonal. Prove Proposition 13.12 without assuming that k
is algebraically closed.

Exercise 13.14. Let V be a finite dimensional A-module. Show that

mi “
pχi, χVq

pχi, χiq
.

Example 13.15. Suppose that k “ R and V is a finite dimensional irreducible A-module. Then V is real,
complex, quaternionic, if and only if

pχV, χVq “ 1, 2, 4

respectively.



LECTURE 5

Tensor products of group representations

Let k be a field. Let G be a group.

14. Tensor products of group representations

We first recall how tensor product b is defined for vector spaces. Here are some guiding principles:

‚ For finite dimensional vector spaces, ‘ linearizes addition, b linearizes multiplication (both
through dim). If e1, . . . , em is a basis of V and e1

1, . . . , e
1
n is a basis of W, then tei b e1

ju1ďiďm,1ď jďn

is a basis of V bk W.
‚ The tensor product V bk W of two k-vector spaces V and W is the universal target of bilinear

maps from V ˆ W.

Here is the precise statement for the second point.

Theorem-Definition 14.1 (Universal property of tensor products). Let V and W be two k-vector spaces.
There exists a k-vector space V bk W, together with a k-bilinear map

ϕ : V ˆ W Ñ V bk W,

For any k-bilinear map ψ : V ˆ W Ñ L to some k-vector space L, there exists a unique k-linear map
ψ̃ : V bk W Ñ L such that

V ˆ W
@ψ

//

ϕ %%

L

V bk W

D!ψ̃

OO

commutes. Moreover, the pair pV bk W, ϕq is unique up to unique isomorphism. The k-vector space V bk W is
called the tensor product of V and W over k.

14.1. Construction of tensor products. Let V and W be k-vector spaces. The simplest way of construct-
ing the tensor product V bk W is first by choosing a basis teiuiPI of V and a basis te1

ju jPJ of W, then define
V bk W as the k-vector space freely generated by

tei b e1
juiPI, jPJ.

We have a bilinear map

ϕ : V ˆ W Ñ V bk W

p
ÿ

iPI

λiei,
ÿ

jPJ

λ1
je

1
jq ÞÑ

ÿ

iPI, jPJ

pλiλ
1
jqei b e j,

(14.1)

where tλiuiPI is a collection of elements of k which is zero for all but finitely many i; same for tλ1
ju jPJ.

Exercise 14.2. Prove Theorem 14.1 for ϕ : V ˆ W Ñ V bk W.

The universal property also implies that up to a unique isomorphism, our previous construction of
ϕ : V ˆ W Ñ V bk W does not depend on the choices of bases teiu and te1

ju

14.2. Second construction. Here is another way to construct V bk W, which does not rely on the choice
of bases. Since we want ϕ : V ˆ W Ñ V bk W to be k-bilinear, we just define V bk W straightforwardly
by generators and relations as follows:

40
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‚ Generators: v b w for all v P V and w P W.
‚ The k-subspace of relations R is generated by

pv ` v1q b w “ v b w ` v1 b w, v b pw ` w1q “ v b w ` v b w1,

pλvq b w “ v b pλwq “ λpv b wq,

for all v, v1 P V, w,w1 P W, and λ P k.

Namely,

V bk W :“

˜

à

vPV,wPW
k ¨ pv b wq

¸

L

R.

For every v P V and w P W, we still use v b w to denote its image in W bk W. Elements in V bk W
of the form v b w are called pure tensors, or simple tensors.

Exercise 14.3. Prove Theorem 14.1 for the second construction of V bk W. What is the unique isomor-
phism between the first construction and the second construction?

Given a finite number of k-vector space V1, . . . ,Vn, we define the tensor product

V1 bk ¨ ¨ ¨ bk Vn

in a similar way. It satisfies a similar universal property, replacing bilinear maps with multilinear maps.

14.3. Interlude: Hilbert’s third problem. Let P1 and P2 be two polytopes in Rn. We say that P1 and P2

are scissors-congruent if they can be decomposed into finitely many polytopes, and these pieces can be
reassembled in RN into congruent polytopes.

Two scissors-congruent polytopes have same volume.

Exercise 14.4. The converse is true in dimension 2, which has been proven by e.g. Wallace (1807), Bolyai
(1833), Gerwein (1835). Prove this.

Question 14.5 (Kretkowski 1882, Hilbert’s third problem 1900). If polytopes (in dimension 3) have same
volume, are they scissors-congruent?

Let P be a polytope and let e be an edge of P. Let ℓpeq be the length of the edge and let θ0peq denote
the angle of the faces of P adjacent to e divided by 2π, viewed as an element of R{Z. Let θpeq be its
image in R{Q

Exercise 14.6. Let P be a polytope.

(1) Show that the Dehn invariant

DpPq :“
ÿ

e edges of P

ℓpeq b θpeq P R bQ R{Q

is preserved under scissors-congruent.
(2) Compute the Dehn invariant of a regular tetrahedron and that of a cube with same volume,

and show that they are not equal.

Hilbert’s third problem thus has a negative answer. The Dehn invariant was considered by Dehn in
1901 to solve the Hilbert’s third problem. Actually before Dehn, the problem had already been solved
by Birkenmajer in 1882, even before Hilbert asked the question.

14.4. Tensor product of endomorphisms. Let V and W be k-vector spaces. For every ϕ P EndkpVq and
ψ P EndkpWq, we define their tensor product to be the endomorphism ϕb ψ on V bk W defined by

pϕb ψqpv b wq “ ϕpvq b ψpwq

for pure tensors, then extends linearly to the whole V bk W.

Exercise 14.7. Give an equivalent definition of ϕb ψ using the universal property of tensor products.
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Exercise 14.8. Suppose that V and W are finite dimensional, and let e1, . . . , em and e1
1, . . . , e

1
n be bases

of V and W respectively. Show that if the matrix representing ϕ is M “ pmi jq1ďi, jďm and the matrix
representing ϕ is M1 “ pm1

i1 j1 q1ďi1, j1ďn, withe respect to the above bases, then the matrix representing
ϕ b ψ with respect to the basis tei b e1

ju1ďiďm,1ď jďn of V bk W is the Kronecker product of M and M1,
namely pmi jm1

i1 j1 q1ďi, jďm,1ďi1, j1ďn.

14.5. Tensor products of group representations. For every pair of G-representations ρV : G Ñ EndkpVq

and ρW : G Ñ EndkpWq, we define the tensor product of ρV and ρW to be the G-representation ρVbW on
V bk W defined by

ρVbWp1q “ ρVp1q b ρWp1q.

Exercise 14.9. Let G ýS,S1 be a pair of finite G-sets, and let S ˆ S1 be the product G-set. Show that we
have

krS ˆ S1s » krSs bk krS1s

as G-representations.

Exercise 14.10. Let U,V,W be G-representations. Show that we have canonical isomorphisms of
G-representations

‚ k bk V „
ÝÑ V,

‚ V bk W „
ÝÑ W bk W,

‚ pU bk Vq bk W „
ÝÑ U bk pV bk Wq,

‚ pU ‘ Vq bk W „
ÝÑ pU bk Wq ‘ pk bk Wq,

defined by λb v ÞÑ λv, v b w ÞÑ w b v, etc.

14.6. HomkpV,Wq as G-representations. Let V and W be a pair of G-representations over k. Then
HomkpV,Wq is endowed with a natural linear G-action defined by

1 ¨ ϕ “ 1 ˝ ϕ ˝ 1´1

for every 1 P G and ϕ P HomkpV,Wq. In these lectures, when we regard HomkpV,Wq as a G-
representation, it is defined as above unless otherwise specified.

Exercise 14.11. Verify that the above construction indeed defines a G-representation on HomkpV,Wq.
Show that

HomGpV,Wq :“ HomkrGspV,Wq “ HompV,WqG.

When W is the trivial G-representation of k, we call

V_ :“ HomkpV,kq

the dual representation of V.

14.7. b and Hom form an adjoint pair.

Proposition-Exercise 14.12. Let V be a G-representation over k. As functors from ReppG,kq to itself, ‚ bk V
is left adjoint to HomkpV, ‚q. Namely, for any G-representations U and W over k, there exist isomorphisms of
k-vector spaces

ϕUW : HomkpU bk V,Wq » HomkpU,HomRpV,Wqq

which are functorial in U and W. This means that for every G-equivariant k-linear map f : W Ñ W1, the
diagram

HomkpU bk V,Wq

f ˝

��

ϕUW // HomkpU,HomkpV,Wqq

f ˝

��
HomkpU bk V,W1q

ϕUW1// HomkpU,HomkpV,W1qq

commutes. Also the similar diagram for every G-equivariant k-linear map h : V Ñ V1 commutes.
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Exercise 14.13. Using the property that ϕUW is functorial in U and W, show that ϕUW are actually
isomorphisms of G-representations.

In particular, when W “ k, we have

pU bk Vq_ » HomkpU,V_q,

and these isomorphisms are functorial in U and V.

Exercise 14.14. Suppose that V and W are finite dimensional G-representations over k. Show that

V_ bk W » HomkpV,Wq,

and these isomorphisms are functorial in V and W among finite dimensional G-representations over k.

15. Tensor algebras

Let V be a k-vector space.

15.1. Tensor algebras. For every n P Zě0, we define inductively

T0pVq :“ k, TnpVq :“ Tn´1pVq bk V

and let

TpVq :“
8
à

n“0
TnpVq.

We define product on TpVq, first for pure tensors by

px1 b ¨ ¨ ¨ b xiq ¨ py1 b ¨ ¨ ¨ b y jq “ px1 b ¨ ¨ ¨ b xi b y1 b ¨ ¨ ¨ b y jq,

then extend by linearity. We can therefore consider TpVq as a graded associative k-algebra, and call it
the tensor algebra associated to V.

15.2. Symmetric and exterior algebras.

Theorem-Definition 15.1 (Universal property of symmetric and exterior powers). Let n be a positive
integer. There exists an k-vector space N together with an k-multilinear symmetric (resp. alternating) map

ϕ : Vn Ñ N

which satisfies the following universal property: for any symmetric (resp. alternating) k-multilinear map
ψ : Vn Ñ L to some k-vector space L, there exists a unique k-linear map ψ̃ : N Ñ L such that

Vn
@ψ
//

ϕ   

L

N

D!ψ̃

OO

commutes. Moreover, the pair pN, ϕq is unique up to unique isomorphism. The k-vector space N is called the
symmetric power (resp. the exterior power) of V over k, and is denoted SymnM (resp.

Źn M).

The symmetric algebra associated to an k-vector space V is defined as

SympVq :“
TpVq

ăx b y ´ y b x | x, y P Vą
,

where the denominator is the two-sided ideal generated by all the x b y ´ y b x.

Exercise 15.2. Show that the grading on TpVq induces a grading ‘iSymi
pVq on SympVq, and that SympVq

is a commutative graded k-algebra. Show that the composition

ϕ : Vn Ñ TnpVq Ñ Symn
pVq

satisfies the universal property in Theorem 15.1.
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The image of a pure tensor x1 b ¨ ¨ ¨ b xn in Symn
pVq is denoted by

x1 ¨ ¨ ¨ xn.

When n! is invertible in k, the quotient q : TnpVq Ñ Symn
pVq splits: the map defined by

x1 ¨ ¨ ¨ xn ÞÑ
1
n!

ÿ

σPSn

xσp1q b ¨ ¨ ¨ b xσpnq

extends to a morphism of k-vector space ı : Symn
pMq Ñ TnpMq such that q ˝ ı is the identity.

Exercise 15.3. Let V be a vector space over a field k of finite dimension n. Show that SympV_q is
identified with the ring of polynomials on V. You may show that explicitly, if e1, . . . , en is a basis of V
and e_

1 , . . . , e
_
n its dual basis, then there is an isomorphism

SympV_q “ kre_
1 , . . . , e

_
n s

as graded k-algebras.

The exterior algebra associated to an k-vector space V is defined as
ľ

V :“
TpVq

ăx b x | x P Vą
,

where the denominator is the two-sided ideal generated by all the x b x.

Exercise 15.4. Likewise, show that the grading on TpVq induces a grading ‘i
Źi V on

Ź

V, and that
Ź

V is a graded-commutative graded k-algebra: namely, for every a P
Źi V and b P

Ź j V, we have

b ^ a “ p´1qi ja ^ b,

where ^ is the product on
Ź

V. Show that the composition

ϕ : Vn Ñ TnpVq Ñ

n
ľ

V

satisfies the universal property in Theorem 15.1.

The image of a pure tensor x1 b ¨ ¨ ¨ b xn in
Źn

pVq is denoted by

x1 ^ ¨ ¨ ¨ ^ xn.

When n! is invertible in k, the map defined by

x1 ^ ¨ ¨ ¨ ^ xn ÞÑ
1
n!

ÿ

σPSn

sgnpσqxσp1q b ¨ ¨ ¨ b xσpnq

extends to a morphism of k-vector space
Źn V Ñ TnpVq and defines a splitting of the quotient

q : TnpVq Ñ
Źn V.

Exercise 15.5. Construct a natural k-linear identification between Symn
pV_q (resp.

Źn V_) and the
space of symmetric (resp. alternating) multilinear forms on V.

15.3. Symmetric power and exterior power of G-representations. Let V be a k-vector space and let
n P Zą0. For every ϕ P EndkpVq, we define the nth symmetric power ϕ to be the endomorphism Symnϕ

on SymnV defined by
pSymnϕqpv1 ¨ ¨ ¨ vnq “ ϕpv1q ¨ ¨ ¨ϕpvnq

for pure tensors, then extends linearly to the whole SymnV. Likewise, we define the nth exterior power
of ϕ to be the endomorphism

Źn ϕ on
Źn V defined by

p

n
ľ

ϕqpv1 ^ ¨ ¨ ¨ ^ vnq “ ϕpv1q ^ ¨ ¨ ¨ ^ ϕpvnq

for pure tensors, then extends linearly to the whole
Źn V.
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Now assume that ρV : G Ñ EndkpVq is a G-representation over k. We define the nth symmetric
power and the nth exterior power of ρV to be the G-representation on SymnV and

Źn V defined by

ρSymnVp1q “ SymnρVp1q and ρŹn Vp1q “

n
ľ

ρVp1q

respectively, for every 1 P G.

Exercise 15.6. Show that

V bk V » Sym2
pVq ‘

2
ľ

V

as G-representations.

Exercise 15.7. Let V and W be G-representations over k. Let n P Zą0. Show that

Symn
pV ‘ Wq »

à

i` j“n
SymiV bk Sym jV

and
n
ľ

pV ‘ Wq »
à

i` j“n
^iV bk ^ jV

as G-representations.

Exercise 15.8. The aim of this exercise is the prove the following proposition.

Proposition 15.9. Let G be a finite group and let k be an algebraically closed field such that chark ∤ |G|. Let
V be a finite dimensional faithful G-representation over k. Every irreducible G-representation W over k is a
G-subrepresentation of SymnV (in particular, a G-subrepresentation of Vbn) for some integer n.

(1) Show that there exists u P V_ such that Stabpuq is trivial for the induced G-action G ýV_.
(2) Show that the map

SympVq Ñ MappG,kq

sending a polynomial f on V_ to the map 1 ÞÑ f p1 ¨ uq is a surjective maps of G-representations.
(3) Conclude.

Exercise 15.10. Let Vn be the standard representation of Sn. Show that
Źd Vn is irreducible for all

d “ 1, . . . ,n.

15.4. Ring structures on the Grothendieck groups. Let ReppG,kq f “ krGs-Mod f be the category of
finite dimensional G-representations.

Exercise 15.11. Let V be a G-representation over k and let

0 Ñ W1 Ñ W2 Ñ W3 Ñ 0

be a short exact sequence in ReppG,kq. Show that

0 Ñ W1 bk V Ñ W2 bk V Ñ W3 bk V Ñ 0

is a short exact sequence in ReppG,kq.

By Exercises 15.11 and 14.10, the product

rVs ¨ rWs :“ rV b Ws

is well-defined in K0pReppG,kq f q and Kadd
0 pReppG,kq f q for any finite dimensional G-representations V,W

over k, and we can extend by linearity to a product on K0pReppG,kq f q and Kadd
0 pReppG,kq f q, making

them into rings. We call them the Grothendieck ring of ReppG,kq f , and the additive Grothendieck ring
of ReppG,kq f .

Exercise 15.12.

(1) Show that Kadd
0 pReppG,kq f q Ñ K0pReppG,kq f q is a ring homomorphism.
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(2) Show that we have a ring homomorphism

BpGq Ñ Kadd
0 pReppG,kq f q

sending a G-set S to krSs.

Exercise 15.13. Show that the permutation representations associated to the G-sets

PGLp3,F2q ýPpVq and PGLp3,F2q ýPpV_q

in Exercise 3.4 are isomorphic. Thus in general, BpGq Ñ Kadd
0 pReppG,kq f q is not injective.

15.5. Characters of tensor products. Let V and W be two finite dimensional G-representations over k.

Exercise 15.14. Prove the following equalities.

(1) χVbW “ χV ¨ χW .
(2) χV_ p1q “ χVp1´1q for all 1 P G.
(3) χHompV,Wq “ χV_ ¨ χW .

Thus the character map

K0pReppG,kq f q Ñ MappCpGq,kq

rVs ÞÑ χV.
(15.1)

is a ring homomorphism.

Exercise 15.15. Show that for every 1 P G, we have

χSym2pVqp1q “
χVp1q2 ` χVp12q

2
and χŹ2

pVq
p1q “

χVp1q2 ´ χVp12q

2
.

Exercise 15.16. Let U,V,W be finite dimensional G-representations. Show that

pχUbkV, χWq “ pχU, χHomkpV,Wqq.

(Hint: use Exercise 14.13 and Proposition 13.12)

Exercise 15.17. Let V be a complex representation of a finite group G. Show that

χV_ “ χV.

16. Examples of representations of finite groups

Let G be a finite group and let k be a field of characteristic zero.

16.1. Character tables. Recall that by Maschke’s theorem, krGs is semisimple. So every G-representation
is a direct sum of irreducible G-representations, and the isomorphism classes of irreducible representa-
tions Vi are completely their characters χVi . Therefore the information of representations of G over k is
essentially contained in the character table of G, which consists of

χVi p1 jq P k

with Vi runs through all irreducible G-representations, and 1 j runs through all conjugacy classes of G.
If we further assume that k algebraically closed, then these characters χVi form a basis of MappCpGq,kq,
so in this case, the character table is a square table.

16.2. A trace formula. We could have proven the following statement together with Maschke’s theorem

Proposition 16.1. Let V be a G-representation over k. Assume that charpkq “ 0. We have

1
|G|

ÿ

1PG

χVp1q “ dim VG.
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Proof. Let
P :“

1
|G|

ÿ

1PG

ρVp1q.

We have 1
|G|

ř

1PG χVp1q “ TrP. Since P is a projector onto VG (namely ImP “ VG and P|VG “ VG), we
have TrP “ dim VG. □

16.3. Explicit description of the bilinear form for representations of finite groups. We assume that
k is algebraically closed and charpkq “ 0. Since krGs is semisimple by Maschke’s theorem, up to
isomorphisms there exist only finitely many irreducible G-representations V1, . . . ,Vn. The character of
these representations χi :“ χVi form a basis of the k-vector space MappCpGq,kq by Theorem 13.9.

Let p‚, ‚q be the symmetric bilinear form on MappCpGq,kq having χ1, . . . , χn as an orthonormal basis.

Proposition 16.2. For every pair of maps f1, f2 : CpGq Ñ k, we have

p f1, f2q “
1

|G|

ÿ

1PG

f1p1q f2p1´1q.

Proof. Since the right hand side of the equality is also bilinear in f1 and f2, it suffices to prove for f1 “ χi

and f2 “ χ j for any i and j. By Proposition 16.1, we have

1
|G|

ÿ

1PG

χip1qχ jp1
´1q “

1
|G|

ÿ

1PG

χVibV_
j

p1q “ dim HomkpV j,Viq
G “ δi j “ pχi, χ jq

where the second last equality follows from Schur’s lemma. □

Exercise 16.3. Without assuming that k is algebraically closed, show that for every pair of elements
f1, f2 : CpGq Ñ k in XpGqk :“ XpkrGsq, we still have

p f1, f2q “
1

|G|

ÿ

1PG

f1p1q f2p1´1q.

16.4. The standard representations of symmetric groups. Consider the natural action of Sn on
S “ t1, . . . ,nu, and the induced permutation representation krSs. Let r1s, . . . , rns be the basis of krSs

corresponding to 1, . . . ,n. Note that r1s ` ¨ ¨ ¨ ` rns is Sn-invariant, and we have a decomposition

krSs » Vn ‘ k

of Sn-representations, where Vn is the linear subspace generated by ris ´ r js for all i and j. We call
Sn ýVn the standard representation of Sn.

Proposition 16.4. Assume that k is algebraically closed and charpkq ∤ n!. For every integer n ě 2, the standard
representation Vn of Sn is irreducible.

Proof. By Exercise 13.11, it suffices to show that pχVn , χVn q “ 1. Let Sn ýS :“ t1, . . . ,nu be the natural
action.

We first show that pχkrSs, χkrSsq “ 2. By Proposition 16.2, we have

pχkrSs, χkrSsq “
ÿ

σPSn

|Fixpσ ýSq|2 “
ÿ

σPSn

n
ÿ

i, j“1

δi,σpiqδ j,σp jq “

n
ÿ

i, j“1

ÿ

σPSn

δi,σpiqδ j,σp jq,

where δ is the Kronecker delta. We have

(16.1)
ÿ

σPSn

δi,σpiqδ j,σp jq “

$

&

%

pn ´ 1q! if i “ j

pn ´ 2q! if i ‰ j,

thus
n
ÿ

i, j“1

ÿ

σPSn

δi,σpiqδ j,σp jq “ n ¨ pn ´ 1q! ` n ¨ pn ´ 1q ¨ pn ´ 2q! “ 2n!.

Since

pχVn , χVn q “ pχkrSs, χkrSsq ´ 2pχk, χVn q ´ pχk, χkq ď pχkrSs, χkrSsq ´ pχk, χkq “ 1,
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we have pχVn , χVn q “ 1.
□

16.5. Example: complex representations of cyclic groups. Assume that k “ C. Let G be a cyclic group
of order n. We know by Corollary 10.9 that the irreducible representations of G all have dimension 1.
Also, since G is an abelian group, we have CpGq “ G. So there are exactly |G| isomorphism classes of
irreducible G-representations.

Let 1 P G be a generator. Let ζn :“ e2πı{n. For every i P Z, consider the irreducible G-representation
ρi : G Ñ EndCpCq defined by ρip1qpvq “ ζi

n ¨ v for all v P C. Let χi :“ χρi . We have

χip1
jq “ ζi j

n .

Exercise 16.5. Show that χ0, . . . , χn´1 are linearly independent in MappG,Cq. Deduce that the irreducible
G-representations are exactly Idk, ρ1, . . . , ρn´1 up to isomorphisms.

16.6. Example: real representations of cyclic groups. Let G be a cyclic group of order n. Fix a generator
1 P G. The representations ρ j of G that we consider previously are also representations over R, which
are isomorphic to ρR

j defined by rotations of R2 of degree 2π
n j. The representation ρR

j is irreducible if

and only if rotation by 2π
n j doesn’t have eigenspace, which is equivalent to 2 j ‰ n. When 2 j “ n, the

representation ρR
j is decomposed as

R2 “ R ‘ R´

where R is the trivial representation of G, and R´ is the representation defined by σp1q “ ´IdR. Let
χR

j :“ χρR
j
. We have

χR
j p1kq “ 2 cosp2π jk{nq.

Note that χR
j “ χR

n´ j, so ρR
j » ρR

n´ j by Corollary 13.5.

Exercise 16.6.

(1) Show that the characters χIdR , χσ, χ
R
1 , . . . , χ

R
rn{2s´1 are linearly independent.

(2) Deduce from Corollary 12.17 the classification of irreducible real representations of G. Which
of them are real, complex, quaternionic?

16.7. Product of groups. Let G and H be finite groups.

Exercise 16.7.

(1) Show that the set of conjugacy classes CpG ˆ Hq is in bijection with CpGq ˆ CpHq.
(2) Let V1, . . . ,Vm (resp. W1, . . . ,Wn) be the isomorphism classes of irreducible representations of

G (resp. H). Show that the the isomorphism classes of irreducible representations of G ˆ H is

Vi bk W j pi “ 1, . . . ,m, j “ 1, . . . ,nq,

where we regard Vi as the pG ˆ Hq-representation defined by the composition G ˆ H Ñ G Ñ

EndkpViq, and same for W j.
(3) What is the character table over C of a finite abelian group?

16.8. Example: S3. We work with k “ C. Recall that each element of Sn can be decomposed into a
composition of cyclic permutations with disjoint cycles, and the conjugacy classes of Sn is in bijection
with the partitions of n, which correspond to the lengths of the cyclic permutations in the decomposition.
Thus S3 has three conjugacy classes, represented by the neutral element e, the transposition p12q, and
the 3-cycle p1, 2, 3q. So up to isomorphisms there are exactly three irreducible representations ρ1, ρ2, ρ3

of S3. One of them ρ1 is the trivial representation G ýk. What are the others?
Let Vi be the underlying k-vector space of ρi. First we notice that by Corollary 12.18, we have

6 “ |G| “ 1 ` pdim V2q2 ` pdim V3q2.

So necessarily dim V2 “ 1 and dim V3 “ 2 (up to permutations).
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For ρ2, we can consider the signature σ : S3 Ñ t˘1u. The group t˘1u acts on k by ˘Id. Composing
it with σ gives a representation ρ2 of S3 on k, which is non-trivial (e.g. because χρ1 ‰ χρ2 ). As
k is one-dimensional, ρ2 is irreducible. The remaining irreducible representation ρ3 is the standard
representation of S3.

p1q p12q p123q

ρ1 1 1 1
ρ2 1 ´1 1
ρ3 2 0 ´1

Table 1. Character table of S3

16.9. Example: S4. We work with k “ C. The conjugacy classes of S4 are represented by

e, p12q, p123q, p12qp34q, p1234q.

As in the case of S3, the trivial representation ρ1, the signature representation ρ2, and the standard
representation ρ3 are irreducible representations of S4 on k.

Exercise 16.8. Show that ρ3 is also the representation of C3 defined by the rotations of a cube.

Considering the S4-action on the pairs of skew-edges in a tetrahedron, we have a surjective
homomorphism S4 Ñ S3. Thus the 2-dimensional irreducible representation V of S3 induces an
irreducible representation ρ4 of S4.

Exercise 16.9. Let ρ : G Ñ EndkpVq be an irreducible representation of G and let χ be a one-dimensional
representation of G. Show that ρb χ is irreducible.

The remaining irreducible S4-representation is ρ5 “ ρ3 b ρ4.

Exercise 16.10. What is the character table of S4 over C?

16.10. Example: A4. Let Ppσq be the partition of n which corresponds to an element of σ P Sn. Recall
that σ, σ1 P An are conjugate then Ppσq ‰ Ppσ1q. Conversely, there exist exactly two (resp. one) conjugacy
classes with the same partition P if P consists of distinct odd numbers (resp. otherwise). If Ppσq “ Ppσ1q

consists of distinct odd numbers, then σ and σ1 are conjugate if and only if they are conjugate by an even
permutation in Sn. The conjugacy classes of A4 are thus represented by

e, p123q, p132q, p12qp34q.

Note that the set of irreducible representations of a group G contains those of G{H for every normal
subgroup H Ĳ G. To find the irreducible representations of A4, we can first consider the quotient
A4 Ñ Z{3Z, defined by the action of A4 on the pairs of skew-edges in a tetrahedron (which consists of
even permutations). The cyclic group Z{3Z has three irreducible complex representations, which lifts to
irreducible complex representations ρ1, ρ2, ρ3 of A4. By the orthogonality of the character, the character
table of A4 is

e p123q p132q p12qp34q

ρ1 1 1 1 1
ρ2 1 ζ3 ζ2

3 1
ρ3 1 ζ2

3 ζ3 1
ρ4 3 0 0 ´1

where ζ3 “ e2πı{3. Computing the character of the restriction of the standard representation S4 ýC3 to
A4, we see that it coincides with the character of ρ4. Hence ρ4 is the standard representation of A4.
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16.11. Example: A5. The conjugacy classes of A5 are represented by

e, p123q, p12qp34q, p12345q, p12354q.

Exercise 16.11. Show that the five classes of irreducible representation of A5 over C are:

(1) The trivial representation ρ1.
(2) The standard representation of S5 restricted to A5

(3) The representation ρ3 of C3 defined by the rotations of a regular dodecahedron.
(4) The composition ρ3 ˝ α where α P AutpA5q is the conjugation of A5 in S5 by p45q.
(5) The representation of A5 on

#

f : S Ñ C

ˇ

ˇ

ˇ

ˇ

ˇ

ÿ

sPS

f psq “ 0

+

induced by the permutation of A5 on the set S of pairs of opposite faces of a regular dodecahe-
dron.

Describe the character table of A5 over C.

Exercise 16.12. Classify the irreducible representation of G5 over C, and describe the character table.

16.12. Example: complex representations of Q8. Let

Q8 :“ t ˘1,˘i,˘ j,˘k u

be the multiplicative subgroup of the quaternion algebra H over R. The conjugacy classes are

1,´1,˘i,˘ j,˘k,

so Q8 has five isomorphism classes of complex irreducible representations, which have dimension
1, 1, 1, 1, 2 by Corollary 12.18.

To find the irreducible representations of Q8, we can first consider the quotient

Q8{ZpQ8q » Z{2Z ˆ Z{2Z

by the center ZpQ8q “ t˘1u, There are four irreducible representations of Z{2Z ˆ Z{2Z, which give
the one-dimensional representations of Q8. Explicitly, these are the trivial representation ρ1, the
representation ρ2 defined by ρ2piq “ IdC, ρ2p jq “ ρ2pkq “ ´IdC, and the other two ρ3, ρ4 defined similarly
under permutations of i, j, k. By the orthogonality of the characters of irreducible representations and
Proposition 16.2, we can deduce the character of the remaining irreducible representationρ5 of dimension
2, and the character table of Q8 is

1 ´1 ˘i ˘ j ˘k
ρ1 1 1 1 1 1
ρ2 1 1 1 ´1 ´1
ρ3 1 1 ´1 1 ´1
ρ4 1 1 ´1 ´1 1
ρ5 2 ´2 0 0 0

Consider the regular representation of H on H. Regarding H as a C-vector space defined by
left-multiplication, then 1, j P H form a basis of H. Let Q8 act on H by right-multiplication, which is
a 2-dimensional representation ρ5 over C. In terms of matrices with respect to the basis 1, j, we have
ρ5p´1q “ ´Id and

ρ5piq “

˜?
´1 0
0 ´

?
´1

¸

, ρ5p jq “

˜

0 1
´1 0

¸

, ρ5pkq “

˜

0
?

´1
?

´1 0

¸

.

Hence ρ5 is the remaining irreducible representation of Q8.
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Remark 16.13. The matrices

ρ5piq{
a

´1, ρ5p jq{
a

´1, ρ5pkq{
a

´1

are call Pauli matrices in quantum mechanics.

16.13. Multiplication table of tensor product. For simplicity, assume that k “ C. Recall that if V and
W are finite dimensional G-representations, then χVbW “ χVχW. The character χVbW determines the
G-representation V b W, and we can compute χVχW using the character table. For instance, if G “ S3,
then we obtain the following Multiplication table of tensor products of irreducible S3-representations.

ρ1 ρ2 ρ3

ρ1 ρ1 ρ2 ρ3

ρ2 ρ1 ρ3

ρ3 ρ1 ‘ ρ2 ‘ ρ3

Exercise 16.14. Compute the multiplication table of tensor products of complex irreducible representa-
tions of S4.

16.14. McKay quiver. The McKay quiver of a complex representation V of of G is a weighted quiver Q
described as follows.

‚ The vertices i of Q are the irreducible representations Vi of G, and each vertex i is assigned
with the number (weight) dimC Vi.

‚ The number of arrows ni j from i to j is equal to the multiplicity of V j in V bk Vi.

Exercise 16.15. Prove the following statements

(1) If G ýV is faithful, then the McKay graph of V is connected. (Hint: use Proposition 15.9.)
(2) If V » V_ as G-representations, then ni j “ n ji.

16.15. Finite subgroups of SUp2q and affine Dynkin diagram. On the quaternion algebra H over R,
we have a norm defined by

Npa ` bi ` cj ` dkq :“
a

a2 ` b2 ` c2 ` d2,

with a, b, c, d P R. Alternatively, if z “ a ` bi ` cj ` dk and z :“ a ´ bi ´ cj ´ dk denotes its conjugate, then
Npzq “ zz. For every z1, z2 P H, since z1z2 “ z2 ¨ z1, we have Npz1z2q “ Npz1qNpz2q. Thus the elements of
norm 1 of H form a group, denoted by S3.

Exercise 16.16. Show that S3 is isomorphic to the group of special unitary matrices

SUp2q “

#˜

α β

´β α

¸
ˇ

ˇ

ˇ

ˇ

ˇ

α, β P C, |α|2 ` |β|2 “ 1

+

.

Exercise 16.17. Let ρ be the real representation of S3 on H defined by conjugation

ρp1q : z ÞÑ 1z1´1.

(1) Show that it preserves the norm N, and it restricts to a subrepresentation on the R-linear
subspace W Ă H spanned by i, j, k.

(2) Deduce that there is a surjective group homomorphism S3 Ñ SOp3,Rq, whose kernel is t˘1u.
(3) Classifies finite subgroups which are isomorphic to some subgroup of S3 » SUp2q.

Now let G ď SUp2q be a nontrivial finite subgroup and let ρ : G Ñ EndCpVq be the restriction of
the standard representation of SUp2q on C2. Since SUp2q ýV is faithful and self-dual, so is G ýV.
Thus the McKay quiver of G ýV is connected and satisfies ni j “ n ji. Let Mpρq be the undirected graph,
having the same vertices as the McKay quiver with ni j edges between i and j.
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Exercise 16.18. The aim of this exercise is to classify Mpρq.

(1) Show that 2 ´ χρ is the character of a complex representation of G. Deduce that the quadratic
form

f ÞÑ pp2 ´ χρq f , f q

on MappCpGq,Rq is positive semidefinite, and not definite.
(2) Let Apρq be the adjacent matrix of Mpρq and let

Cpρq “ 2 ¨ Id ´ Apρq.

Show that Cpρq is positive semidefinite and not definite if and only if Mpρq is one of the
following.

They are the affine Dynkin diagrams of type rAn, rDn, rE6, rE7, rE8

(3) Describe the McKay quiver of G (including the weights).



Intermezzo

17. Frobenius divisibility

17.1. The statement.

Theorem 17.1. Let G be a finite group and let ρ : G Ñ EndCpVq be a finite dimensional irreducible complex
representation of G. Then dim V divides |G|.

17.2. The proof. For every 1 P G, let

Cp1q :“
␣

γ1γ´1
ˇ

ˇ γ P G
(

.

Define
Φ1 :“

ÿ

hPCp1q

ρphq P EndCpVq.

Note that Φ1 : V Ñ V is G-equivariant, so by Schur lemma, we have

Φ1 “ λ1IdV

with

λ1 “
|Cp1q|

d
χVp1q

where d “ dim V.
We have

|G|

d
“

ÿ

1PCpGq

λ1
χVp1q

“
ÿ

1PCpGq

λ1χVp1q.

Since Z is integrally closed and algebraic integers form a subring of C, it suffices to show prove the
following two lemmas.

Lemma 17.2. χVp1q are algebraic integers.

Proof. Since ρp1q has finite order, the eigenvalues of ρp1q are roots of unity. Thus χVp1q “ Trρp1q is an
algebraic integer. □

Lemma 17.3. λ1 are algebraic integers.

Proof. Let C1 :“
ř

hPCp1q h P ZrGs and let ZrC1s be the (commutative) Z-subalgebra generated by C1.
We have a surjective ring homomorphism ZrC1s ↠ ZrΦ1s Ă EndCpVq and ZrΦ1s » Zrλ1s Ă C as

rings. Since ZrGs is a finitely generated Z-module, so are ZrC1s and Zrλ1s. Hence λ1 is integral over Z
(by Cayley–Hamilton, see Modern Algebra II). □

17.3. An improvement.

Corollary 17.4. Let G be a finite group and let ρ : G Ñ EndCpVq be a finite dimensional irreducible complex
representation of G. Then dim V divides |G{Z|, where Z is the center of G.

Exercise 17.5. We shall prove Corollary 17.4.

(1) G1 and G2 be two finite groups. Let V1 be a complex G1-representation and let V2 be a complex
G2-representation. Let V1 b V2 be the pG1 ˆ G2q-representation on V1 bk V2 defined by

p11, 12q ¨ pv1 b v2q “ p11v1q b 12v2.

Show that if V1 and V2 are irreducible representations, then so is V1 b V2.
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(2) Let m P Zą0. Let e P G be the neutral element. Show that

K “ t pz1, . . . , zmq P Zm | z1 ¨ ¨ ¨ zm “ e u

lies in the kernel of the Gm-representation Vbm.
(3) Conclude.



LECTURE 6

Induction and restriction

18. Induced modules and restricted modules

18.1. First example: extension of scalars. Let k be a field and let V be a vector space of dimension d
over a field k. If we choose a basis e1, . . . , ed of V, then every element of V is a linear combination of the
ei’s with coefficients in k, which gives a k-linear isomorphism

V » ‘d
i“1k ¨ ei.

Now let L{k be a field extension. The tensor product

VL :“ V bk L

that we will define as an L-vector space can be understood as the extension of scalars. With the above
chosen basis e1, . . . , ed, there exists a canonical isomorphism

VL » ‘d
i“1L ¨ ei,

through which VL can be described as an L-vector space having the same basis elements as V, but
replacing the coefficient field with L. If we have a k-linear map ϕ : U Ñ V between k-vector spaces, it
also extends to an L-linear map

ϕL : UL Ñ VL

defined by the same matrix.

18.2. Universal property of induced modules. We also notice that if V is a k-vector space and W is an
L-vector space, then any k-linear map ψ : V Ñ W has a unique L-linear extension ψ̃ : VL Ñ W. This
motivates the following general definition.

Theorem-Definition 18.1 (Universal property of induced modules). Let r : A Ñ B be a morphism of
k-algebras. Let V be an A-module. There exists a B-module B bA V, together with an A-linear map

ϕ : V Ñ B bA V,

satisfying the following universal property: for any A-linear map ψ : V Ñ W to some B-module W, there exists
a unique B-linear map ψ̃ : B bA V Ñ W such that

V
@ ψ

//

ϕ ##

W

B bA V

D! ψ̃

OO

commutes. Moreover, the pair pB bA V, ϕq is unique up to unique isomorphism. We call B bA V the induced
B-module. It is also denoted by IndB

AV.

18.3. Construction. The construction of B bA V is similar to the construction of tensor products we’ve
seen previously. We define the B-module B bA V by generators and relations as follows:

‚ Generators: b b v for all b P B and v P V.
‚ The R-submodule of relations R is generated by

pb ` b1q b v “ b b v ` b1 b v, b b pv ` v1q “ b b v ` b b v1,

55
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pbaq b v “ b b pavq “ bpa b vq, and bpb1 b vq “ pbb1q b v

for all b, b1 P B, v, v1 P V, and a P A. Here, the image of a in B is still denoted by a by abuse of
notation.

In other words„

B bA V :“

˜

à

bPB,vPV
B ¨ pb b vq

¸

L

R.

Exercise 18.2. Prove Theorem 18.1.

Exercise 18.3. Let A Ñ B Ñ C be morphisms of k-algebras. Show that we have the following canonical
isomorphisms.

‚ B bA pU ‘ Vq
„
ÝÑ pB bA Uq ‘ pB bA Vq;

‚ A bB pB bC Vq
„
ÝÑ A bC V.

18.4. Restricted modules. Let A be a k-algebra and let ϕ : A Ñ B be an A-algebra. Any B-module V
has an induced A-module structure, defined by

a ¨ v :“ ϕpaq ¨ v

for every a P A and v P V. As a morphism of B-modules is naturally a morphism of A-modules, we thus
have a functor

ResA : ModB Ñ ModA

from the category of B-modules to the category of A-modules, called the restriction functor. For every
B-module V, the A-module ResAV is called the restricted module.

18.5. Frobenius reciprocity. Restricted modules and induced modules are related as follows.

Exercise 18.4. Show that IndB
A and ResA form an adjoint pair: there exist natural k-linear isomorphisms

HomBpIndB
AV,Wq » HomApV,ResAWq

for any A-module V and B-module W. (Hint: use the universal property.)

19. Example: extension and restriction of scalars

Let k be a field and let L{k be a field extension. Let G be a finite group.

19.1. Endomorphisms under extension of scalars. Let V be a finite dimensional k-vector space and let
f P EndkpVq. Let VL :“ L bk V and

fL :“ IdL b f P EndLpVLq.

Then
Trp f q “ Trp fLq.

In particular, if G ýV is a finite dimensional representation over k, then for the induced a G-
representation on VL over L (namely VL “ IndLrGs

krGs
V), we have

χV “ χVL .

Exercise 19.1. Let ρ : G Ñ EndW be a finite dimensional G-representation over L. Show that W » L bk V
for some G-representation V over k if and only if there exists a basis B on W such that for every 1 P G,
with respect to B the map ρp1q is a matrix with coefficients in k.

19.2. Trace map.

Exercise 19.2. Let L{k be a finite Galois extension. Let α P L. Let Pα P krXs be the minimal polynomial
of α and let cα P krXs be the characteristic polynomial of the k-linear map

µα : L Ñ L

x ÞÑ αx.
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Show that
cα “ PrL:kpαqs

α .

Deduce that
TrL{kpαq :“ Trµα “

ÿ

σPGalpL{Kq

σpαq.

We call TrL{k : L Ñ k the trace map.

Example 19.3. For every z P C, TrC{Rpzq “ z ` z.

19.3. Endomorphisms under restriction of scalars. Now let V be a finite dimensional L-vector space
and let f P EndLpVq. Let V|k be the underlying k-vector space of V and let f |k P EndkpV|kq be the
endomorphism f , viewed as a k-linear map.

Suppose that L{k is a finite Galois extension. It follows from Exercise 19.2 that

Trp f |kq “ TrL{kpTrp f qq.

We have the following more precise statement.

Exercise 19.4. Let W be a finite dimensional k-vector space such that V » L bk W as L-vector spaces.
Then the Galois action on L induces a GalpL{kq-action on V. For every σ P GalpL{kq, let Vσ be the
Lr f s-module whose underlying L-vector space is V, such that f acts on V by

v ÞÑ pσ ˝ f ˝ σ´1qpvq

Show that
L bk V »

à

σPGalpL{kq

Vσ

as Lr f s-modules, where f acts on L bk V by IdL b f .

Remark 19.5. In Exercise 19.4, the k-vector space W together with the isomorphism V » L bk W is
called a k-structure of V. The GalpL{kq-action on V, depend on the choice of k-structure. If W1 is
another k-structure of V, then the GalpL{kq-action on V induced by W1 is conjugate to the previous
GalpL{kq-action by some L-linear automorphism of V.

In particular, if ρ : G Ñ EndLpVq is a finite dimensional representation over L, then for the restricted
a G-representation on V|k over k (namely V|k “ ReskrGsV), we have

χV|k “ TrL{k ˝ χV.

Exercise 19.6. Assume that chark “ 0. Show that

pχV|k , χV|k q “ rL : ks
ÿ

σPGalpL{kq

pχV, χVσq,

where Vσ is the L-linear G-representation on V defined by

1 ÞÑ σ ˝ ρp1q ˝ σ´1.

Show that χVσ “ σ ˝ χV.

19.4. Restriction of scalars: case C{R. Let’s look at the case C{R.
Let V be an irreducible complex representation of G and let V|R be the underlying real representation.

Recall that
χV “ χV_ .

By Exercise 19.6, we then have

(19.1) pχV|R , χV|R q “ 2pχV, χVq ` 2pχV, χV_ q “

$

&

%

2 if V fi V_

4 if V » V_
.
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Exercise 19.7. Show that
C bR V » V ‘ V_

as complex G-representations.

Lemma-Definition 19.8 (Trichotomy of complex representations). Let V be an irreducible complex repre-
sentation of G. Exactly one of the following happens.

‚ (real type) V|R is not irreducible. In this case,

V|R » W ‘ W.

for some irreducible real representation W of G of real type.
‚ (complex type) V|R is irreducible of complex type.
‚ (quaternionic type) if V|R is irreducible of quaternionic type.

We have pχV|R , χV|R q “ 2 (resp. pχV|R , χV|R q “ 4) if and only if G ýV is of complex type (resp. real or
quaternionic type).

Proof. Suppose that V|R is irreducible. Then V|R is not of real type because pχV|R , χV|R q ‰ 1.
Assume that V|R is not irreducible. Let W Ă V|R be an irreducible RrGs-submodule of multiplicity m.

Since V is an irreducible CrGs-module, we have ı ¨W ‰ W. As ı ¨W is also an irreducible RrGs-submodule
of V|R and W » ı ¨ W as RrGs-modules, we have m ě 2. Thus

4 ě pχV|R , χV|R q ě m2pχW , χWq ě 4,

which implies that m “ 2 and pχW , χWq “ 1. □

19.5. Extension of scalars: case C{R.

Corollary 19.9. Let V be an irreducible real representation of G.

(1) V is of real type if and only if C bR V is an irreducible complex representation of G of real type.
(2) V is of complex type if and only if V » W|R for some irreducible complex representation W of G of

complex type; in this case C bR V » W ‘ W_ with W fi W_.
(3) V is of quaternionic type if and only if V » W|R for some irreducible complex representation W of G of

quaternionic type; in this case C bR V » W ‘ W and W » W_.

Proof. Let VC :“ C bR V, regarded as a complex representation of G. We have χV “ χVC .
If V is of real type, then pχVC , χVC q “ pχV, χVq “ 1, so the complex representation VC is irreducible,

which is necessarily of real type.
If V is of complex type, then pχVC , χVC q “ pχV, χVq “ 2. So VC “ W ‘ W1 for some irreducible

complex G-representations W and W1 with W fi W1. Since

W|R ‘ W1|R “ pVCq|R » V ‘ V

as real G-representations and V is irreducible, necessarily W|R » V. Finally, since

W ‘ W1 “ VC » C bR W » W ‘ W_,

we have W_ » W1 fi W. Hence W is of complex type.
If V is of quaternionic type, then pχVC , χVC q “ pχV, χVq “ 4. So either VC “ W ‘ W or VC »

W1 ‘ W2 ‘ W3 ‘ W4 for some irreducible complex G-representations W,W1,W2,W3,W4. Since

pVCq|R » V ‘ V

as G-representations and V is irreducible, necessarily we are in the former case, so W|R » V. Finally,
since

W ‘ W “ VC » C bR W » W ‘ W_,

we have W_ » W. Hence W is of quaternionic type.
The "if" part of the statements follow from the uniqueness of the Krull-Schmidt decomposition. □
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19.6. Counting irreducible real representations.

Proposition 19.10. The following numbers are equal:

(1) The number of isomorphism classes of irreducible real representations of G.
(2) r ` c

2 ` q, where r,c,q are the number of isomorphism classes of irreducible complex representations of
G of real, complex, quaternionic type respectively.

(3) The dimension of the invariant subspace MappCpGq,Cqθ under the involution

θ : MappCpGq,Cq Ñ MappCpGq,Cq

f ÞÑ p1 ÞÑ f p1´1qq.
(19.2)

(4) n`#CpGq

2 , where n be the number of conjugacy classes which is invariant under 1 ÞÑ 1´1.

Proof. The equality (1) = (2) follows from Corollary 19.9. Then the number of isomorphism classes of
irreducible real representations of G is r ` c

2 ` q.
Since the characters χ1, . . . , χk of the irreducible complex representations of G form a basis of

MappCpGq,Cq, and since θpχVq “ χV_ for any irreducible complex representation V, we have (3) = (4).
Finally, since χV_ “ θpχVq “ χV if and only if V is not of complex type, we have (2) = (3). □

19.7. Invariant forms.

Lemma 19.11. Let V be a real (resp. complex) finite dimensional G-representation. Then V admits a G-invariant
positive definite scalar product (resp. positive definite Hermitian product).

Proof. For real representation, start with any positive definite scalar product p‚, ‚q. Then

px, yq ÞÑ
ÿ

1PG

p1x, 1yq

is a G-invariant positive definite scalar product. For complex representation the proof is similar. □

Corollary 19.12. Let V be an irreducible complex representation of G.

(1) V is of real type if and only if V has a G-invariant nondegenerate symmetric bilinear form.
(2) V is of complex type if and only if V fi V_ as G-representations.
(3) V is of quaternionic type if and only if V has a G-invariant nondegenerate alternating bilinear form.

In (1) and (3), the bilinear form is unique up to scalar.

Proof. By Lemma 19.9, V is of complex type if and only if pχV|R , χV|R q “ 2. which is equivalent to
pχV, χV_ q “ 0 by (19.1), this proves (2).

Suppose that V is not of complex type. Then

p1, χVbVq “ pχV, χV_ q “ 1

by (19.1) and Lemma 19.9. Since V b V “ S2V ‘
Ź2 V, exactly one of S2V and

Ź2 V has a nonzero
G-invariant element. Thus it remains to construct the bilinear forms in (1) and (3) for V of real type and
of quaternionic type respectively.

Suppose that V is of real type. Then V » CbR W for some real G-representation W. By Lemma 19.11,
W has a G-invariant positive definite scalar product B. The complexification of B is a G-invariant
nondegenerate symmetric bilinear form on V.

Suppose that V is of quaternionic type. By Lemma 19.11, V has a G-invariant positive definite
Hermitian product H. Let j P H » EndpV|Rq and define

αpx, yq “ Hpx, jyq

for every x, y P V. For any complex number c, we have jc “ c̄ j, so α is a complex bilinear form. As H
is positive definite, α is nondegenerate. Finally, by the uniqueness of G-invariant bilinear form up to
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scalar, there exists ε P C such that αpy, xq “ εαpx, yq for all x, y P V. Choose a nonzero element x P V.
Since

αpx, jxq “ ´Hpx, xq ă 0 and αp jx, xq “ Hp jx, jxq ą 0,

we have ε ă 0. As αpx, jxq “ ε2αpx, jxq, we have ε2 “ 1. Thus ε “ ´1, showing that α is alternating. □

Exercise 19.13. Determine the type of each irreducible complex representations of S4. Same for D4 and
Q8.

19.8. Frobenius–Schur indicator and 2-torsions of G. For every irreducible complex G-representation
V, define the Frobenius–Schur indicator of V to be

(19.3) FSpVq :“ dimpS2VqG ´ dimp^2VqG “

$

’

’

&

’

’

%

1 if V is of real type

0 if V is of complex type

´1 if V is of quaternionic type

Let
Gr2s :“

␣

1 P G
ˇ

ˇ 12 “ e
(

,

where e P G is the neutral element.

Proposition 19.14. Let Σ be the set of isomorphism classes of irreducible complex G-representations. We have

#Gr2s “
ÿ

VPΣ

FSpVq ¨ dim V.

Proof. For every 1 P G we have

(19.4) Trp1 ýkrGsq “

$

&

%

|G| if 1 “ e

0 otherwise .

Since
CrGs »

à

VPΣ

Vdim V,

we have
#Gr2s “

1
|G|

ÿ

1PG

χkrGsp1
2q “

1
|G|

ÿ

V

dim V
ÿ

1PG

χVp12q.

As χVp12q “ χS2Vp1q ´ χ^2Vp1q by Exercise 15.15, it follows from the trace formula that #Gr2s “
ř

VPΣ FSpVq ¨ dim V. □

20. Examples: induced representations

Let k be a field. For simplicity, we assume chark “ 0. Let G be a finite group and let H ď G be a
subgroup. For every H-representation V over k, set

IndG
HV :“ IndkrGs

krHs
V “ krGs bkrHs V.

We call IndG
HV the induced G-representation of V.

20.1. An explicit description of IndG
HV.

Proposition-Exercise 20.1. Let S Ă G be a subset of representatives of G{H. For every s P S, let

Vs :“ s b V Ă krGs bkrHs V.

Then
à

sPS
Vs “ krGs bkrHs V

as k-vector spaces.
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Through the decomposition in Proposition 20.1, the G-action on krGs bkrHs V is described as follows.
For every s P S and 1 P G, let s1 P S be the unique element such that

1s P s1H.

Then s1´11s P H, so for every s b v P Vs, we have

1 ¨ ps b vq “ s1 b ps1´11s ¨ vq P Vs1 .

Note that if sH “ s1H, then Vs “ Vs1 as k-vector subspaces of krGs bkrHs V. Thus if s is referred to
an element of G{H, we may write Vs :“ Vs̃ where s̃ P G is any lifting of s.

Exercise 20.2. Let k be the trivial H-representation. Show that IndG
Hk is the permutation G-representation

of G{H by left-multiplication.

20.2. When is a representation induced from a subgroup representation? Let V be a finite dimensional
G-representation. By construction of induced representations, one necessary condition for V to be
isomorphic to some IndG

HW is the existence of

(1) a decomposition
V “

à

iPI
Vi

as k-vector spaces
(2) a transitive G-action G ýI such that

1 ¨ Vi “ V1¨i

for all 1 P G and i P I.

Exercise 20.3. Suppose that conversely, V is a G-representation satisfying (1) and (2) above. Let i0 P I
and let H “ Stabpi0q for G ýI. Show that

V » IndG
HVi0 .

20.3. An application of induced representations. The following statement improves Corollary 17.4.

Corollary 20.4. Let G be a finite group and let A Ĳ G be a normal abelian subgroup. Every finite dimensional
irreducible complex G-representation ρ : G Ñ EndCpVq satisfies

dim V | pG : Aq.

Proof. Let
V|A :“ ResAV “

à

iPI
W‘mi

i

be the Krull–Schmidt decomposition of V|A: each Wi is an irreducible A-representation and Wi fi W j

whenever i ‰ j. Write Vi “ W‘mi
i . Since A is normal in G, there exists a group action G ýI such that

1 ¨ Vi “ V1¨i

for all 1 P G and i P I. As V is an irreducible G-representation, G ýI is transitive.
Let i0 P I and let H :“ Stabpi0q ď G. By Exercise 20.3, we have V » IndG

HVi0 , so

dim V “ pG : Hq dim Vi0 .

Note that A is also a normal subgroup of H, so pdim Vi0 q|pH : Aq implies pdim Vq|pG : Aq. Thus by
induction on pG : Hq, it suffices to prove the statement for the case G “ H.

Suppose that G “ H. Then V|A » Wm for some irreducible A-representation W. As A is abelian, this
implies that for all a P A, ρpaq “ λId for some λ P C. Thus ρpAq is in the center of ρpGq. It follows that

dim V | pρpGq : ρpAqq | pG : Aq.

□
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20.4. Frobenius formula for the character of an induced representation. We compute the character
IndG

HχV of IndG
HV. By the description of the G-action on

À

sPS Vs through the isomorphism Proposi-
tion 20.1, Vs is G-stable if and only if s´11s P H. Thus

(20.1) IndG
HχVp1q “

ÿ

sPS,s´11sPH

χVps´11sq

Exercise 20.5. Show that
IndG

HχVp1q “
1

|H|

ÿ

γPG,γ1γ´1PH

χVpγ1γ´1q.

For instance, if H is a normal subgroup of G and 1 R H, then IndG
HχVp1q “ 0.

20.5. Frobenius reciprocity for characters. Define

IndG
H : XpHqk Ñ XpGqk

by (20.1) and
ResH : XpGqk Ñ XpHqk

by restriction.

Exercise 20.6. Show that
pIndG

Hϕ,ψq “ pϕ,ResHψq

for every ϕ P XpHqk and ψ P XpGqk.

20.6. Example: IndS3
S2

. We identify S3 with the permutation group of t 1, 2, 3 u, and S2 ď S3 with the
stabilizer of 3. Let C´ be the trivial representation ofS2 “ tId, σu, and let C´ be the "sign representation"
of S2 on C What is IndS3

S2
C´?

Let ρ1, ρ2, ρ3 be the three irreducible complex representations of S3 we’ve studied previously. We
have ResS2ρ1 “ C, ResS2ρ2 “ C´, and ResS2ρ3 “ C ‘ C´

Using the character table of S3 together with Frobenius reciprocity, we have IndS3
S2
χC´

“ χ2 ‘ χ3,
thus

IndS3
S2

C´ » ρ2 ‘ ρ3.

Exercise 20.7. Let k “ C. We regardS3 ď S4 as the stabilizer of 4 for the naturalS4-action on t 1, 2, 3, 4 u.
For every irreducible complex S3-representation V, decompose IndS4

S3
V into a direct sum of irreducible

S4-representations.

20.7. Mackey’s decomposition. When is IndG
HV irreducible? To answer this question, we need to

compute pIndG
HχV, IndG

HχVq “ 1, and by Frobenius reciprocity, it would be helpful if we know what
ResHIndG

HV is.
The following statement provides a decomposition of ResHIndG

HV, in a more general setting.

Theorem 20.8 (Mackey’s decomposition). Let K,H ď G be subgroups of G. Let ρ : H Ñ EndkpVq be a
representation of H over k. For each i P KzG{H, choose a representative si P G. We have an isomorphism of
K-representations

ResKIndG
HV »

à

iPKzG{H
IndK

psiHs´1
i qXK

Vsi

where Vsi is the representation ρsi : siHs´1
i Ñ EndkpVq defined by

ρsi p1q “ ρps´1
i 1siq.

Proof. Let S Ă G be a subset of representatives of G{H. Recall from Exercise 1.9 that

KzG{H „
ÝÑ Orb pK ýpG{Hqq

sending K1H to K ¨ p1Hq is a bijection. Decomposing G{H into K-orbits G{H “
Ů

iPKzG{H Si such that the
image of si lies in Si, we have

à

iPKzG{H

à

sPSi

Vs “ krGs bkrHs V
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as k-vector spaces. Note that for each i P KzG{H, Wi :“
À

sPSi
Vs is K-stable, so we can regard Wi as a

K-representation.
The stabilizer of si for K ýSi is psiHs´1

i q X K, which induces a bijection

K
psiHs´1

i q X K
» Si.

If k, k1 P K has the same image in K{psiHs´1
i X Kq, then Vksi “ Vk1si as k-linear subspaces of Wi. It follows

that
Wi “

à

kPK{psiHs´1
i XKq

Vksi » IndK
psiHs´1

i qXK
Vsi

as K-representations. Finally, since Vsi Ñ Vsi sending si b v to v is a K-equivariant isomorphism, we
have

Wi » IndK
psiHs´1

i qXK
Vsi

as K-representations, which finishes the proof. □

20.8. Mackey’s irreducibility criterion. As a consequence,

pIndG
HχV, IndG

HχVq “ pχV,ResHIndG
HχVq “

ÿ

iPHzG{H

ˆ

χV, IndH
psiHs´1

i qXH
χsi

V

˙

where χsi
V is the character of Vsi |

psiHs´1
i qXH. Since

ˆ

IndH
psiHs´1

i qXH
χsi , χV

˙

“ pχsi ,Res
psiHs´1

i qXHχVq,

we have
pIndG

HχV, IndG
HχVq “ pχV, χVq `

ÿ

iPHzG{H´teu

pχsi ,Res
psiHs´1

i qXHχVq,

where e is the class of the neutral element of G.

Corollary 20.9. The induced representation IndG
HV is irreducible if and only if the following properties hold:

‚ V is irreducible.
‚ For all 1 R H, V1 and V viewed as representations of p1H1´1q X H don’t have common irreducible

factors.

20.9. An application: irreducible representations of some semidirect products. Let G be a finite group
and let A Ĳ G be a normal abelian subgroup. Assume that

G “ A ¸ H

for some subgroup H. Recall that if pa, hq, pa1, h1q P A ¸ H, then

pa, hq ¨ pa1, h1q “ papha1h´1q, hh1qq.

We want to describe the complex irreducible representations of G.
Here is a construction of irreducible representations of G. Since A is abelian, any complex A-

representation χ is one-dimensional, and is identified with its character χ : A Ñ Cˆ. Consider the
G-action on the character space G ýXpAqC defined by

p1 ¨ χqpaq “ χp1a1´1q

for all 1 P G, χ P XpAqC, a P A.

Exercise 20.10. For every χ P XpAqC, show that

Gχ :“ Stabpχq “ A ¸ Hχ ď G

for some subgroup Hχ ď H.
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Let W be a finite dimensional irreducible complex representation of Hχ, which we regard as a
representation of Gχ through Gχ ↠ Hχ. The character χ is identified with an A-representation on C;
regarded χ as a Gχ-representation, let rW :“ χb W Finally, let

Vχ,W :“ IndG
Gχ

rW.

Exercise 20.11.

(1) Show that the G-representation Vχ,W is irreducible. (Hint: use the Mackey irreducibility
criterion.)

(2) Show that Vχ,W » Vχ1,W1 if and only if χ is in the same orbit as χ1 (so Hχ is conjugates to Hχ1 ,
which yields an isomorphism Gχ » Gχ1 ), and that W » W1 as Gχ representations.

(3) Show that every finite dimensional irreducible complex G-representation is isomorphic to
some Vχ,W .



LECTURE 7

Representations of symmetric groups

21. Irreducible complex representations of symmetric groups

Let n be a positive integer. What are the irreducible complex representations of Sn?

21.1. Young diagrams. The number of isomorphism classes of irreducible complex representations of
Sn is equal to the number of conjugacy classes of Sn, which are in bijection with the partitions of n.

A partition of n is a sequence of positive integers

λ “ pλ1 ě ¨ ¨ ¨ ě λkq,

such that
řk

i“1 λi “ n. We represent λ by a Young diagram, namely k rows of boxes of lengths λ1, . . . , λk

from top to bottom, with each row starting at the same horizontal position. We call k the length of λ.

21.2. Young symmetrizers. Let λ be a partition. A Young tableau Tpλq associated to λ is a filling of every
integer from 1 to n into the Young diagram λ, one in each box. Let Si Ă r1,ns X Z (resp. S1

i Ă r1,ns X Z)
be the set of integers in the ith row (resp. column) of Tλ. We have

S1 \ ¨ ¨ ¨ \ Sk “ S1
1 \ ¨ ¨ ¨ \ S1

ℓ “ r1,ns X Z

where ℓ is the number of columns of λ. Let

PTpλq :“ BijpS1q ˆ ¨ ¨ ¨ ˆ BijpSkq Ă Sn,

QTpλq :“ BijpS1
1q ˆ ¨ ¨ ¨ ˆ BijpS1

ℓq Ă Sn,

and let
aTpλq :“

1
|PTpλq|

ÿ

1PPTpλq

1 P CrSns,

bTpλq :“
1

|QTpλq|

ÿ

1PQTpλq

p´1qσp1q1 P CrSns,

where σp1q is the signature of 1. Finally, let

cTpλq “ aTpλqbTpλq.

We call cTpλq a Young symmetrizer.

21.3. Specht modules. For every Young tableau Tpλq, define the Sn-representations

VTpλq :“ CrSnscTpλq.

Theorem 21.1.

(1) The isomorphism class Vλ of the Sn-representation VTpλq only depends on the Young diagram λ.
(2) For every pair of Young diagrams λ and λ1, Vλ » Vλ1 if and only if λ “ λ1.
(3) Each Vλ is irreducible, and every finite dimensional irreducible complexSn-representation is isomorphic

to one of Vλ.

We call VTpλq the Specht modules.

Remark 21.2. Theorem 21.1 implies that the same statements hold with C replaced by Q, and if we
define VTpλq “ QrSnscTpλq instead.

By construction, every statement in §21 still holds if we replace C be Q.

65
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21.4. The dependence of VTpλq on the Young tableau. First we prove Theorem 21.1.(1).
Let λ be a Young diagram. The group action

Sn ýt Young tableaux associated to λ u

sending Tpλq to the permutation of the entries by Sn is transitive. For every 1 P Sn, we have

P1¨Tpλq “ 1PTpλq1
´1 and Q1¨Tpλq “ 1QTpλq1

´1.

Thus
V1¨Tpλq » VTpλq ¨ 1´1

as Sn-representations.

21.5. First examples.

Exercise 21.3.

(1) Suppose that λ has only one row. Show that Vλ is the trivial representation.
(2) Suppose that λ has only one column. Show that Vλ is the sign representation Csgn.
(3) Let Tpλq be a Young tableau. Show that

VtTpλq » Csgn bC Vλ,

where tTpλq is the transpose of λ (i.e., the rows of tTpλq are the columns of Tpλq).

21.6. A key property of aTpλq and bTpλq. The elements aTpλq and bTpλq satisfy the following key property.

Proposition 21.4. We have
aTpλqCrSnsbTpλq “ C ¨ cTpλq

We will use the following lemma to prove Proposition 21.4.

Lemma 21.5. Let Tpλq and Tpµq be two Young tableaux. Let 1 P Sn. Suppose that PTpλq X p1QTpµq1
´1q

contains a permutation σ P Σn of signature ´1. Then

aTpλq1bTpµq “ 0.

Proof. We have

aTpλq1bTpµq “ aTpλqσ1bTpµq “ aTpλq1p1
´1σ1qbTpµq “ ´aTpλq1bTpµq,

so aTpλq1bTpµq “ 0. □

Proof of Proposition 21.4. Note that if 1 “ pq for h P PTpλq and q P QTpλq, then

aTpλq1bTpλq “ p´1qsgnpqqcTpλq.

Thus (1) follows from Lemma 21.5 and the following.

Lemma 21.6. Suppose that 1 R PTpλqQTpλq, then there exists a transposition σ in PTpλq X p1QTpλq1
´1q.

Proof. Let 1 P Sn such that PTpλq Xp1QTpλq1
´1q contains no transposition. Note that 1QTpλq1

´1 “ V1¨Tpλq.
So any pair of elements of r1,ns X Z in the same row of Tpλq are not in the same column of 1 ¨ Tpλq. Thus
there exists q1 P Q1¨Tpλq and p P PTpλq such that

q11 ¨ Tpλq “ p ¨ Tpλq.

Thus 1 “ pq for q :“ 1´1q1´11 P QTpλq. □

□

Let λ and µ be two Young diagrams. We write λ ą µ if λi ą µi for the smallest i such that λi ‰ µi.

Proposition 21.7. Let Tpλq and Tpµq be two Young tableaux. If λ ą µ, then

aTpλqCrSnsbTpµq “ 0.
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Proof. Let 1 P Sn By Lemma 21.5, it suffices to show that there exists PTpλq X p1QTpµq1
´1q contains a

transposition.
Let i be the smallest index such that λi ą µi. We can assume that there is no pair of integers x, y

lying in the jth row in Tpλq with j ă i and in the same column of 1 ¨ Tpµq. By the same argument as in
the proof of Lemma 21.6, there exist p P PTpλq and q1 P Q1¨Tpµq such that the first i ´ 1 rows of p ¨ Tpλq

and q11 ¨ Tpµq are equal. It follows from the pigeonhole principle that there exists two integers x, y lying
in the ith row of p ¨ Tpλq and in the same column of q11 ¨ Tpµq. Hence

Pp¨Tpλq X Qq11¨Tpµq “ ppPTpλqp´1q X pq11QTpµq1
´1q1´1q “ PTpλq X p1QTpµq1

´1q

contains a transposition. □

21.7. Idempotents. Let k be a field and let A be a k-algebra. An element e P A is called an idempotent if
e2 “ e. If e P A is idempotent, then so is 1 ´ e P A, and we have

A “ Ae ‘ Ap1 ´ eq

as A-modules

Lemma 21.8. Let e P A be an idempotent. For every A-module V, we have

HomApAe,Vq » eV

as k-vector spaces.

Proof. We have an isomorphism Φ : HomApA,Vq
„
ÝÑ V sending f P HomApA,Vq to f p1q. Consider the

decomposition
HomApA,Vq “ HomApAe,Vq ‘ HomApAe,Vq.

If f P HomApA,Vq lies in HomApAe,Vq, then

f p1q “ f peq “ e f p1q P eV.

So
ΦpHomApAe,Vqq Ă eV and ΦpHomApAp1 ´ eq,Vqq Ă p1 ´ eqV.

As
V “ eV ‘ p1 ´ eqV,

necessarily HomApAe,Vq » eV. □

Exercise 21.9. Let Tpλq and Tpµq be two Young tableaux.

(1) Show that

c2
Tpλq

“
n!

|PTpλq||QTpλq| dim VTpλq

cTpλq.

(2) Show that
HomSn pVTpλq,VTpµqq » cTpλqCrSnscTpµq

as C-vector spaces.

21.8. Irreducible representations of Sn. Now we finish the prove of Theorem 21.1. We first prove
Theorem 21.1.(2) and the first statement of Theorem 21.1.(3).

Proposition 21.10.

(1) Each Vλ is irreducible.
(2) If λ and µ are distinct Young diagrams, then Vλ fi Vµ.

Proof. We can assume that λ ą µ without loss of generality. Let Tpλq and Tpµq be Young tableaux
whose underlying Young diagrams are λ and µ respectively. By Exercise 21.9, we have

HomSn pVTpλq,VTpµqq » cTpλqCrSnscTpµq.

Hence VTpλq is irreducible by Proposition 21.4 and Exercise 21.9.(1), and Vλ fi Vµ by Proposition 21.7. □
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Finally, since there is a bijection between the conjugacy classes of Sn and the partitions of n, the
second statement of Theorem 21.1.(3) follows.

Exercise 21.11. Identify the Young diagram for each finite dimensional irreducible complex representa-
tions of S3 and S4.

22. Frobenius character formula

This part is handwritten.
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Lie algebras

23. Algebraic groups and Lie algebras

This part is handwritten.

24. The category of Lie algebras

Let g be a Lie algebra over a field k. We have defined Lie algebras and morphism of Lie algebras in
the previous lecture.

24.1. Ideals. An ideal of g is a k-linear subspace I Ă g such that rI, gs Ă I. (Note that since rI, gs “ rg, Is,
we don’t need to define left of right ideals.) An ideal is in particular a Lie subalgebra, but the converse
is false in general.

Note that ideals of g are nothing but subrepresentations of the adjoint representation of g.

Exercise 24.1. Let I, J Ă g be two ideals. Show that I ` J, I X J, and rI, Js are also ideals of g.

Exercise 24.2.

(1) Let f : gÑ h be a morphism of Lie algebras. Show that kerp f q is an ideal of g.
(2) Let I Ă g be an ideal. Show that the Lie bracket on g descends to a Lie bracket on the quotient

vector space g{I. Thus g{I is a Lie algebra.

24.2. Universal enveloping algebra. Every associative k-algebra A is a Lie algebra, with the Lie bracket
defined by

rx, ys “ xy ´ yx

for all x, y P A. The forgetful functor from the category of associative k-algebras to the category of Lie
algebras over k has a left adjoint.

Theorem-Definition 24.3. For every Lie algebra g, define the associative k-algebra

Upgq :“
T‚pgq

ăv b w ´ w b v ´ rv,ws|v,w P gą
.

The functor U is left adjoint to the forgetful functor: for every associative k-algebras, we have natural isomorphisms

HomLiepg,Aq » Homk-AlgpUpgq,Aq.

The k-algebra Upgq is called the universal enveloping algebra of g.

In particular, the universal enveloping algebra satisfies the following universal property. For any
associative k-algebra A and any morphism of Lie algebras ρ : gÑ A satisfying

ρprx, ysq “ xy ´ yx

for all x, y P g, there exists a unique morphism ρ̃ : Upgq Ñ A of k-algebras such that

g
@ρ
//

v ÞÑv   

A

Upgq

D!ρ̃

OO

commutes.

69
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Exercise 24.4. Prove Theorem 24.3.

24.3. Poincaré-Birkhoff-Witt theorem.

Theorem 24.5. Let XiiPI be a basis of g as a k-vector space. Fix a total order ă on I. Then

t Xi1 ¨ ¨ ¨ Xin | i1 ă ¨ ¨ ¨ ă in u

is a basis of the k-vector space Upgq.

We refer to [3, Theorem 9.10] for a proof of the PBW theorem for finite dimensional g. The general
statement follows from the finite dimensional case.

Corollary 24.6. The canonical map gÑ Upgq is injective.

24.4. The category of Lie algebra representations. As a corollary of Theorem 24.3, the category of Lie
algebra representations of g is equivalent to the category of the representations of Upgq.

Corollary 24.7. We have an equivalence of categories

Reppg,kq » ReppUpgq,kq.

We can therefore transfer every notion and theorem about the representations of Upgq to the
representations of g (subrepresentations, quotients, irreducibility, semisimplicity, etc.).

24.5. Centers. The center of g is defined as

Zpgq “ t x P g | rx, ys “ 0 for all y P g u .

We say that the Lie algebra g is abelian if g “ Zpgq.

Exercise 24.8. Show that g is abelian if and only if Upgq is commutative.

24.6. Hom and b. Let V and W be k-vector spaces. Let ρV : g Ñ EndkpVq and ρW : g Ñ EndkpWq be
two representations of g. Then we have a representation of g on the tensor product V bk W, defined as

pρV b ρWqpxq “ ρVpxq b IdW ` IdV b ρWpxq.

Similarly, we have a representation of g on HomkpV,Wq defined by

x ¨ f “ ρWpxq ˝ f ´ f ˝ ρVpxq

for any x P g and f P HomkpV,Wq.

Exercise 24.9. Show that the constructions b and Hom for Lie algebra representations coincide with
the constructions b and Hom for representations of associative algebras under the equivalence in
Corollary 24.7.

In particular, the dual representation of gÑ EndpVq is

ρV_ pxq “ ´ρVpxq_

for every x P g.

Exercise 24.10. Let V be a Lie algebra representation of g. Show that ‚ bk V is left adjoint to HomkpV, ‚q

in the category of g-representations.

24.7. Invariant elements and an example: the Killing form. Let V be a representation of g. An element
v P V is called invariant if g ¨ v “ 0.

Example 24.11. By definition A bilinear form B P V_ bk V_ on V is invariant if

Bpx ¨ v,wq ` Bpv, x ¨ wq “ 0

for all v,w P V.
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Exercise 24.12. Let g be a finite dimensional Lie algebra over k. For every x, y P g, define

Kpx, yq :“ Trpadpxq ˝ adpyqq P k.

Show that K is an invariant symmetric bilinear form on g.

We call K the Killing form of g.

25. sl2

This part is handwritten.

26. On the structure of Lie algebras

This part is handwritten.

27. The Schur–Weyl duality

The Schur–Weyl duality exhibits some parallels between the irreducible representations of Sn and
those of GLpWq for a vector space W. We start with an example.

27.1. SmW and
Źm W as irreducible GLpWq representations. Let W be a C-vector space of dimension

n.

Exercise 27.1. Let m P Zą0. Let ρ : GLpWq Ñ EndkpSmWq or ρ : GLpWq Ñ Endkp
Źm Wq be the induced

representations on E :“ SmW or E :“
Źm W. The aim of this exercise is to show that SmW and

Źm W
(for m ď n) are irreducible GLpWq-representations.

(1) Find h P GLpWq such that ρphq is diagonalisable with distinct eigenvalues.
(2) Let B “ t e1, . . . , eℓ u be a basis of E which diagonalize ρphq. Show that any GLpWq-

subrepresentation U Ă E is generated by a subset of B.
(3) Choose a basis t w1, . . . ,wn u of W, and let Ei j denote the elementary matrices on W. By

considering the matrices Id`Ei j with i ‰ j, show that E is an irreducible GLpWq-representation.

We will see that the irreducible representations SmW and
Źm W correspond to the Specht modules

Vλ for λ “ pmq and λ “ p1, . . . ,mq respectively.

27.2. Dual pairs. Let A and B be k-algebras. Let V be an pA,Bq-bimodule. The pA,Bq-bimodule structure
on V gives rise to morphisms of k-algebras

B Ñ EndApVq and A Ñ EndBpVq.

We say that A and B form a dual pair with respect to the pA,Bq-bimodule V if the above morphisms are
isomorphisms.

Exercise 27.2. Show that A and Aop form a dual pair with respect to A viewed as a natural pA,Aopq-
bimodule.

Lemma 27.3. Let A and B be a dual pair with respect to an pA,Bq-bimodule V.

(1) The left A-module and the right B-module structures of V are faithful.
(2) Suppose that V is finite dimensional. Then A is semisimple if and only if B is semisimple.

Proof. (1) is clear. The first statement of (2) follows from Proposition 12.15 and Corollary 12.11. □
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27.3. The double centralizer theorem.

Theorem 27.4. Let A be a semisimple k-algebra and let V be a finite dimensional faithful A-module. Then A
and B :“ EndApVq form a dual pair with respect to the pA,Bq-bimodule V. Moreover, we have

V »

n
à

i“1
Vi bk Wi

as pA,Bq-bimodules, for some irreducible left A-modules Vi and irreducible right B-modules Wi. The left
A-modules Vi are pairwise non-isomorphic, and so are the right B-modules Wi.

Proof. Let V1, . . . ,Vn be the irreducible A-submodules of V which are pairwise non-isomorphic with
multiplicities m1, . . . ,mn. By Proposition 12.15, we have

B » Matm1 pD1q ˆ ¨ ¨ ¨ ˆ Matmn pDnq,

where Di :“ EndApViq. If we define Wi :“ HomApVi,Vq as a right B-module, then

V »

n
à

i“1
Vi bk Wi

as pA,Bq-bi modules. Since HomApVi,Vq » Dmi
i , the right B-modules Wi are irreducible by Proposi-

tion 12.10.(1). Finally, for every i, let wi P Wi be a nonzero element and let ϕi P Matmi pDiq Ă B be the
identity matrix. We have w j ¨ ϕi “ δi jwi, thus all Wi are non-isomorphic as B-modules. □

27.4. Symmetric groups and general linear groups. Let W be a C-vector space. For every n P Zą0, let
Sn act on Wbn by

σ ¨ pw1 b ¨ ¨ ¨ b wnq “ wσp1q b ¨ ¨ ¨ b wσpnq

for pure tensors. We will apply Theorem 27.4 to the Sn-representation Wbn, and see that Sn and glpWq

(or GLpWq) form a dual pair.

Proposition 27.5. We have

EndSn pWbnq “ ImpUpglpWqq Ñ EndkpWbnqq,

which is the subalgebra of EndkpWbnq generated by elements of the form

∆np f q :“ p f b Id b ¨ ¨ ¨ b Idq ` pId b f b ¨ ¨ ¨ b Idq ` ¨ ¨ ¨ ` pId b Id b ¨ ¨ ¨ b f q.

Proof. The last statement follows from the definition of tensor products of Lie algebra representations.
Since each ∆np f q : Wbn Ñ Wbn is Sn-equivariant, we have the inclusion Ą. For the other inclusion,

we first observe the following.

Exercise 27.6. Show that EndSn pWbnq Ă EndkpWbnq is the image of the k-linear map

SnEndkpWq Ñ EndkpWbnq

f1 ¨ ¨ ¨ fn ÞÑ
ÿ

σPSn

fσp1q b ¨ ¨ ¨ b fσpnq.
(27.1)

Let U :“ EndkpWq as a k-vector space. Since the GLpUq-representation on SnU is irreducible by
Exercise 27.1 and the subset t un P SnU | u P U u is GLpUq-stable, the whole space SnU is generated by
elements of the form un. For every positive integer i, let Hi P QrX1, . . . ,Xns be the polynomial

Hi “ Xi
1 ` ¨ ¨ ¨ ` Xi

n.

By the Newton identities, there exists a polynomial P P QrX1, . . . ,Xns such that

PpH1, . . . ,Hnq “ X1 ¨ ¨ ¨ Xn.

Let u P EndkpWq and consider the ring homomorphism

QrX1, . . . ,Xns Ñ EndkpWbnq
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defined by
Xi ÞÑ Id b ¨ ¨ ¨ b u b ¨ ¨ ¨ b Id

where u is in the ith place, we have

Pp∆npuq,∆npu2q, . . . ,∆npunqq “ u b ¨ ¨ ¨ b u.

This shows the other inclusion Ă. □

27.5. The Schur–Weyl duality. Let n P Zą0 and let λ be a partition of n. Let W be a k-vector space. We
define

SλW :“ HomSn pVλ,Wbnq

as a k-vector space. Here, Vλ is the Specht module associated to λ, and Sn acts on Wbn by

σ ¨ pw1 b ¨ ¨ ¨ b wnq “ wσp1q b ¨ ¨ ¨ b wσpnq

for pure tensors. The space SλW has a natural GLpWq-representation and glpWq-representation (on the
right).

Exercise 27.7. Suppose that V has dimension d P Zą0. Let Γd,n be the set of partitions of n such that the
number of rows of the corresponding Young diagram is less than or equal to d. Show that SλW ‰ 0 if
and only if λ P Γd,n.

Corollary 27.8 (Schur–Weyl duality). Let V be a finite dimensional complex vector space of dimension d and
let n be a positive integer. The C-algebra CrSns and the image of UpglpWqq form a dual pair with respect to Wbn.
In particular,

Wbn »

n
à

λPΓd,n

Vλ bk SλW

as pCrSns,UpglpWqqq-bimodules, and also as pSn ˆ GLpWqq-representations.

Proof. The isomorphism as pCrSns,UpglpWqqq-bimodules follows from Theorem 27.4 and Proposi-
tion 27.5. Since Sn ˆ GLpWq Ă CrSns ˆ UpglpWqq and the pSn ˆ GLpWqq-action is the restriction of the
bimodule structure, the last statement follows. □

Corollary 27.9.

(1) SλW is irreducible as glpWq-representation and GLpWq-representation.
(2) For every λ, µ P Γd,n, we have SλW » SµW if and only if λ “ µ (as glpWq-representations and

GLpWq-representations).

Proof. The statements for glpWq follow from Corollary 27.8, Theorem 27.4, and Theorem 21.1. As
GLpWq is Zariski dense in glpWq (i.e. if GLpWq is not contained in the zero locus ZpPq of any polynomial
function P on glpWq such that ZpPq Ĺ glpWq), we obtain the statements for GLpWq. □

27.6. Schur functors. Schur functors Sλ generalize the constructions of symmetric and alternative
powers of vector spaces.

Exercise 27.10.

(1) Show that SpnqW » SymnW as GLpWq-representations and λpWq-representations.
(2) Show that Sp1,...,1qW »

Źn W as GLpWq-representations and λpWq-representations.

Here is an explicit description of SλW.

Exercise 27.11. Let λ be a partition of n and let

µ1 ě ¨ ¨ ¨ ě µℓ

be the length of the columns of λ. We have

SλW » p

µ1
ľ

W bk ¨ ¨ ¨ bk

µℓ
ľ

Wq{K,
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where K is the subspace spanned by the elements of the form wI, j constructed as follows. Fix a Young
tableau T associated to λ. Let I be a subset of a column Ci of T. Choose another column C j of T. Let

ΣI, j Ă Sn

be the subset such that σpIq Ă C j and σ|I preserves the vertical order, and σpxq “ x for every x R I. The
elements wI, j are those of the form

wI, j :“ w1 b ¨ ¨ ¨ b wn ´
ÿ

σPΣI, j

wσp1q b ¨ ¨ ¨ wσpnq.

For instance, if λ “ p3, 2q and we fill 1, . . . , 5 from top to bottom, then left to right, then

pw1 ^ w2 ^ w3q b pw4 ^ w5q

“pw4 ^ w5 ^ w3q b pw1 ^ w2q ` pw4 ^ w2 ^ w5q b pw1 ^ w3q ` pw1 ^ w4 ^ w5q b pw2 ^ w3q
(27.2)

in SλV.

Exercise 27.12.

(1) Show that the (comultiplication) map c :
Ź3 W Ñ p

Ź2 Wq b W defined by

u ^ v ^ w ÞÑ pu ^ vq b w ` pv ^ wq b u ` pw ^ uq b v

on pure tensors is well defined.
(2) Show that we have an exact sequence

3
ľ

W c
ÝÑ p

2
ľ

Wq b W Ñ Sp2,1qW Ñ 0.

27.7. Final remark: algebraic irreducible representations of GLpVq. Let W be a finite dimensional
complex vector space. What are the finite dimensional irreducible representations of GLpWq? Apart
from the Schur constructions SλW are irreducible, the one-dimensional representations defined by

pdetqk : GLpWq Ñ Cˆ

for every k P Z are also irreducible. The tensor products SλW b pdetqk are also irreducible, and these are
all the finite dimensional algebraic irreducible representations of GLpWq. Here, a GLpWq-representation
V is called algebraic if

GLpWq Ñ GLpVq

is defined by rational functions.

Theorem 27.13 (See Fulton–Harris, Section 15.5). Every finite dimensional algebraic irreducible representa-
tions of GLpWq is isomorphic to SλW b pdetqk for some k P Z, n P Zą0 and λ P Γd,n.
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