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Convention

We assume the axiom of choice together with its consequence, e.g. the Zorn lemma.

Theorem 0.1 (Zorn’s lemma). Let T be a nonempty partially ordered set. Assume that every totally ordered
subset of X has an upper bound in . Then L has a maximal element.



LECTURE 1
Group actions and examples

"Numbers measure size, groups measure symmetry.”
— M. A. Armstrong (Groups and symmetry)
1. Group actions
Let G be a group.

1.1. The category of G-sets. A G-action on a set X is a group homomorphism G — Bij(X), often denoted
by G ¢ X. Explicitly, it is a map

GxX—->X
(9,x)—>g-x

such that x — g - x is bijective self-map of X for every g, and

g+ (h-x) = (gh) - x

(1.1)

forany g, he Gand x € X.
A set X endowed with a G-action is also called a G-set. A morphism of G-setsisamap f: X — Y
between G-sets such that

g-f(x)=f(g-x)
forallge Gand x € X. If o : G — Bij(X) and B : G — Bij(Y) are the group homomorphisms defining
the G-actions on X and Y, then a morphism f : X — Y of G-sets gives rise to a commutative diagram

O O()O —1

\/

An isomorphism of G-sets is a bijective morphism of G-sets.

1.2. Example: the set of cosets. Let H < G be a subgroup. For any g € G and any (left-)coset g’H, define
g-(9'H) := (99')H

Exercise 1.1. Verify that this defines a group action G & G/H.

Proposition 1.2. Let H and H' be two subgroups of G. The following assertions are equivalent.
(i) G/H ~ G/H' as G-sets;
(i) H is conjugate to H'.

Proor. Recall that for any g, g’ € G, we have
*) gH = ¢'H ifandonlyif g~ '¢ € H;
we will repeatedly use this fact after. First we prove the following statement.
Cram. Let ¢ : G/H — G/H' be a morphism of G-sets. Then ¢ is surjective and we have
HcgHg™!

for some g € G.
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Proor. We have ¢(H) = gH' for some g € G, so
¢lg'H) = ¢lg'-H) =g - ¢(H) = g'gH’
for every g’ € G, which shows that ¢ is surjective. For every I € H, the cosets
¢(H) = gH' and G(hH) = hgH'
are equal, so g~thg € H' by (*), which proves that H  gH'g~1. o

Exercise 1.3. In the above Claim, show that H = gH’g~! if and only if ¢ is injective. Complete the proof
of Proposition 1.2.

O

1.3. Stabilizers. Let G C X be a group action and let x € X. The subset G - x < X is called the orbit of x.
The stabilizer of an element x € X is the subgroup

Stab(x) :={geG|g-x=x}.

The G-action G C X restricts to a G-action on G - x. Define
p: G/Stab(x) — G - x
(1.2)
g - Stab(x) — g - x.
This is a well-defined map: if g - Stab(x) = ¢’ - Stab(x), then g~'¢’ € Stab(x), so
g-x=g-(979)x=g " x
We verify that u is a morphism of G-sets.
Theorem 1.4 (Orbit-stabilizer theorem). u defines an isomorphism of G-sets

G/Stab(x) = G - x.

Proor. We verify easily that yu is surjective. Now suppose that g, 4’ € G are two elements such that
g-x =g -x. Then g~'g’ € Stab(x), so g - Stab(x) = ¢’ - Stab(x). Thus p is injective. ]

A G-action G & X is called transitive if is has exactly one orbit.! The following statement is an
immediate consequence of Theorem 1.4.

Corollary 1.5. A G-action G C X is transitive if and only if X ~ G/H as G-sets for some subgroup H < G.

1.4. Partition a G-set into orbits. Let G C X be a group action. For every x, y € X, we have either
Gx=Gy or G-xnG-y=.

Thus the set of orbits
Ob(GeX):={G-x|xeX}

forms a partition of X. Together with Corollary 1.5, we deduce that

(1.3) X ~ L] G/Stab(x)
G-x € Orb(GCX)

as G-sets. In particular, we have the following statement:

Corollary 1.6 (Burnside’s lemma). Assume that both G and X are finite, then

X 3 1
Gl G-x € Orb(GCEX) [Stab ()]

Informally, the above formula provides in some sense a more correct way of counting "X/G" by
taking into account the symmetry of the objects, than just counting the number of orbits. For instance,

IThus an empty G-set is not transitive.
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if G acts on a point X = {«}, then the "number" of X/G should be 1 divided by |G| (the number of
symmetries of the point).

1.5. Burnside rings. Let G be a finite group. The Burnside ring of G is the Z-module B(G) defined as
follows. First let
A(G) := Z[Isomorphism classes of finite G-sets]

be the free Z-module generated by all isomorphism classes finite G-sets. For any G-set X, let [X] denote
its class in A(G). Define the product
[Xa] - [Xa] = [X1 x Xa]

for any pair of G-sets X; and X,, then extend it linearly to the whole A(G). This turns A(G) into a
commutative ring with 1 = [G C {x}].
Now consider the subgroup of A(G) generated by

[Xq b Xa] = [X4] = [Xa],

which forms an ideal (of relations) # of A(G). The Burnside ring is defined as

For instance, we have [G & ¢J] = 0in B(G).
The Z-module structure of B(G) is easy to describe.

Exercise 1.7. Show that as Z-modules,
(1.4) B(G) ~ P Z[G/H]

where the direct sum runs through all conjugacy classes of subgroups of G, and H is a representative
for each conjugacy class.

The product operation of B(G) is more complicated.

Exercise 1.8. Describe B(S3) as a ring. For instance, describe B(S;) using (1.4), and compute the
multiplication table of the generators.

1.6. Double cosets. Let G be any group and let K, H < G be subgroups of G. How to describe the
G-orbits of (G/K) x (G/H)?

The double cosets KgH with g goes through G form a partition of G. Let K\G/H be the set of double
cosets.

Exercise 1.9. Show that
K\G/H — Orb (G c (G/K) x (G/H))
sending KgH to G - (K, gH), and
K\G/H — Orb (K C (G/H))
sending KgH to K - (gH) are both bijections.

2. Symmetry group

2.1. The linear isometry group on R". Let R” be the n-dimensional Euclidean space. The Euclidean
inner product (e|e) on R” defines a metric on R”, and a linear transformation g € GL(n, R) is an isometry
if and only if g preserves (e|e), namely g is in the orthogonal group O(#, R).

The orthogonal group O(n,R) has two connected components: these are the preimages of the
determinant

det: O(n,R) — {+1}.

The kernel of det is called the special orthogonal group, denoted by SO(n, R). Equivalently, SO(n, R) is
the subgroup of orientation-preserving elements of O(n, R). Formally this means that if we fix any basis
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e1, ..., e, of R", an element g € O(n, R) is in SO(n, R) if and only if

n
gletn---ney) =e /\-~-/\e,1e/\R”.
Elements of SO(n, R) are also called rotations.

2.2. Decomposition group, inertia group. Let G C X be a group action on a set X. Let Y < X be a
subset. The decomposition group and the inertia group of Y with respect to G C X are defined as

Dec(Y):={geGlg(Y)=Y},

Ine(Y):={geG|g(y) =yforallye Y} = ﬂ Stab(y).
yeY

For instance, the subgroup O(n,R) = GL(1,R) is also the decomposition of a sphere S"~! < R"
centered at the origin, with respect to the linear action GL(n7, R) & R". The inertia group of a line L in
R3 for the action SO(3,R) & R® consists of the rotations with axis L.

In these lectures, the decomposition group of Y < R" with respect to O(n,R)  R" is called the
symmetry group of Y. Replacing O(n, R) with SO(n, R), we call the resulting decomposition group the
rotational symmetry group (or chiral symmetry group) of Y.

Exercise 2.1. What is the symmetry group and the rotational symmetry group of a plane R? = R3?

2.3. The symmetry of regular polygon. Let IT = R? be a regular n-gon centered at the origin. Then the
rotation p with angle 27t/n preserves I1. The reflection ¢ with respect to the line passing through the
origin and a vertex of I1 (or the midpoint of an edge) also preserves I1.

Exercise 2.2.
(1) Show that the rotational symmetry group of I1 is the cyclic group of rotations with with angle
2n
. 7.

n

(2) Show that the symmetry group of Il is generated by p and o, and consists of rotations with
angle 2 - Z and reflections. The latter group is called the dihedral group and is denoted by D,.
What is the order of D,,?

(3) Show that the dihedral group is defined by generators and relations as follows:

D, :<r,s|r”:52:(rs)2:1>.
(4) Classify the finite subgroups of SO(2,R) and O(2, R).
2.4. Tetrahedraon. Let T < R® be a tetrahedron centered at origin.

Exercise 2.3. By considering group actions on the vertices of T, show that:

(1) The symmetry group of T is isomorphic to the permutation group Sj.
(2) Therotational symmetry group of T is isomorphic to the alternating group . (Hint: otherwise,
it contains a transposition, so an element fixing two vertices of T'.)

2.5. Cube and octahedron. Let C = R® be a cube centered at origin.

Exercise 2.4.
(1) Show that the rotational symmetry group of C is isomorphic to the permutation group of the
set of four diagonals of C.
(2) Find a tetrahedron T inscribed in C, and identify Ay < G4 as the subgroup preserving T.
(3) Show that a cube and an octahedron have the same symmetry group. (Hint: cube and
octahedron are "dual" solids.)

2.6. Dodecahedron and icosahedron. Let D = R® be a dodecahedron centered at origin.

Exercise 2.5.
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(1) We define a needle to be a vertex of D together with an edge adjacent to it. Show that the
rotational symmetry group G of D acts freely and transitively on the set of needles. Deduce
that |G| = 60.

(2) Show that there are exactly 5 tetrahedra inscribed in D. Show that permutations of these
tetrahedra yield an injective homomorphism G — Ss.

(3) Show that for each pair i # j, there exists a unique pair of vertices of T; U T; such that the line
L passing through them is a diagonal of D.

(4) Deduce that the rotations of D preserving T; and T; yields cyclic permutations of the three
remaining tetrahedra. Conclude that the image of G <~ S5 does not contain any transposition.

(5) Show that U, is the unique subgroup of index 2 of S,,, and conclude that G ~ Us. (Hint: show
that the only surjective homomorphism &,, - {+1} onto {1} is the signature homomorphism;
recall that transpositions are all conjugates and they generate &,,.)

(6) Show that a dodecahedron and an icosahedron have the same symmetry group.

2.7. Finite subgroups of SO(3,R).

Theorem 2.6. A finite subgroup of SO(3, R) is isomorphic to one of the following.
(1) Z/nZ (rotations of a regular n-gon).
(2) D, (rotations + reflections of a reqular n-gon).
(3) Uy (rotations of a tetrahedron).
(4) S4 (rotations of a cube or an octahedron).
(5) Us  (rotations of a dodecahedron or an icosahedron).

Exercise 2.7. The aim of this exercise is to prove the above theorem. Let G < SO(3,R) be a finite
subgroup.
(1) Consider the G-action on the unit sphere S*. Show that the stabilizer of a point p € S? is a cyclic
group Z/my,Z and that my,, = m, for every h € G.
(2) A point p € S* is called a pole if p is fixed by some nontrivial g € G. Let py,...,pr be
representatives of the orbits of G C {poles} and let m; := m,,. Show that

k
141G
|G|—1=§Z—(m,-—1).

i M

(3) Prove Theorem 2.6.
(4) Prove the following corollary.

Corollary 2.8 (Euclid). There exist exactly five reqular polyhedra in R®.

3. Counting flags via group actions

3.1. Flag varieties. Let k be a field and let V be an n-dimensional k-vector space. A flag variety is the
set of nested linear subspaces of some fixed dimensions (draw picture)

Fl(ih <ip < - <i, V):={V;

c Vi ©--- c V, ¢ V|V linear subspace of V with dim V;, = i; } .

Grassmannians
Gr(m,V):={WcV|dimW=m}
are particular examples of flag varieties.
The linear group action GL(V)  V induces a GL(V)-action on each flag variety. Since scalar
matrices stabilize each flag, GL(V) & FI(- - - , V) descends to PGL(V) & FI(- - - , V).

Exercise 3.1. Show that the GL(V)-actions on flag varieties are transitive.

3.2. Counting flags. Now let k = F, be a finite field of cardinal 4. Then flag varieties are finite sets.
Using the GL(V)-actions on flag varieties we can count the number of flags.
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Exercise 3.2.
(1) Show that
IGL(n,E)| = (q" = 1)(g" —q)--- (4" —q" ")
(2) Count the number of stabilizers of an m-dimensional W < V for the GL(V)-action.
(3) Deduce that
("= —q - (q"—q"")
@ =D@" —q) - (q" —q"")

As a consequence, the fraction in the above formula is an integer.

|Gr(m/ V)l =

We can count the cardinal number of any flag variety in a similar way.
3.3. Asides: g-analog. Regarding g as a formal variable, the g-analog of an integer # is defined as
1-4"
=1 e gt 1
[]q tqg+--+q 1 g
When g € R, the "classical n" is obtained by taking the limit
%Er;[n]q = 1.

Likewise, we define

Then
(]!

3.4. Examples: PGL(3,F,), or the finite simple group with 168 elements. Let V = (F,)3. Then V has 7
lines and 7 planes, which correspond to 7 points and 7 lines in the projectivization

P(V):=(V—-0)/k*.
Exercise 3.3. Draw the incidence relations of these points and lines.

We can also identify the set of 7 lines in P(V) (together with the PGL(3, F,)-action) with the dual
projective space
P(VY):= (VY -0)/k*.

Exercise 3.4. Let V =5 V" be the isomorphism defined by the standard basis of V = (F,)3. This induces
a bijection P(V) = P(VV). Letp € P(V) and let £ € P(V¥) be its image.
(1) Let M € GL(3,F;). Show that
M-p=p ifandonlyif ‘M- =¢.

(2) Let H < GL(3, F) be the stabilizer of p for the GL(3,Fz)-action on P(V). Show that H is not
conjugate to 'H.
(3) Show that the group actions

PGL(3,F;) ¢ P(V) and PGL(3,F,) ¢ P(V")
are not isomorphic.
3.5. Examples: PGL(2, F5) and Us. Let V be a two-dimensional k-vector space. We have an identification
P(V)={[a:b]|abek,(ab)+#(0,0)}/~

where (a,b) ~ (a/,b") whenever (Aa, Ab) = (a, V") for some A € k*. Sending [a : b] to a/b (with « := a/0)
defines another identification
P(V) ~ kv {o0}.



3. COUNTING FLAGS VIA GROUP ACTIONS 12

Exercise 3.5. Show that PGL(2, k) C P(V) is identified with
a b . +b
c d|’ cz+d
through P(V) ~ k u {o0}.

Now let k = Fs5. Consider the labelling of faces on a dodecahedron as follows:

Ficure 1. Unfolded dodecahedron from D. Speyer’s answer in [5]

Exercise 3.6.

(1) Show that the action of the symmetry group G of a dodecahedron D on the labelled faces
defines a faithful G-action on Fs U {c0}.
(2) Show that this G-action is isomorphic to PGL(2,Fs) C F5 u {oo}. Deduce that

PGL(Z, F5) =~ 915.



LECTURE 2

Quiver representations

4. Definitions and examples

4.1. Objects. A quiver Q is a finite directed graph. Suppose that V (resp. E) is the set of vertices (resp.
edges) of Q. A representation of Q over a field k is a collection of data (V;, f,) consisting of
e finite dimensional k-vector spaces V;, one for eachie V;
e k-linear transformations p, : Vi(a) — Vi(a), one for each edge a € E; here t(a) and h(a) denote
the tail and the head of « respectively.

4.2. Morphisms. A morphism ¢ : (Vi, fa) — (V, f,) of representations of Q is a collection of k-linear
transformations ¢; : V; — V! indexed by i € V such that

fa © Oia) = P(a) © fa
for every a € E. A morphism ¢ of representations of Q is called isomorphism if each ¢; is an isomorphism.
If each ¢; : V; — V! is the inclusion of a subspace of V;, then we call (V, f,) a sub-representation of
(Vi fa)-
The category of representations of Q over a field k is denoted by Rep(Q, k).

4.3. Indecomposable representations. A nonzero representation (V;, f,) of Q is called indecomposable if
(Vi, fa) is not isomorphic to the direct sum

(Vi foe Vi, f)= VeV, fiof)
of non-trivial representations of Q. Here, we say that a representation (V;, f,) is trivial if V; = 0 for all

vertex i.
We will prove the following theorem in the future.

Theorem 4.1 (Krull-Schmidt theorem). Every representation (V;, f,) of Q can be decomposed into a finite
direct sum of indecomposable representations:

n - .
(Vi fo) =DV 7).
j=1
Moreover, the decomposition is unique, up to permutation of the index j and up to isomorphism of each factor
D £0G)
(Vi7 fa")-

4.4. Aj-quiver and Ar-quiver. Consider the quiver Q = o. Then Rep(Q, k) is equivalent to the category
of k-vector spaces. It has only one isomorphism class of indecomposable representation, which is k.

Consider the quiver Q = ¢ — . Then a representation of Q is nothing but a k-linear morphism
¢ : V — W of finite dimensional k-vector spaces. If V' c V is a supplement of ker(¢) and W' < W a
suppliment of Im(¢), then

(VS W) ~ (kerp — 0)® (V' > Im(¢)) @ (0 — W),
Note that V' % Im(¢) is an isomorphism, so each V % Wis isomorphic to a direct sum of copies of
k—0), k%K), 0-Kk).

The above representations are indecomposable.

13
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4.5. Az-quivers. Consider a quiver Q whose underlying undirected graph is e—e—e. We want to decom-
pose a representation of Q into indecomposable representations, in particular finding all indecomposable
representations. There are two cases to be studied:

e >0« 9o o >0 o0

Let’s start with the first case. First of all by splitting away the kernels, a quiver representation of
the form e — e <« e is isomorphic to a direct sum of quiver representations of the form

ecsece, k500, 00k
By splitting away the common subspace of ¢ < e < e, the later is isomorphic to a direct sum of quiver
representations of the form
U—>V—W k=k=k
with U n W = 0. If V' is a supplement of U@ W in V, then
U>VeeW)=U=U—0)0—>W=W)® 0V 0.
Hence every quiver representation of Q is isomorphic to a direct sum of
0—-0<<k), 0>k<0), (k=>0<0), ( 0>k=k), (k=k<0), (k=k=k),
which are all irreducible.

Exercise 4.2. Do the case « — e — e and compare with the previous result.

4.6. Jordan quiver. The Jordan quiver is a quiver Q with one loop C e. A representation of Q is the
same as an endomorphism ¢ : V — V of a finite dimensional k-vector space V. Two endomorphisms
1, P2 € End(V) define isomorphic representation of Q if and only if ¢b; is conjugate to ¢,.

A Jordan quiver thus have infinitely many indecomposable representations: for instance if k is
infinite, then

k4 Kk
for A € k are non-isomorphic indecomposable representations.
Exercise 4.3. Construct infinitely many non-isomorphic indecomposable representations of Q when k
is a finite field.
5. Dynkin quivers

5.1. Gabriel’s theorem. Let Q be a quiver.

Theorem 5.1 (Gabriel). Let k be any field and let Q be a quiver. The following assertions are equivalent.

(1) Rep(Q, k) has only finitely many isomorphism classes of indecomposable representations.
(2) The underlying undirected graph of Q is one of the ADE Dynkin diagrams:

Avi oo
D, : H%
Eo: o otos
By eedees
Es: oot o oo

A quiver as in the above theorem is called a quiver of finite type or a Dynkin quiver. Note that whether
or not a quiver Q is of finite type only depends on the underlying undirected graph.
We will prove (1) = (2) in Theorem 5.1 assuming that k is algebraically closed.
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5.2. Conjugation. Let Q be a quiver, and let V (resp. E) be the set of vertices (resp. edges) of Q. For
every vertex i of Q, we fix a k-vector space V;. Let

Rep(Q, k; Vi) = HHomk(Vt(a)th(a))

a€cE
be the space of quiver representations of Q of the form (V;, f,). Then
G:=| [GL(Vi) & Rep(Q. k; V)
ieV

defined by conjugation:

@i)iev - (Vi fo) = (Vis Giia) © fa © Gpi0)-
By construction, two representations (V, fa), (V, f) of Q lie in the same G-orbit if and only if they are
isomorphic.

Let d; = dim V;; we call d := (d;);ev the dimension vector of (V, f,).

Lemma 5.2. Assume that k is algebraically closed. Let W be a k-vector space. Suppose that W admits a linear
action G & W by G = [ [;oy GL(V;) with only finitely many orbits. Then
dim W < ) d?.
ieV
The idea of the proof is simple with some algebraic geometry.

PROOF (YOU MAY JUST CONCENTRATE ON THE IDEA IF YOU HAVEN'T FOLLOWED MODERN ALGEBRA II). Since
G C W has only finitely many orbits, at least one of them G - x is Zariski dense in W (namely, not
contained in any proper subsets of W defined as the zero locus of a system of polynomials with
coefficients in k). Since G — G - x is a surjective morphism of affine varieties over k, we have
> d? = dim G > dim(G - x) = dim W.
i€V
O

Proposition 5.3. Suppose that Rep(Q,K) has only finitely many isomorphism classes of indecomposable

representations. Then
2 ey ey < 2

acE eV
as long as d; is not all 0.

Proor. Since Rep(Q, k) has only finitely many isomorphism classes of indecomposable representations,
Theorem 4.1 implies that Rep(Q, k; V;) has only finitely many isomorphism classes of representations
of Q. In particular, the conjugation action G C Rep(Q, k; V;) has only finitely many orbits.
Consider the linear action
G CRep(Q, k; Vi) @k

defines as the direct sum of the conjugation action G C Rep(Q, k; V;) and the action G C k defined by

(9i)iev - A = (H def(%‘)) A

eV
For every u € k*, the actions (¢;)iev C Rep(Q, k; V;) and (i - gi)iev C Rep(Q, k; V;) are the same, but
(71)iev & k and (u - gi)iev & k differ by a factor of u2i%. Since >;d; > 0, it follows that for every
(Vi, fa) € Rep(Q, k), the pairs

the determinant

((Vi, fa); A) e Rep(Q, k; Vi) @k
lie in the same G-orbit whenever A # 0. This implies that G C Rep(Q, k; V;) @ k also has only finitely
many orbits.
We apply Lemma 5.2 to conclude. O
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5.3. Cartan matrix. LetI be a finite undirected graph and let V be the set of vertices. Define the adjacent
matrix A(T') = (a;j); jev as follows:

the number of edges betweeniand j  ifi # j
(5.1) a;j =

2 - (the number of loops at i) ifi=j

Let
C(T)=2-1d - A(T).
It is a symmetric matrix, so defines a quadratic form gr on RY. Explicitly,
(5.2) 2qr (dizie V)= > = diwydna)
ieV aeE

Corollary 5.4. If T underlies a quiver of finite type, then qr is definite positive.
When the quadratic form gr is definite positive, we call C(I') the Cartan matrix of I'.

Proor. By Proposition 5.3, we have gr(d) > 0 for every nonzero d € Z‘;O. Since g is a quadratic form,
the same holds for every nonzero d € ‘;0. As g is continuous and Q is dense in R, the same holds for
every nonzero d € RY. Finally for every nonzero d € R", by (5.2) we have

ar(d) > qr(ldii e V) > 0.

Exercise 5.5.

(1) Compute C(I') for a cycle graph I'. Show that det C(T') = 0.

(2) Deduce that for any finite graph I, if gr is definite positive, then I is a tree.

(3) Compute C(T) for the ADE Dynkin diagrams. Show that the associated quadratic form gr is
definite positive.

(Hint: use Sylvester’s criterion.)

5.4. ADE Dynkin diagrams. Let I be a finite undirected graph.

Theorem 5.6. The quadratic form qr is definite positive if and only if I is an ADE Dynkin diagram.
The "if" part is covered by Exercise 5.5. The following exercise proves the "only if" part.

Exercise 5.7. Suppose that I' is a tree such that gr is definite positive.

(1) Show that the associated quadratic form of the graph

is not definite positive. Deduce that I' cannot contain a vertex with at least four incoming
edges, or two vertices which have each of them at least three incoming edges.
(2) Show that I' does not contain the following graphs:
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*——o
'
®
°

(3) Conclude.

The implication (1) = (2) of Theorem 5.1 then follows from Corollary 5.4 and Theorem 5.6 (for k
algebraically closed).



LECTURE 3

Categories

6. Definitions and examples

6.1. Categories. A (locally small) category ¢ consists of
¢ A class Ob(¥) (or ¢ by abuse of notation) of objects;
e Forall X, Y € Ob(%) a set of morphisms
Hom(X,Y) = {¢p: X - Y};
¢ A collection of maps
Hom(X,Y) x Hom(Y, Z) % Hom(X, Z)

(6.1)
(frg)—gof
forall X,Y,Z € Ob(%),
subject to the following conditions:
(1) The sets Hom(X, Y) are pairwise disjoint;
(2) For every X € Ob(%), there exists Idx € Hom(X, X) such that
Idyof=f and goldx=yg

for all f e Hom(Y, X) and g € Hom(X, Y);
(3) For all morphisms f, g,h in ¢, we have

(fog)oh=folgoh)
whenever the compositions are defined.
Exercise 6.1. Show that Idx is unique for every X € Ob(%).
A morphism ¢ : X — Y in Cis called an isomorphism if there exists i : Y — X such that
¢oyp=1d and Po¢ =1Id.
In this case, we say that X and Y are isomorphic.

6.2. Examples. Fix a field k.

(1) The category of sets: objects are sets and morphisms are maps between sets.

(2) The category of groups: objects are groups and morphisms are group homomorphisms.

(3) The category of k-vector spaces: objects are k-vector spaces and morphisms are linear trans-
formations.

(4) Fix a group G. We've defined the category of G-sets before.

(5) The category of field extensions L/k over k. A morphism from L/k to L’ /k is a morphism of
k-algebras L — L'.

(6) Sometimes morphisms are not maps in the set-theoretical sense. For instance, fix a topological
space X. We can consider the category whose objects are points of X, and morphisms p — g
between two points p,q € X are paths from p to g up to reparameterization. Composition is
defined by concatenation.

18
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6.3. Functors. A covariant functor F : € — 2 between two categories ¢ and  consists of

e A map
Ob(%¢) — Ob(2)

(6.2) X E(X)

e A map

Hom¢ (X, Y) — Homg (F(X), F(Y))
(6.3)
¢ — F()
forevery X, Y € Ob(%),

such that

F(¢oy) =F(@)oF(y) and F(ldx) = Idpex)
for all X € Ob(%’) and morphisms ¢ and i such that ¢ o 1 is defined.

Exercise 6.2. Show that F sends isomorphisms to isomorphisms.

A contravariant functor F : € — & is defined similarly, with
Hom¢ (X, Y) - Homg (F(Y), F(X))

6.4
o ¢ — F(@)

for every X, Y € Ob(%).
6.4. Examples. Again, we fix a field k.
(1) FixNeZ.,
GLy : Fields/k — Groups
(6.5)
L/k — GLy(L)

is a covariant functor.

(2) Forgetful functor: for instance
k-vector spaces — Groups — Sets

are covariant functors.

(3) For any category ¢ and any A € Ob(%),
Hom(e, A) : € — Sets
(6.6)
B — Hom(B, A)

is a contravariant functor.

(4) Let Vecty denote the category of k-vector spaces. Taking dual
()Y : Vecty — Vecty
(6.7)
V—VY

is a contravariant functor.

6.5. Full functors, faithful functors. A (covariant) functor F : € — 2 is called

e fullif Home (X, Y) — Homg (F(X), F(Y)) is surjective;
o faithful if Hom¢ (X, Y) — Homg (F(X), F(Y)) is injective.

19

Exercise 6.3. Let F : ¢ — 2 be a fully faithful functor. For every f € Hom¢ (X, Y) show that f is an

isomorphism if and only if F(f) is an isomorphism.

6.6. Subcategories. A subcategory ¥ — ¢ of a category ¢ is a category Z such that

¢ Ob(2) = Ob(%);
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e Homy(X,Y) c Homy (X, Y) for all X, Y € Ob(2), which is compatible with compositions and
identities.

We call Z < € a full subcategory if Homy (X, Y) = Hom¢ (X, Y) for all X, Y € Ob(2).

7. Equivalence of categories

We start with a guiding example. Fix a filed k and consider the category Vecty f of finite dimensional
k-vector spaces. Let /" be the full subcategory of Vect r with

Ob(A)={K|NeZs}.

We want 4" — Vecty r to be an equivalence of categories.

As a first attempt, we start with a definition, which is actually too strong to be useful. We say that
two categories o/ and # are isomorphic if there exist functors F : &/ — % and G : &/ — % such that
FoG =Idgand GoF = Id. If two categories & and 4 are isomorphic, then F and G define a bijection
between Ob(</) and Ob(%). For instance the category ¢’ above is not isomorphic to Vecty .

A more natural definition is the following.

Definition 7.1. A functor F : & — % is called an equivalence of categories if
e Fis fully faithfull;

o Fisessentially surjective: namely for any Y € 2, there exists X € &7 such that F(X) is isomorphic
toY.

Exercise 7.2. Show that the category ./” is equivalent to Vecty r.
Example 7.3. Let F : € — 2 be a fully faithful functor. Then % is equivalent to a full subcategory of 2.

7.1. Natural transformations. Let F,G : &/ — % be a two functors. A natural transformation f : F — G
is a collection of morphisms f(X) : F(X) — G(X) for each X € Ob(4/) such that for every morphism
¢ : X — Y in &/, the diagram

Fx) L2 e
)

Lmﬁ lG(fP)
Y
Fy) 22 )

commutes.

Natural transformations are the morphisms in the category Funct(«/, %) of functors from .7 and
B.

Exercise 7.4. Show that the bidual functor (e)"" : Vecty s — Vecty r is isomorphic to the identity functor
Id : Vecty y — Vecty .

7.2. Equivalence of categories: an equivalent definition. Let o/ and % be categories.

Theorem 7.5. The following assertions are equivalent.

(1) o and % are equivalent.
(2) There exist functors F: of — B and G : B — o suchthat Fo G ~Idgand Go F ~ Idy.

We refer to [1, Theorem I1.2.7] for a proof. By Theorem 7.5, we see that both isomorphism of
categories and equivalence of categories are about the existence of some functors F : &/ — % and
G : % — /. For the equivalence of categories, instead of F o G = Id, we only require F o G ~ Id.

Exercise 7.6. Show that the category 4" is equivalent to Vecty r, using Theorem 7.5 (2) instead of the
definition.
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7.3. Example: Galois theory. Let k be a field. Fix a separable closure k® of k. The absolute Galois
group Gal(k’/k) is defined to be the group of of automorphisms of k° as a k-algebra. For every finite
Galois extension L/k in k%, an automorphism of k® fixing k restricts to an automorphism of L, which
gives rise to a group homomorphism.

Gal(K*/k) — Gal(L/K).

Exercise 7.7. Show that
Gal(k’/k) = lim Gal(L/k),
L/k
where the projective limit runs through all finite extensions L/k in k°. Explicitly, Gal(k’/k) is the
subgroup
Gal(k'/k) < [ [ Gal(L/k)
L/k
consisting of (1) € [ [; i Gal(L/k) such that for every pair of finite Galois extensions L/k and L/k such
that L’ < L, the image of g; under Gal(L/k) — Gal(L'/k) is g1..

Exercise 7.8. Let k be a finite field. Show that
Gal(K'/k) ~ Z := lim Z/nZ.
neZ-o

(Hint, recall that every finite extension of F, for a prime number p is of the form F, — F.)

The absolute Galois group Gal(k’/k) is thus a profinite group, and is endowed with the profinite
topology (namely, the topology induced from the product topology of [ |, 4 Gal(L/k), with each Gal(L/k)
endowed with the discrete topology). This makes Gal(k’/k) into a topological group (i.e. the product
G x G — G and the inverse G — G are both continuous.)

Exercise 7.9. Show that open subgroups of Gal(k®/k) have finite index.

Remark 7.10. In general, finite index subgroups of Gal(k’/k) are not open. See Proposition 7.29
in https://www. jmilne.org/math/CourseNotes/FT.pdf for some construction of such subgroups in
Gal(Q/Q) using the axiom of choice.

A k-algebra L is called finite étale if L ~ k; x - - - x k,, where each k; is a finite separable extension of
k. Note that if k is perfect, this is equivalent to the condition that L is reduced (i.e. L has no non-trivial
nilpotent elements).

Theorem 7.11 (Galois—Grothendieck correspondence). We have an equivalence of categories:

{ Finite étale k-algebras } —> { Finite sets with a continuous Gal(k’° /k)-action }
7.1
@) L — { L — k° morphisms of k-algebras } .
Here for any topological group (e.g. Gal(k’/k) endowed with the profinite topology), we say that a
G-action on a finite set S is continuous if the map G x S — § is continuous with S endowed with the
discrete topology.

Exercise 7.12. Show that a Gal(k®/k)-action on a finite set S is continuous if and only if the stabilizer of
each element of S is open in Gal(k’/k).

Exercise 7.13. Deduce the Galois—-Grothendieck correspondence from the Galois theory (for finite
extensions) you've learned in undergraduate algebra.

Remark 7.14. (For those who know some algebraic geometry) For every k-algebra L, k-algebra mor-
phisms L — k° are k®-points of Z;, := Spec(L) and vice versa. So L — Z; (k°) is another way of describing
the Galois-Grothendieck correspondence.


https://www.jmilne.org/math/CourseNotes/FT.pdf

LECTURE 4

Representations of associative algebras

Group representations and quiver representations are different, but they have a common generaliza-
tion: we can regard both of them as representations of associative algebras. The later also encompasses
Lie algebra representations (which we wouldn’t be able to explain this semester). This also explains
why group representations and quiver representations share some similar properties. Working with
representations of associative algebras allows us to prove these properties for both situations at the
same time.

We first explain how group representations and quiver representations arise as examples of repre-
sentations of associative algebras.

8. Associative k-algebras

Throughout these notes, unless otherwise specified a ring A is always assumed to be unital (i.e.
there exists an element 1 € A such that1-x = x-1 = x for any x € A). We don’t assume that A is
commutative in general. A morphism of rings f : A — B always maps 1 to 1.

Let k be a field.

8.1. Associative algebras. An (associative) k-algebra is a ring A together with a ring homomorphism
k — A, whose image is contained in the center Z(A) of A. A morphism between two k-algebras A and
B is a ring homomorphism f : A — B which commutes with the structural morphisms:

NV

¢ (Endomorphism algebra) The endomorphism ring End(V) of a k-vector space is a k-algebra.

A

Here are some examples of k-algebras.

o (Free algebra) Let S be a set. The free associated algebra k(S) generated by S is defined as
follows. As a k-vector space, k(S) is the k-vector space generated by all finite words

C1-++Cy, C1,...CL€S.

The product of two words is defined by concatenation, which extends k-linearly to a product
on k(S). The unit of k(S) is the empty word.

e (Group ring) Let G be a group. The group ring k[G] with coefficient in k is defined as follows.
As a k-vector space, k[G] is the k-vector space generated by the symbols

X7 (geG).
For every g, h € G, define
XY . Xh _ Xgh/

and extends k-linearly to a product on k[G].

o (Path algebra) Let Q be a quiver; the set of vertices and edges are denoted by V and E
respectively. The path algebra kQ of Q with coefficients in k is defined as follows. As a
k-vector space, kQ is the k-vector space generated by the directed paths in Q (namely finite
sequences ¢, - - - e of E with hi(ej) = t(ej11) for all j), including the trivial paths p; for eachi e V.

22
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The product PP’ of Given two paths P and P’, define the product

(8.1) PP’ {the concatenation of P’ by P if the head of P’ is the tail of P

0 otherwise.

The above definition extends k-linearly to a product on kQ, turning kQ into a k-algebra. Note
that the unit of kQ is D .y pi.

8.2. Ideals and quotients. Let A be an associative k-algebra. A left-ideal (resp. right-ideal) of A is an
additive subgroup I — A such thatal < I (reps. la < I) for alla € A. A two-sided ideal is a subset I — A
which is both a left-ideal and a right-ideal. For instance, the kernel

kerfc A

of a morphism of k-algebra f : A — B is a two-sided ideal.
Let I ¢ Abe atwo-sided ideal. Since [ is in particular a k-linear subspace of A, we have the quotient
k-vector space A/I; let m: A — A/I be the quotient map. For every x, y € A and A € k, define

n(x)n(y) == n(xy).

Exercise 8.1. Show that m(x)n(y) is well defined, namely
n(xy) = n(x'y)
if t(x) = n(x') and n(y) = n(y’).
This makes A/I into an associative k-algebra, and 7 : A — A/I into a morphism of k-algebras.
Exercise 8.2. Let f : A — B be a morphism of k-algebras. Show that f(A) ~ A/ker(f) as k-algebras.

8.3. Generators and relations. Let A be a k-algebra and let S < A be a subset. The k-subalgebra generated
by S is the smallest k-subalgebra B — A containing S. If B = A, then we say that S is a set of generators of
A.

Suppose that S is a set of generators of A. Then we have a surjective morphism of k-algebras

K(S) —> A

sending s € S to s € A. The kernel I is also called the ideal of relations. By Exercise 8.2, we have
A ~ k(5)/I. In particular, every k-algebra is the quotient of a free algebra by a two-sided ideal (of
relations).

Exercise 8.3. Let Q be a quiver, with the set of vertices and edges denoted by V and E respectively.
Show that kQ is defined by generators and relations as follows.
o Generators: E and { p; | i € V } (trivial paths)
¢ Relations: the two-sided ideal "generated by"
1) Xievri=1
2) p} =pi,pipj = 0if i # |
(3) For every e € E ep; = eif iis the tail of e and 0 otherwise.
(4) pie = eif i is the head of e and 0 otherwise.

9. Representations of associative algebras
Let k be a field and let A be an associative k-algebra.

9.1. Objects and morphisms. A representation of A (or a left A-module) is a k-vector space V together
with a k-algebra homomorphism
p:A— End(V).

For everya e A and v e V, we also write



9. REPRESENTATIONS OF ASSOCIATIVE ALGEBRAS 24

Informally, a left A-module is a k-vector space V, but we enlarge the coefficients from k to A.
Let V and W be two left A-modules. A morphism from V to W is a k-linear map f : V — W such
that for everya € Aand v € V, we have
fla-v)=a-f(v).
The space of morphisms between V and W is denoted by Homa (V, W).
The category of left A-modules is denoted by A-Mod.

9.2. Right modules, bimodules. The opposite algebra A°P is defined to be A°P := A as a k-vector space,
with a - b in A°P defined to be b - a in A. A right A-module is defined to be a left A°’-modules V. If
p : A°? — End(V) is the structural morphism, we also write

v-a:=pa)-v
for every a € A and v € V. The category of right A-modules is denoted by Mod-A.
Exercise 9.1. Show that A°? ~ End4(A) as k-algebras.

Let B be another k-algebra. An (A,B)-bimodule is a k-vector space V equipped with a left A-module
structure and a right B-module structure, such that

(av) - b =a- (vb)
foreveryae A,be Bandve V.
Remark 9.2. Two k-algebras A and B are called Morita equivalent if we have an equivalence of categories
A-Mod ~ B-Mod.

In general, a k-algebra A is not Morita equivalent to its opposite A°?. The Brauer group Br(k) is in
bijection with the Morita equivalence classes of central simple algebras over k, and A — A°P corresponds
to taking inverse on Br(k). In general Br(k) contains nontrivial elements of order not equal to 2 (e.g.
when k = Q). We would provide more explanations in the future if time permits.

Unless otherwise specified, we use the term "A-module" for left A-module.

9.3. Example: group representations. Let G be a group. A group representation of G over k is a group
action G C V on a k-vector space such that g : V — V is k-linear for every g € G. A morphism between
two representations G C V and G & W over k is a k-linear map V — W of G-sets. The category of
group representation of G over k is denoted by Rep(G, k)

We can associate every group representation p : G — GL(V) a morphism of k-algebras

K[G] — End(V)
©-1) DiAgg Y A p(9),

geG geG
where A; € kand A, = 0 for all but finitely many g € G.
Exercise 9.3. Show that the above construction extends to an equivalence of categories

Rep(G, k) ~ k[G]-Mod.
9.4. Example: quiver representations. Let Q be a quiver. We can associate every quiver representation
(Vi, fa) amorphism of k-algebras. For every pathp = e, - - - e1 of Q, define

p(p) = fo, 0 -0 for : Vien) = Ve,
and p(p;) := Idy, for each trivial path p; at the vertex i.
kQ — End(®:V;)

©.2) Z Ap-p— Z Ap - p(p),

p path p path
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where A, € k and A, = 0 for all but finitely many paths p.

Exercise 9.4. Show that the above construction extends to an equivalence of categories
Rep(Q, k) ~ kQ-Mod.

9.5. Weyl algebra and polynomial differential operators. The (first) Weyl algebra is defined by
. kxy
1= —.
xy—yx—1

It is also the algebra of polynomial differential operators on k[t]: defining

X'f:tf, yf:atf/
gives rise to an A;-module structure on kJf] thanks to the Leibniz rule.
Using the A;-representation on k[t], we can prove the following.

Proposition 9.5. The elements x'y! for all i, j > 0 form a basis of the k-vector space A;.

Proor assuMING k = C. As yx = xy — 1, we can show by induction that A; is generated by these x'y/ as
a C-vector space.
Now let D € A; and write

D =) Pi(x)y
j=0

where P; € C[x] with P, # 0. Suppose that D = 0. Then D - tN = 0 for all positive integer N. In other
words, we have for N large,

NN-1)---(N=j+1)-P;(HN7T =0
0

n

j
in C[f], so

iN(N—l)---(N—jH)-Pj(t)t*fzo
j=0

in C[t,t~!]. Considering the limit of the coefficients of Laurent polynomials, we have

n

1 ,
im — E —1)---(N—i PV = —n
]\}ergo NG j:ON(N 1) (N—j+1)-Pi(t)t P,(tH)t™",

so P,(t) = 0, which is a contradiction. O

Exercise 9.6. Prove Proposition 9.5 for any field k (Hint: consider N as a variable and let A; acting on
k[N, t] - V. Each element of k[N, {] - ¥ is a linear combination of #"*N with coefficients in k[N], and
y- N . (Tl + N)tnflJrN‘)
Likewise the nth Weyl algebra is defined by
kx;,yj|1<i,j<m)
X — Y — O, XiXi— X%, il — YiYi

where 6;; is the Kronecker delta. It is the algebra of polynomial differential operators on k[t1,... tu]

n-

The following conjecture is still open.

Conjecture 9.7 (Dixmier conjecture).
End(A,) = Aut(A,).

9.6. Example: Regular representation. The (left) reqular representation of a k-algebra A is

A — End(A)
9.3)

a— (v—a-v).
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For instance, if G is a group, then the G-representation which corresponds to the regular representation
is

Gc@k~eg
g9eG

with g - e, = eg.

9.7. Example: quotients by left-ideals. Let I — A be a left-ideal. The multiplication by k defines
k-vector space structures on A and I. The quotient A/ is thus a k-vector space. Let 7 : A — A/I be the
quotient map.
For everya, b € A, define
a-n(b) := m(ab).

Since I is a left-ideal, the product a - (D) is well defined, which defines a left A-module structure on A/I.
Exercise 9.8. Let V be an A-module and letv e V. Let
I=Ann(v) :={acA|a-v=0}
be the annihilator of v. Show that [ is a left-ideal of A and that
Al ~A-v
as left A-modules.

9.8. Some basic properties of A-Mod.

e Homy(V, W) is an abelian group for every A-modules V, W, and compositions are bi-additive.

¢ The zero vector space is also an A-module, called the trivial or zero A-module.

e The direct sum V @ W of two A-modules is still an A-module. This turns A-Mod into an
additive category.

e Forevery f e Homu(V, W) < Homy(V, W), the kernel ker f (resp. cokerf) inherits an A-module
structure from V (resp. W). In particular, given an A-submodule W < V (namely a k-linear
subspace such that A - W = W), the quotient V/W inherits a A-module structure from V.

Exercise 9.9. Show that the A-submodules of A are the left-ideals of A.

9.9. Faithful representation. A representation p : A — Endy (V) of A is called faithful if p is injective.
Any representation p : A — Endik(V), is a faithful representation over A/ ker p.

9.10. Generators and relations. Let V be a A-module and let S — V be a subset. The A-submodule
generated by S is the smallest A-subalgebra W — V containing S. If W = V, then we say that S is a set of
generators of V. In this case, if S is finite, then we say that V is finitely generated.

Suppose that S is a set of generators of W. Then we have a surjective morphism of A-algebras

PA->V
S

from the direct sum of regular A-representations, sending 1 € A in the "s € S factor" to s € A. The
A-modules of the form @y A are called free A-modules (of rank |S|). Thus every A-module V is the
quotient of a free A-module by a A-submodule (of relations). If V is finitely generated, we can choose
the free A-module to have finite rank.

10. Irreducible modules, indecomposable modules

10.1. Exact sequences. A sequence of morphisms of A-modules

ulviw
is called exact if ker(g) = Im(f). A sequence of morphisms of A-modules of the form

(10.1) o-uLbviwoo
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which is exact at each term is called a short exact sequence. For instance,

w— (u,0)

(10.2) 0— U2t rew B2 w0

is a short exact sequence.
We say that a short exact sequence (10.1) splits if there exists a morphism & : W — V such that

goh=1d.

Exercise 10.1. Show that (10.1) splits if and only if (10.1) is isomorphic to (10.2). In other words, U (or
equivalently W) is a direct summand of V.

Exercise 10.2.

(1) For A = k, show that every short exact sequence of A-modules splits.
(2) For A = k[X], show that

0 - k[X] L2220 kx) 22192k - o
is a short exact sequence of A-modules which does not split.

10.2. Irreducible modules and indecomposable modules. A nonzero A-module V is called irreducible
(resp. indecomposable) if V has no A-submodules (resp. direct summand) different from V and 0. Irre-
ducible modules are indecomposable, but the converse does not hold in general (see e.g. Exercise 10.2).
Irreducible A-modules are also called simple A-modules.

Exercise 10.3. Let V and W be indecomposable A-modules. Suppose that f : V — Wandg: W — V
are two morphisms such that f o g = Idw. Show that f and g are isomorphisms.

Proposition 10.4. An A-module V is simple if and only if V is isomorphic to A/m for some maximal left-ideal m.

Proor. Let m < A be a maximal left-ideal and let m : A — A/m be the projection. Let W < A/m be an
A-submodule. Then n~1(W) c A is a left-ideal, so either n=!(W) = m or n=}(W) = A. Hence W is
either 0 or A/m.

Let V be a simple A-module. Choose a nonzero element v € V, we then have A-v = V. So if
m := Ann(v), then A/m ~ V as left A-modules. For every ideal I — A containing m, the quotient A/I is
a quotient of A/m ~ V, so is either 0 or A/m. Hence I = A or I = m, which shows that m is a maximal
ideal. O

10.3. Schur’s lemma.

Proposition 10.5 (Schur’s lemma). Let f : V — W be a nonzero morphism of A-modules.
(1) If V is irreducible, then f is injective.
(2) If W is irreducible, then f is surjective.

Proor. Since f # 0, we have ker f # V and cokerf # W. If V (resp. W) is irreducible, then the
submodule ker f < V (resp. cokerf — W) is zero, so f is injective (resp. surjective). O

As a consequence, the endomorphism ring D := End4 (V) of an irreducible A-module is a division
ring, namely every nonzero element f € D has a multiplicative inverse: an element f~! € D such that
ff~t = f~1f = 1. Division rings are also called skew-fields. Thus an irreducible A-module is naturally a
left module over the division ring D.

To some extent, a division ring behaves like a field.

Exercise 10.6. Let D be a division k-algebra. Prove the following properties.

(1) The regular representation of D is irreducible.
(2) Every D-module V is free.
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Corollary 10.7. Assume that k is algebraically closed. Let V be an irreducible A-module such that dimy V < o0
and let f : V. — V be a morphism of A-modules. Then f = A - 1d for some A € k. As a consequence,

End(V) ~ k.

Proor. Since k is algebraically closed and dimy V' < oo, the k-linear map f has a nonzero eigenvector
v € V. Suppose that f(v) = Av. Then f —Ald : V — V is a morphism of A-modules which is not injective.
As V is irreducible as an A-module, we have f = Ald by Schur’s lemma. m]

Exercise 10.8. Reformulate Corollary 10.7 for group representations and quiver representations.

Corollary-Exercise 10.9. Suppose that k is algebraically closed and A is a commutative k-algebra. If V is an
irreducible A-module with dimy V < oo, then V ~ k as k-vector spaces.

Exercise 10.10. Find a counterexample of Corollary 10.7 if we drop the assumption that k is algebraically
closed. (Hint, you may consider the regular representation of the R-algebra C.)

10.4. Finite dimensional division algebras over R. Commutative division algebras over R are fields
extensions of R, and those with finite degree are R and C.

An example of noncommutative division algebras over R is the quaternion algebra H over R. As a
vector space, H is 4-dimensional, generated by 1 and the symbols i, j, k. The product on H is defined by

=7 =K =ijk=-1
Exercise 10.11. Write down the multiplication table of 1,1, j, k.
Proposition 10.12. A finite dimensional division algebra D over R is isomorphic to either R, C, or H.

Proor. If D is commutative, we’ve already seen that D is isomorphic to either R or C.

Assume that D is noncommutative. Then there exists x € D\R. As the subalgebra R[x] < D
generated by x is commutative, we have R[x] ~ C. Consider i := v/—1 € C = D and the R-linear map
¢ : D — D defined by

Gly) =i-y-i .

As (pz = Id, we have an R-linear decomposition
D=D,®D_

where D is the eigenspace of ¢ of eigenvalue +1. For every nonzero z € D_, the left-multiplication
by z defines an isomorphism from D to D_, so dimg D, = dimg D_. Note that for every y € D, the
subalgebra C[y] = D is commutative, thus C[y] = C, which implies D, = C. It follows that dimg D = 4.

Let z € D_ be a nonzero element. Then z2 € D, = C. Since D is a division algebra, we have z2 # 0.
Choose

and let k := ij. Then 1,1, j, k are linearly independent, and
j2 =k = ijk =—1.
O

Let A be an R-algebra and let V be an A-module with dimg V < o. By Schur’s lemma and
Proposition 10.12, the R-algebra End4 (V) is isomorphic to R, C, or H. According to the isomorphism
type of End4(V), we call V a real representation, complex representation, quaternionic representation
of A.

11. Finite dimensional representations

Let k be a field and let A be an associative k-algebra. We say that an A-module V has finite dimension
if V is a finite dimensional k-vector space.
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11.1. Endomorphisms of indecomposable representations. We could compare the following proposi-
tion with Schur’s lemma.

Proposition 11.1. Let V be a finite dimensional A-module. Suppose that V is indecomposable. Then every
f € End(V) is either an isomorphism or a nilpotent (i.e. f* = 0 for some integer n > 0).

Proor. Since dimy V' < oo, there exists an integer n > 0 such that both
ker(f") < ker(f"*!) and Im(f"*") < Im(f")

are equalities. It follows that ker(f") n Im(f") =0, so

(11.1) V =ker(f") ® Im(f")

as a k-vector space. Since both ker(f") and Im(f") are A-submodules, (11.1) is also a decomposition of
A-modules. Thus either ker(f") = 0 or Im(f") = 0. In the former (resp. latter) case f is an isomorphism
(resp. nilpotent). m]

11.2. The Krull-Schmidt theorem.

Theorem 11.2 (Krull-Schmidt theorem). Every finite dimensional A-module V can be decomposed into a finite
direct sum of indecomposable representations:

Vz@Vj.

j=1

Moreover, the decomposition is unique, up to permutation of the index j and up to isomorphism of each factor V;.

Proor. The existence follows from dimy V < co.
Suppose that

V=PV,= (—BV;
j=1 j=1

are decompositions of V into indecomposable A-modules. We prove by induction on m that m = n and
Vi~ V; up to permutation of the indices j. The case m = 1 is clear.
For every index j, let

j: ViV, ViV, pii Vo V), phi V>V

be the natural inclusions and projections. We have

n

2,17 = 1dv,

j=1
SO
n
2 plz;p;zl =1Idy,.
j=1
The following lemma implies that plz;p;zl : Vi — Vy is an isomorphism for some ;.

Lemma 11.3. Let W be an indecomposable A-module and let fi, ..., fr € Enda(W). Suppose that f = ZLl fi
is an isomorphism. Then one of f; is an isomorphism.

Proor. By induction, it suffices to prove for the case k = 2. Up to replacing f; by f;o f~!, we can assume
that fi + f = Id, so fi commutes with f,. Assume that both f; and f, are not isomorphisms. Then they
are nilpotent by Proposition 11.1. But then Id = (f; + f2)" = 0 for large N, which is a contradiction. O

Up to permuting the indices of V;., we can assume that py7{pj1; is an isomorphism. It follows from
Exercise 10.3 that pj1; : V3 = Vi. Thus Vi nker(p]) = 0. As

dimkerp; = dimV — dimV; = dim V — dim V] = dimkerp/,
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we have
V =Vi@ker(p1) = Vi @ ker(p)).
It follows that ker(p;) ~ ker(p]). We conclude by the induction hypothesis. ]

For any quiver Q, thanks to the equivalence of categories Rep(Q, k) ~ kQ-Mod, Theorem 4.1 is a
particular case of Theorem 11.2.

11.3. The Jordan—-Holder theorem.

Theorem 11.4 (Jordan-Holder theorem). Let V be a finite dimensional A-module. Then there exists a finite
chain

(11.2) 0=VocVic.--cV, =V
of A-submodules such that each Vii1/V; is simple. Moreover, if
0=VocVig eV, =V
is another chain of A-submodules satisfying the same property, then there exists a permutation of indices o such
that
Vier/ Vi~ Vi 1 /Vi

for each i.

The chain of submodules (11.2) is called a Jordan—Holder filtration of V. The quotients V;y1/V; are
called the Jordan—Holder factors of V.

Proor. We construct (11.2) by induction on dim V. Since dimy V' < o, V has an irreducible submodule
V1. The induction hypothesis implies that the Jordan-Holder filtration exists for V/V;. Together with
V1, the latter filtration lifts to a Jordan—-Holder filtration of V.

For the uniqueness (up to permutations) of the Jordan-Holder factors, we argue again by induction
ondim V. If V; = V{ as subspaces in V, then the Jordan-Holder factors of V/V; = V/ Vi are unique
by the induction hypothesis, so the statement follows. Suppose that V; # V/. Since V; and V] are
irreducible, we have V1 n V] = 0. Consider W := V/(V; ® V) and let Wy, ..., W; be its Jordan-Holder
factors. Then both

Vo/Vi, ..., Vu/Vur and Vi, Wy, ..., Wi
are the Jordan-Holder factors of V/V;, so these two series of factors are isomorphic by induction
hypothesis. Likewise, the two series of factors

Vo/Vi,.., V) Vi o and Vi, Wy,..., Wi
are also isomorphic, which finishes the proof. ]

Exercise 11.5. Construct a nonzero A-module V which does not have any irreducible submodule. (For
instance, the regular representation of C[X].)

Exercise 11.6. Let V be a finite dimensional A-module and let W < V be a submodule. Show that the
multiset of isomorphism classes of the Jordan-Holder factors of V is the union of that of W and V/W.

Remark 11.7. Suppose that A is a k-algebra admitting a morphism D — A from a division k-algebra,
so that any A-module V has an induced D-module structure. Recall from Exercise 10.6 that D-modules
are free. All the results in § 11 hold more generally with the same proof for any A-module V which has
finite rank as a D-module.

12. Semisimple modules
12.1. Definition. An A-module V is called semisimple if every submodule of V is a direct summand.

Proposition 12.1. Every submodule and quotient of a semisimple A-module V is also semisimple.
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Proor. We prove the statement for submodules; the argument for quotients is similar.

Let W < V be a submodule of V. For every submodule Z c W, we have V = Z® Z’ for some
submodule Z’. The projection 7t : V — Z satisfies (1)w)z = mz = Idz, so Z is a direct summand of
W. |

Exercise 12.2. Let V be a finite dimensional semisimple A-module.

(1) Show that V is isomorphic to the direct sum ), V; of its Jordan-Holder factors.
(2) Show that any A-submodule of V is isomorphic to

DV
ieS
for some subset S € {1,...,n}.

12.2. The existence of maximal ideals and irreducible submodules. A left-ideal I of A is called maximal
if the only left-ideals of A containing I are I and A.

Proposition 12.3. Every left-ideal I of A is contained in a maximal left-ideal of A.

Proor. Let X be the set of ideals of A containing I which is not A. The inclusion defines a partial order
on X. For every totally ordered subset S X, the union

T=JJ

JesS

is a left-ideal of A and does not contain 1 (otherwise, one of | € S would be A). So ] € ¥, and it is an
upper bound of S. We conclude by Zorn’s lemma. m|

Corollary 12.4. Every nonzero semisimple A-module V has an irreducible submodule.

Proor. Let v € V be a nonzero element. Then Ann(v) # A and we have A -v ~ A/Ann(v). By
Proposition 12.3, there exists a maximal left-ideal m containing Ann(v), so we have a quotient map
A-v — A/monto a simple A-module. By Proposition 12.1, A/m is a direct summand of A - v, in particular
it is isomorphic to a submodule of V. m]

12.3. Semisimple modules are completely reducible.

Proposition 12.5. Let V be an A-module. The following assertions are equivalent.

(1) V is semisimple.
(2) V = 3 Vi for a collection of simple A-submodules V; < V.
(3) V = @jcs Vi for a collection of simple A-submodules V; < V.

Proor. For we prove (1) = (3). Let . be the set of all simple submodules of V and let

MW=P W

We.#’ We. ! } '
Note that for every totally ordered subset {.#;}i; of Z, we have

2L W= @ W

WeUie1 % WeUie1 S

Z:—{Y/Cy

so L has a maximal element .#) by Zorn’s lemma. Let
Vii= P W
We A
Suppose that V' # V. Then V = V'@ V" for some submodule V”. Since V" contains a simple submodule
V1, we have V' n V3 = 0, which contradicts the maximality of .. Hence V = V’, which implies (3).
(83) = (2) is obvious. Now we prove (2) = (1). Let W < V be a submodule. By Zorn’s lemma,
there exists a maximal subset Sy — S such that

Wn ) Vi=0.

iGSU
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Let W' := > ics, Vi. f W@ W’ # V, then there exists j € S such that V; ¢ W@ W’ (so j ¢ Sp). As V;is
simple, we have V; n (W@ W’) = 0,s0o W n (W’ + V;) = 0, which contradicts the maximality of So. O

12.4. Semisimple k-algebras.

Corollary 12.6. An A-module V is semisimple if and only if every finitely generated A-submodule of V is
semisimple.

Proor. The "only if" part follows from Proposition 12.1.

Assume that every finitely generated A-submodule of V is semisimple. Since V is a sum of finitely
generated A-submodules V;, which are semisimple, it follows from Proposition 12.5 that V is a sum of
simple A-submodules of V. Thus V is semisimple by Proposition 12.5. m]

A k-algebra A is called semisimple if every A-module V is semisimple.
Corollary 12.7. A k-algebra A is semisimple if and only if the reqular A-representation is semisimple.

Proor. The "only if" part is immediate.

Assume that the regular A-representation is semisimple. Then by Proposition 12.5, any free
A-module is semisimple. Since any A-module V is a quotient of a free A-module, it follows from
Proposition 12.1 that V is semisimple. O

Corollary 12.8. Let A and B be semisimple k-algebra. Then A x B is also semisimple.

Proor. Since A and B are semisimple, by Proposition 12.5 we have
AZ@V,‘ and BI@W]‘
ies jes’
for a collection of simple A-submodules V; = A and simple B-submodules W; = A. Then V; x 0 and
0 x W;j are simple (A x B)-modules and

AxB=@(V;x0)®@D0 x W)).
ieS jes’
Hence A x B is semisimple by Corollary 12.7. O

12.5. Example: representations of finite groups. Let G be a finite group.

Theorem 12.9 (Maschke). Assume that char(k) does not divide |G| (so |G| is invertible in k). Any finite
dimensional representation V of G over k is semisimple. As a consequence, the group algebra k[G] is semisimple.

Proor. Let W < V be a subrepresentation. Choose a k-linear map P : V — W such that Py = Idw. Let

1 _
::EZng LV S W,
geG

P

We have 1_3|W =Idw, so V = W @ker(P).
For every v € ker(P) and every h € G, since g — h~'g is a permutation of G, we have the first
equality of
>, 9Pg h(v) = Y hgPg ' (v) = h (Z 9P9‘1(0)> = 0.
geG geG geG

Thus ker(P) is G-stable, and hence a subrepresentation of G.
For the final statement, note that since G is finite, we have dimy k[G] < o0, so every finitely generated
k[G]-module V has finite dimy V. We conclude by Corollary 12.6. |

12.6. Example: the ring of matrices. Let D be a division k-algebra (e.g. D = k). Let n be a positive
integer and let A = Mat, (D) be the k-algebra of n x n matrices with coefficients in D.

Proposition 12.10.
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(1) The only irreducible A-module is V := D", with Mat, (D) acting on the space D" of column matrices
by left-multiplication.
(2) Mat,(D) is semisimple and as A-modules,

Mat, (D) ~ V".
(3) Ewvery finitely generated A-module is of the form V'™ for some m € Z.

Proor. For any nonzero v € V and w € V, there exists M € Mat, (D) such that Mv = w. Thus V is
irreducible. Regarding Mat, (D) as a direct sum of n spaces of column matrices, we have A ~ V". It
follows from Corollary 12.7 that A is semisimple.

Now let W be a finitely generated A-module. Then W is a quotient of AN and as a D-module, W
has finite rank. Since V is the unique Jordan-Holder factor (where we apply Remark 11.7 to obtain
the existence of the Jordan-Holder filtration and the uniqueness of the Jordan-Holder factors) of A, by
Exercise 11.6 it is also the unique Jordan-Holder factor of W. Since W is semisimple, we have W ~ V"
for some m € Z . O

Together with Corollary 12.8, we obtain the following.
Corollary 12.11. Let Dy, ..., D, be division k-algebra and let my, ..., m, be positive integers. The product
Maty,, (D1) x - - - x Maty, (D,)
is a semisimple k-algebra.
12.7. The endomorphism ring of finite direct sums.
Exercise 12.12. Let V, Wy, W, be A-modules. Show that
Homy (V, Wy @ Ws) ~ Homu (V, Wq) @ Homu (V, W;)

and
Homu (W; @ W,, V) ~ Homu (W1, V) @ Homy (W,, V)

as k-vector spaces.
Lemma 12.13. Let V be an A-module and let R := End (V). Then
Ends (V") ~ Mat,(R)
as k-algebras.
Proor. Write V"' = @ | V; with V; = V. Then
Ends (V") = é Homu(V;, V) ~ ET—) R
ij=1 ij=1

as k-vector spaces. Regarding elements of the (i, j)-summand R as the (i, j) coefficient of a matrix, the
composition in End4 (V") becomes matrix product. ]

Exercise 12.14. Let V and W be A-modules such that Hom,4 (V, W) = 0 and Homu4 (W, V) = 0. Show that
Ends (V@ W) = Enda (V) x Enda (W)
as k-algebras.

Proposition 12.15. Let V1,..., V), be irreducible A-modules which are pairwise non isomorphic. Let D; :=
End4(V;). Given n positive integers my, ..., m,, we have

n
End, (@ Vf“) ~ Mat,, (D;) x --- x Mat,, (D,)

i=1

as k-algebras.
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Proor. Forevery pairofindicesi # j,since V;and V;areirreducibleand V; # V;, wehave Hom(V;, V;) =
0 by Schur’s lemma. Hence Proposition 12.15 follows from Lemma 12.13 and Exercise 12.14. m]

12.8. The Wedderburn—Artin theorem. The following structural theorem shows that up to isomor-
phisms, the k-algebras in Corollary 12.11 are all the semisimple k-algebras.

Theorem 12.16 (Wedderburn—Artin). Let A be a semisimple k-algebra. There exists division k-algebra
D1, ..., D, such that
A ~ Maty,, (D) x -+ x Maty, (Dy)

as k-algebras.

Proor. Since A is semisimple, its regular representation is semisimple. So
A~ @ V;
ieS
for some simple modules V;. We have 1 = } ;s v; for some finite subset S’ < S and v; € V;, which
implies S = S'. So
A~ (—B Vi
i=1
for finitely many simple A-modules.
Let D; := Enda(V;), which is a division ring because V; is simple. By Exercise 9.1 and Proposi-
tion 12.15, we have
AP ~ End4(A) ~ Mat,,, (D1) x - -+ x Mat,,, (Dy,).
For any division k-algebra D, the opposite algebra DP is also a division ring and for any positive integer
n, we have an isomorphism

Mat, (D)% — Mat, (D)
(12.1) t
(cij) = “(cij),

as k-algebras. This concludes the proof. m]

12.9. The structure of regular representation of a semisimple ring,.

Corollary 12.17. Let A be a semisimple k-algebra.

(1) There exist only finitely many isomorphism classes of irreducible A-modules V1, ..., V.
(2) We have
A= Enle (Vl) (—B cee @ EndD”(Vn),

where D; := End 4 (V).
Proor. We have
A ~ Mat,,, (D{¥) x -+ x Mat,, (D;})
as in the Wedderburn—Artin theorem. Let V; := Dl'.”". By Proposition 12.10, V; is a simple Mat,,, (D;)-

module, so it is also a simple A-module (through the projection A — Mat,, (D;)). As Mat,, (D) ~
Endp, (V;) as k-algebras, we have

A ~ Endp, (V1) x -+ x Endp, (V,,).

Note that V; # V; as A-modules whenever i # j, because Mat,,, (D;) acts non trivially on V; but trivially
on V. It remains to show that V3, ..., V, are all the simple A-modules up to isomorphisms.
Let V be an irreducible A-module. Let v € V be a nonzero element. Then A - v = V and we have a
surjective morphism
A—>A-v=V

of A-modules. Since

(12.2) A=VI"@® --@V;"
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the restriction of A - V to one of V; is nonzero. As both V and V; are irreducible, we have V; ~ V. 0O
12.10. A consequence on finite group representations.

Corollary 12.18. Let G be a finite group. Suppose that char(k) does not divide |G| and that k is algebraically
closed.

(1) G has only finitely many isomorphism classes of irreducible representations V1, ..., V, over k.
(2) We have
k[G] ~ El’ldk(vl) D--- @Endk(Vn)
as G-representations. As a consequence,
G| = > (dim V).

Proor. The first statement follows from Corollary 12.17, by noticing that since k is algebraically closed,
we have Enda(V;) ~ k by Schur’s lemma. The isomorphism in (2) is also an isomorphism of k-vector
spaces, which implies |G| = dimi k[G] = > ;(dim V;)2. mi

12.11. Radicals. Let A be a k-algebra with dimy A < o0. We define the radical of A to be
Rad(A):={aeA|a-V =0 for every irreducible A-modules V } .

Proposition 12.19.
(1) We have
Rad(A) = {a € A | anilpotent }.
(2) Rad(A) is a nilpotent two-sided ideal, and every nilpotent two-sided ideal of A is contained in Rad(A).

Here, an element a < A is called nilpotent if there exists a positive integer n such thata” = 0. A
two-sided ideal I c A is called nilpotent if there exists a positive integer n such that a; - - -a, = 0 for all
ai,...a, €l.

Proor. It is clear that Rad(A) is a two-sided ideal. Since A is finite dimensional, as an A-module it
admits a Jordan-Holder filtration. Let V3, ..., V, be the Jordan factors of A. Since a - V; = 0 for every
a € Rad(A) and every V;, it follows thata; - - -a, = Oforallay, ...a, € Rad(A). Hence Rad(A) is nilpotent.

Note that if a € A is a nilpotent (namely, a¥ = 0 for some positive integer N), then a € Rad(A).
Indeed, for every x € A\Rad(A), there exists an irreducible A-module V such that x - V # 0. By Schur’s
lemma, V =5 V is injective, so xV # 0 for every positive integer N. This proves (1). As every element
of a nilpotent two-sided ideal is nilpotent, (1) implies the second statement of (2). m]

Proposition 12.20. A is semisimple if and only if Rad(A) = 0.

Proor. Suppose that A is semisimple. Then A = @), V; where V; are irreducible A-modules. It follows
that Rad(A) - A =0, so Rad(A) = Rad(A) -1 = 0.

Suppose that A is not semisimple. Then by the Krull-Schmidt theorem, some indecomposable
A-submodule B ¢ A is not semisimple. Let V < B be an irreducible B-submodule. Then V ~ B/m for
some maximal left-ideal m of B. Let x € m be a nonzero element. We havex-V =0,so0x-: B — Bis
not an isomorphism. As B is indecomposable, x is nilpotent by Proposition 11.1. Hence x € Rad(A) by
Proposition 12.19, which shows that Rad(A) # 0. O

Exercise 12.21. Show that A/Rad(A) is semisimple.

13. Grothendieck groups and characters

13.1. Grothendieck groups. Let A-Mod; be the category of finite dimensional A-modules. The
Grothendieck group of A-Mody is the Z-module Ko(A-Mody) defined by generators and relations as
follows.
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¢ Generators: finite dimensional A-modules V.
¢ Relations: the submodule generated by [V] — [U] — [W], whenever we have a short exact
sequence of A-modules
0-U—-V->W-0.

We can also define the additive Grothendieck group K34 (A-Mod) of A-Mod;: the definition is the
same as Ko(A-Mod) except for the relations, which is the submodule generated by [V] — [U] — [W]
whenever we have

VU W

Exercise 13.1. Show that Ko(A-Mody) (resp. K3%¢(A-Mody)) is isomorphic to the free abelian group
generated by the isomorphism classes of irreducible (resp. indecomposable) A-modules.

13.2. Characters. Let p : A — Endy (V) be a finite dimensional representation of A. The character of p is
defined as

XviAHk

a > Te(p(a).
Note that yv is k-linear, and since Tr(fg) = Tr(gf) for any f, g € Endy(V), the character yv descends to

(13.1)

a k-linear map
xv:A/[AA] -k,

where [A, A] is the k-linear subspace generated by

[a,b] :=ab—bac A
foralla,be A.
Exercise 13.2. Let G be a group and let A = k[G]. Show that

Homy (A/[A,A], k) ~ {maps C(G) — k },
where C(G) is the set of conjugacy classes of G.
Exercise 13.3. Let V be a finite dimensional A-module and let W < V be a submodule. Show that
Xv = Xw + Xv/w-
We have group homomorphisms

152) K394(A-Mod) — Ko(A-Mod ;) — Homy(A/[A, A, k)
13.2
Vi Xv.
We will prove the following, as a consequence of the Jacobson density theorem.
Corollary 13.4. Assume that k is either algebraically closed or chark = 0. Let Vy,...,V, be irreducible
A-modules which are pairwise non isomorphic. Then

Xy, .-, Xv, € Homy(A/[A, A], k)
are linearly independent.

As a consequence, it follows from Exercise 13.1 that if k is as in Corollary 13.5 and chark = p > 0,
then character map
Ko(A-Mody) ® Z/pZ — Homy (A/[A, A], k)
is injective.
Corollary 13.5. Assume that chark = 0. Up to isomorphisms, a finite dimensional semisimple representation
V of A is uniquely determined by its character xv.
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13.3. The Jacobson density theorem. Let A be any k-algebra and let p : A — Endk (V) be an irreducible
representation of A. Let D := Enda(V). Then foreveryae A, f € D and v € V, we have
flav) = af(v).

It follows that multiplication by a is D-linear, so the image of p : A — Endy (V) lies in Endp (V).
The Jacobson density theorem asserts that when V is finite dimensional the image of p is exactly
Endp(V). Here we prove a slightly more general statement.

Theorem 13.6 (Jacobson density theorem). Let A be any k-algebra and let V1,...,V, be finitely many
finite dimensional irreducible A-modules such that V; # V; whenever i # j. Let D; := Enda(V;) and let
ui : A — Endp(V;) be the map sending a to v; — av;. Then

pe(pa, .-, tn) : A — Endp, (V1) x -+ x Endp, (V,)
is surjective.

Proor. Since each V; satisfies dimy V; < oo and D; is a k-algebra, we have m; := rankp,V; < . As
A-modules, we have
Enle (Vl) NEERE El’lan(Vn) ~ V;ﬂl @---P V;,n",

which is a direct sum decomposition into irreducible A-modules. Thus by Exercise 12.2, we have
A=pA)~Vie @V

as A-modules for some integers £; < m;. It also follows that

n n
Zop ~ (—BEndX(Vf", Vfi) ~ @Matgi(Di)
i=1 i=1

as A-modules. Since

Z dimy Vz[, = dimy A= dimy ZOP = Z dimy Mat,, (Di),

i=1 i=1
we have
n n
Z f,-mi . dimk D,‘ = Z 512 . dimk Di,
i=1 i=1
which shows that ¢; = m; for all i. Hence A = Endp (V). O

Exercise 13.7. Deduce the following consequence of the Jacobson density theorem. Let V be a finite
dimensional semisimple A-module and let R := End4 (V). For every vy, ...,v, and s € Endg(V), there
exists a € A such that

a-v; = s(v;)
for all i.

13.4. Independence of characters.

Proor or CororLaRy 13.5. Suppose that

n
Z Ai Xv; = 0
i=1
for some A; € k. Let D; := Enda(V;) and let
(13.3) pe(p,..., pn) : A— Endp, (V1) x -+ x Endp, (V)

be the surjective map as in Theorem 13.6.
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First we assume that chark = 0. Since (13.3) is surjective, for every i there exists a; € A such that
pi(a;) = Idy, and p;(a;) = O for every j # i. Thus

0= Z/\i . )(y,.(a) = /\i . dimV,-,
i=1

showing that A; = 0.
Now assume that k is algebraically closed. Then D; ~ k for all k, so the surjectivity of (13.3) provides
again a; € A for each i such that Tr(u;(a;)) = 1 and u;(a;) = 0 for all j, showing that A; = 0. O

Remark 13.8. Without assuming that k is algebraically closed or chark = 0, there exist irreducible
representations V with yy = 0. For instance, there exist division algebras D over some field k of
characteristic p > 0 such that dimy D is a power of p? [4, Theorem 4.7.3], and we have xp = 0 for the
regular representation of D (see e.g. [2, Proposition 2.6.3]).

13.5. The character map for semisimple rings.

Theorem 13.9. Assume that k is algebraically closed. Let A be a semisimple k-algebra with dimy A < oo, and
let Vi, ..., V, be the finite dimensional irreducible A-modules (up to isomorphisms). Then xv,, ..., xv, forma
basis of Homy (A/[A, A], k).

In other words, for k and A as in the theorem, the character map
Ko(A-Mody) ® Z/pZ = Homy (A/[A, A], k)
is an isomorphism by Exercise 13.1.

Proor. By Corollary 13.5, it remains to show that xv,, ..., xv, generate Homy(A/[A, A], k). Since k is
algebraically closed, we have Homy (V;, Vi) ~ k be Schur’s lemma. Thus

A ~ Mat, (k) x --- x Maty,, (k)

as k-algebras for some positive integers my, ..., m,. It follows from Exercise 13.10 that A/[A, A] ~ k" as
k-vector spaces. As xv,, ..., Xv, are k-linearly independent, necessarily that generate Homy (A/[A, A], k).
O

Exercise 13.10. Let n be a positive integer.
(1) E;j be the n x n elementary matrix whose (i, j) entry is 1. Compute [E; j, E,| for all indices
i,j, kL.
(2) Show that
[Mat, (k), Mat, (k)] = sl,(k) := ker(Tr : Mat, (k) — k).

13.6. A symmetric bilinear form on the space of characters. Assume that k is algebraically closed
of characteristic zero. Let A be a finite dimensional semisimple k-algebra, and let V,...,V, be the
irreducible A-modules. The character of these representations ); := v, form a basis of the k-vector space
Homy (A/[A, A], k) by Theorem 13.9. Let (e, o) be the symmetric bilinear form on Homy (A/[A, A], k)
having x1, ..., x» as an orthonormal basis. This bilinear form is useful to organize some information
about finite dimensional A-modules, as we now explain.

Every finite dimensional A-module V is uniquely isomorphic to

VeV v,
We call m; the multiplicity of V;in V.
Exercise 13.11. Show that m; = (xi, xv)-

Proposition 13.12. Assume that k is algebraically closed. Let V and W be finite dimensional A-modules. We
have
(xv, xw) = dimy Homy (V, W).
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Proor. Write
V~ V?"”@---@Vn@m" and W ~ V?m @ - DVI
Then .,
. . o
dimy Hom (V, W) = dimy Hom, (V™ V") = Z mim;, = (Xv, Xw),
i=1

where the second equality follows from Schur’s lemma. m]

Introducing the bilinear form (e, ) does not add new pieces of information, unless we can explicitly
compute it. We will provide an explicit formula for representations of finite groups.

13.7. Over nonclosed fields. We continue the setting in § 13.6, but without assuming that k is alge-
braically closed. We can generalize § 13.6 as follows.
The characters yx; := xv, are still k-linearly independent in Homy (A/[A, A], k), and we let

X(A) := él—)k - xi € Homy (A/[A, A], k).

Let (e, o) be the symmetric bilinear form on X(A) defined by
(Xz'/ )(]') B dimk HomA(V,-, V]').

Exercise 13.13. Show that x1,..., X, are orthogonal. Prove Proposition 13.12 without assuming that k
is algebraically closed.

Exercise 13.14. Let V be a finite dimensional A-module. Show that

(xir xv)

(X xi)

Example 13.15. Suppose that k = R and V is a finite dimensional irreducible A-module. Then V is real,

i =

compleX, quaternionic, if and only if
(xv,xv) =124

respectively.



LECTURE 5

Tensor products of group representations

Let k be a field. Let G be a group.

14. Tensor products of group representations

We first recall how tensor product ® is defined for vector spaces. Here are some guiding principles:

e For finite dimensional vector spaces, @ linearizes addition, ® linearizes multiplication (both
through dim). If ey, ..., e, is abasis of Vand ¢}, ..., e, is a basis of W, then {¢; ® e;}lgism,lsjgn
is a basis of V @, W.

e The tensor product V ®x W of two k-vector spaces V and W is the universal target of bilinear
maps from V x W.

Here is the precise statement for the second point.

Theorem-Definition 14.1 (Universal property of tensor products). Let V and W be two k-vector spaces.
There exists a k-vector space V @y W, together with a k-bilinear map

O:VxWo Ve W,

For any k-bilinear map ¢ : V. x W — L to some k-vector space L, there exists a unique k-linear map
U :V @k W — L such that

v
VxW Y L
eI
N
VW

commutes. Moreover, the pair (V @« W, @) is unique up to unique isomorphism. The k-vector space V @i W is
called the tensor product of V and W over k.

14.1. Construction of tensor products. Let V and W be k-vector spaces. The simplest way of construct-
ing the tensor product V @y W is first by choosing a basis {e;};c; of V and a basis {e;} jej of W, then define
V @« W as the k-vector space freely generated by

{e® 3;}ie1,je]-
We have a bilinear map

P:VxW—>VeW
(14.1) (D) Aiei, D) = Y (Aid)ei @,

iel jeJ iel,je]
where {A;}ie is a collection of elements of k which is zero for all but finitely many i; same for {/\;} jeJ-

Exercise 14.2. Prove Theorem 14.1for¢p: V x W — V @, W.

The universal property also implies that up to a unique isomorphism, our previous construction of
¢:V x W — V@ W does not depend on the choices of bases {¢;} and {e;}

14.2. Second construction. Here is another way to construct V ® W, which does not rely on the choice
of bases. Since we want ¢ : V x W — V & W to be k-bilinear, we just define V @i W straightforwardly
by generators and relations as follows:

40
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e Generators: v@w forallve Vandwe W.
o The k-subspace of relations % is generated by

W+ Rw=vuw+vRw, I1RQwW+w)=vRQuW+rvRw,
M) Ruw =1 (Aw) = A(vRw),
forallv, v e V,w,w' €¢ W,and A € k.
Namely,

V@sz_< &> k-(v@w))/%’.

veV,weW
For every v e Vand w € W, we still use v ® w to denote its image in W ® W. Elements in V & W
of the form v ® w are called pure tensors, or simple tensors.

Exercise 14.3. Prove Theorem 14.1 for the second construction of V ® W. What is the unique isomor-
phism between the first construction and the second construction?

Given a finite number of k-vector space V7, ..., V,, we define the tensor product
Vi®k - ®k Vi
in a similar way:. It satisfies a similar universal property, replacing bilinear maps with multilinear maps.

14.3. Interlude: Hilbert’s third problem. Let P; and P, be two polytopes in R”. We say that P and P,
are scissors-congruent if they can be decomposed into finitely many polytopes, and these pieces can be
reassembled in RN into congruent polytopes.

Two scissors-congruent polytopes have same volume.

Exercise 14.4. The converse is true in dimension 2, which has been proven by e.g. Wallace (1807), Bolyai
(1833), Gerwein (1835). Prove this.

Question 14.5 (Kretkowski 1882, Hilbert’s third problem 1900). If polytopes (in dimension 3) have same
volume, are they scissors-congruent?

Let P be a polytope and let e be an edge of P. Let £(e) be the length of the edge and let Oy(e) denote
the angle of the faces of P adjacent to e divided by 27, viewed as an element of R/Z. Let 6(e) be its
image in R/Q
Exercise 14.6. Let P be a polytope.

(1) Show that the Dehn invariant
D(P) := Z t(e)®0(e) e R®g R/Q
e edges of P

is preserved under scissors-congruent.
(2) Compute the Dehn invariant of a regular tetrahedron and that of a cube with same volume,
and show that they are not equal.

Hilbert’s third problem thus has a negative answer. The Dehn invariant was considered by Dehn in
1901 to solve the Hilbert’s third problem. Actually before Dehn, the problem had already been solved
by Birkenmajer in 1882, even before Hilbert asked the question.

14.4. Tensor product of endomorphisms. Let V and W be k-vector spaces. For every ¢ € Endi (V) and
Y € Endy (W), we define their fensor product to be the endomorphism ¢ ® i on V ®x W defined by

(@@Y)(v@w) = d(v) ® P(w)

for pure tensors, then extends linearly to the whole V @i W.

Exercise 14.7. Give an equivalent definition of ¢ ® ¢’ using the universal property of tensor products.
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Exercise 14.8. Suppose that V and W are finite dimensional, and let ey, ..., e, and ei, ...,e, be bases
of V and W respectively. Show that if the matrix representing ¢ is M = (m;j)1<ij<m and the matrix
representing ¢ is M’ = (m;/j/)lgi/,]’/ <n, withe respect to the above bases, then the matrix representing
¢ ® 1 with respect to the basis {¢; ® e;}lgl‘ngg j<n of V ®x W is the Kronecker product of M and M’,

!
namely (11}, , )1<i j<m<i,j <n-

14.5. Tensor products of group representations. For every pair of G-representations py : G — Endy (V)
and pw : G — Endy (W), we define the tensor product of py and pw to be the G-representation pygw on
V ®k W defined by

pvew(g) = pv(9) ® pw(g)-
Exercise 14.9. Let G C S, 5’ be a pair of finite G-sets, and let S x S’ be the product G-set. Show that we
have

K[S x S'] ~ k[S] @« k[5']

as G-representations.

Exercise 14.10. Let U, V,W be G-representations. Show that we have canonical isomorphisms of
G-representations

e k@V >V,

e VRIW S W W,

e (U V)W = Uk (VR W),

s (UaV)&xW = (U W)@ (k@ W),
defined by A\® v — Av, vQ@w — w®u, etc.
14.6. Homy (V, W) as G-representations. Let V and W be a pair of G-representations over k. Then
Homy (V, W) is endowed with a natural linear G-action defined by

g-p=godog™
for every g € G and ¢ € Homy(V,W). In these lectures, when we regard Homy(V, W) as a G-

representation, it is defined as above unless otherwise specified.

Exercise 14.11. Verify that the above construction indeed defines a G-representation on Homy (V, W).
Show that
Homg(V, W) := Homyg)(V, W) = Hom(V, W)“.

When W is the trivial G-representation of k, we call
VY := Homy(V, k)
the dual representation of V.
14.7. ® and Hom form an adjoint pair.

Proposition-Exercise 14.12. Let V be a G-representation over k. As functors from Rep(G, k) to itself, e @ V
is left adjoint to Homy (V, o). Namely, for any G-representations U and W over k, there exist isomorphisms of
k-vector spaces

¢uw : Homy (U ®k V, W) ~ Homy (U, Homg (V, W))
which are functorial in U and W. This means that for every G-equivariant k-linear map f : W — W/, the
diagram

buw
Homy (U ®k V, W) —— Homy (U, Homy (V, W))

fol | j o

Puw’

Homy (U ®k V, W) —— Homy (U, Homy (V, W'))

commutes. Also the similar diagram for every G-equivariant k-linear map h : V. — V' commutes.
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Exercise 14.13. Using the property that ¢y is functorial in U and W, show that ¢yw are actually
isomorphisms of G-representations.

In particular, when W = k, we have
(U®x V)Y ~ Homy (U, V),
and these isomorphisms are functorial in U and V.
Exercise 14.14. Suppose that V and W are finite dimensional G-representations over k. Show that
VY @ W ~ Homy (V, W),
and these isomorphisms are functorial in V and W among finite dimensional G-representations over k.
15. Tensor algebras

Let V be a k-vector space.

15.1. Tensor algebras. For every n € Z-, we define inductively
T'(V):=k, T"(V):=T"YV)@V
and let .
T(V):= n(—?OT”(V).
We define product on T(V), first for pure tensors by
® - ®x) (N® - QY)=1® - VXiQY® - QYj),

then extend by linearity. We can therefore consider T(V') as a graded associative k-algebra, and call it
the tensor algebra associated to V.

15.2. Symmetric and exterior algebras.

Theorem-Definition 15.1 (Universal property of symmetric and exterior powers). Let n be a positive
integer. There exists an k-vector space N together with an k-multilinear symmetric (resp. alternating) map

¢: V" >N
which satisfies the following universal property: for any symmetric (resp. alternating) k-multilinear map

Y : V" — L to some k-vector space L, there exists a unique k-linear map 1 : N — L such that

20

VPt ——1L

NG

N

commutes. Moreover, the pair (N, ¢) is unique up to unique isomorphism. The k-vector space N is called the
symmetric power (resp. the exterior power) of V over k, and is denoted Sym"M (resp. /\" M).

The symmetric algebra associated to an k-vector space V is defined as
rv)
XQY—YyQx | x,ye V>’
where the denominator is the two-sided ideal generated by all the x® y — y ® x.

Sym(V) :=

Exercise 15.2. Show that the grading on T(V) induces a grading @;Sym’ (V) on Sym(V'), and that Sym(V')
is a commutative graded k-algebra. Show that the composition

¢: V"= T'(V) > Sym™(V)

satisfies the universal property in Theorem 15.1.
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The image of a pure tensor x; ® - - - ® x,, in Sym" (V) is denoted by
X1 Xy

When n! is invertible in k, the quotient g : T"(V) — Sym" (V) splits: the map defined by

1
X1 Xp > E Z xo(l)@"'®xa(n)

t e,

extends to a morphism of k-vector space 1 : Sym" (M) — T"(M) such that g o 1 is the identity.

Exercise 15.3. Let V be a vector space over a field k of finite dimension n. Show that Sym(V") is
identified with the ring of polynomials on V. You may show that explicitly, if ey, ..., e, is a basis of V
andey,...,e, its dual basis, then there is an isomorphism

Sym(VY) =kley, ... e, ]
as graded k-algebras.
The exterior algebra associated to an k-vector space V is defined as
TV
/\ V.= W) ,
<x®x | xe V>

where the denominator is the two-sided ideal generated by all the x ® x.

Exercise 15.4. Likewise, show that the grading on T(V) induces a grading ®; A'Von AV, and that
A\ 'V is a graded-commutative graded k-algebra: namely, for everyae /' Vand be A/ V, we have

bra=(-1)7anb,

where A is the product on /\ V. Show that the composition

¢:V”—>T“(V)—>/n\V
satisfies the universal property in Theorem 15.1.
The image of a pure tensor x; ® - - - ® x, in A"(V) is denoted by
X1 A A Xy

When n! is invertible in k, the map defined by
1
X1 A AXy ] Z sgn(0)Xy(1) @ - - @ Xy (n)
' e,
extends to a morphism of k-vector space A"V — T"(V) and defines a splitting of the quotient

g:T"(V) > A" V.

Exercise 15.5. Construct a natural k-linear identification between Sym" (V") (resp. /" V") and the
space of symmetric (resp. alternating) multilinear forms on V.

15.3. Symmetric power and exterior power of G-representations. Let V be a k-vector space and let
n € Z~. For every ¢ € Endy(V), we define the nth symmetric power ¢ to be the endomorphism Sym” ¢
on Sym"V defined by

(Sym" @) (01 -+ va) = $(01) - - P(0n)
for pure tensors, then extends linearly to the whole Sym"V. Likewise, we define the nth exterior power
of ¢ to be the endomorphism A" ¢ on /\" V defined by

(NP @1 A Avy) =dO1) A A P(vn)

for pure tensors, then extends linearly to the whole A" V.
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Now assume that py : G — Endy (V) is a G-representation over k. We define the nth symmetric
power and the nth exterior power of py to be the G-representation on Sym”"V and /\" V defined by

psymev(9) = Sym"py(g) and  ppry(g) = /\ pr(9)

respectively, for every g € G.
Exercise 15.6. Show that ,
VeV ~sym* (V)@ AV

as G-representations.
Exercise 15.7. Let V and W be G-representations over k. Let n € Z-o. Show that

Sym" (Ve W)~ P Sym'V ® Sym'V

i+j=n

and
n

AVeOW) ~ @ AVvexalv
i+j=n
as G-representations.

Exercise 15.8. The aim of this exercise is the prove the following proposition.

Proposition 15.9. Let G be a finite group and let k be an algebraically closed field such that chark 1 |G|. Let
V be a finite dimensional faithful G-representation over k. Every irreducible G-representation W over k is a
G-subrepresentation of Sym™V (in particular, a G-subrepresentation of V") for some integer n.

(1) Show that there exists u € V¥ such that Stab(u) is trivial for the induced G-action G & V'V.
(2) Show that the map
Sym(V) — Map(G, k)

sending a polynomial f on V¥ to the map g — f(g-u) is a surjective maps of G-representations.
(3) Conclude.

Exercise 15.10. Let V, be the standard representation of S,. Show that /\d V, is irreducible for all
d=1,...,n.

15.4. Ring structures on the Grothendieck groups. Let Rep(G, k) = k[G]-Mod be the category of
finite dimensional G-representations.

Exercise 15.11. Let V be a G-representation over k and let
0—->Wi—> W, - W3 -0
be a short exact sequence in Rep(G, k). Show that
0->Wi@V—->Wo@V —> W3V —0
is a short exact sequence in Rep(G, k).
By Exercises 15.11 and 14.10, the product
[V]-[W]:=[VeW]

is well-defined in Ko (Rep(G, k)¢) and Kgdd (Rep(G, k)y) for any finite dimensional G-representations V, W
over k, and we can extend by linearity to a product on Ko(Rep(G, k)¢) and Kgdd(Rep(G, k)r), making
them into rings. We call them the Grothendieck ring of Rep(G, k)¢, and the additive Grothendieck ring
of Rep(G, k).

Exercise 15.12.
(1) Show that Kgdd(Rep(G, k)s) — Ko(Rep(G, k)y) is a ring homomorphism.



16. EXAMPLES OF REPRESENTATIONS OF FINITE GROUPS 46

(2) Show that we have a ring homomorphism
B(G) — K§™(Rep(G, k)y)
sending a G-set S to k[S].
Exercise 15.13. Show that the permutation representations associated to the G-sets
PGL(3,F,) ¢ P(V) and PGL(3,F,) ¢ P(V"Y)
in Exercise 3.4 are isomorphic. Thus in general, B(G) — Kgdd(Rep(G, k)¢) is not injective.
15.5. Characters of tensor products. Let V and W be two finite dimensional G-representations over k.

Exercise 15.14. Prove the following equalities.

(D) xvew = xv - xw-
(2) xvv(g9) = xv(g~!) forallg e G.
3) XHom(V,W) = Xvv ' XW-
Thus the character map
Ko(Rep(G, k)s) — Map(C(G), k)
(15.1) /
[V]—xv.

is a ring homomorphism.

Exercise 15.15. Show that for every g € G, we have

xv(9)? + xv(4?) xv(9)? — xv(4?)
Xsymn(9) = —————— and xp(0)=——F——

Exercise 15.16. Let U, V, W be finite dimensional G-representations. Show that
(Xuev, Xw) = (Xu, XHomy (VW) )-
(Hint: use Exercise 14.13 and Proposition 13.12)
Exercise 15.17. Let V be a complex representation of a finite group G. Show that
Xvy = Xv.
16. Examples of representations of finite groups
Let G be a finite group and let k be a field of characteristic zero.

16.1. Character tables. Recall thatby Maschke’s theorem, k[G] is semisimple. So every G-representation
is a direct sum of irreducible G-representations, and the isomorphism classes of irreducible representa-
tions V; are completely their characters yv,. Therefore the information of representations of G over k is
essentially contained in the character table of G, which consists of

xvi(gj) € k

with V; runs through all irreducible G-representations, and g; runs through all conjugacy classes of G.
If we further assume that k algebraically closed, then these characters xv, form a basis of Map(C(G), k),
so in this case, the character table is a square table.

16.2. A trace formula. We could have proven the following statement together with Maschke’s theorem

Proposition 16.1. Let V be a G-representation over k. Assume that char(k) = 0. We have

1 .
[€ > xv(g) = dim V.
| g9eG
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Proor. Let
5 D evls
el e
We have & Y,ec Xv(g) = TrP. Since P is a projector onto V¢ (namely ImP = V¢ and Pjyc = V), we
have TrP = dim VC. O

16.3. Explicit description of the bilinear form for representations of finite groups. We assume that
k is algebraically closed and char(k) = 0. Since k[G] is semisimple by Maschke’s theorem, up to
isomorphisms there exist only finitely many irreducible G-representations V7, ..., V,. The character of
these representations x; := xv, form a basis of the k-vector space Map(C(G), k) by Theorem 13.9.

Let (o, o) be the symmetric bilinear form on Map(C(G), k) having x1, ..., x» as an orthonormal basis.

Proposition 16.2. For every pair of maps fi, f» : C(G) — k, we have

(fi, f2) = [€ Zfl (9) f2(g

geG
Proor. Since the right hand side of the equality is also bilinear in f; and f,, it suffices to prove for f; = x;
and f, = xj for any i and j. By Proposition 16.1, we have

Z xi(@)xi(g™) Z XV@V = dim Homy(V;, V)€ = &ij = (xi, X))
geG geG
where the second last equality follows from Schur’s lemma. m]

Exercise 16.3. Without assuming that k is algebraically closed, show that for every pair of elements
fi, f2: C(G) — kin X(G)k := X(k[G]), we still have
(fi, f2) = [€ Zfl (9) f2(g
geG
16.4. The standard representations of symmetric groups. Consider the natural action of S, on

S ={1,...,n}, and the induced permutation representation k[S]. Let [1],...,[n] be the basis of k[S]
corresponding to 1, ...,n. Note that [1] + - - - + [n] is S,-invariant, and we have a decomposition

K[S] ~ V, @k

of &,-representations, where V,, is the linear subspace generated by [i] — [j] for all i and j. We call
S, C V, the standard representation of S,,.

Proposition 16.4. Assume that k is algebraically closed and char(k) 1 n!. For every integer n > 2, the standard
representation V,, of S, is irreducible.

Proor. By Exercise 13.11, it suffices to show that (xv,, xv,) = 1. Let &, & S := {1,...,n} be the natural
action.
We first show that (xi[s}, Xk[s]) = 2. By Proposition 16.2, we have

n
(Xugs) xigsy) =, [Fix(o @ S)F = 3 Z BioOjat) = X5 D Biedjais

eSS, o€, i,j=1 i,j=10€C,
where § is the Kronecker delta. We have
(n—1)! ifi=j
(16.1) 1ot D) =
GEZCQH i,0(i) Qo (j) (n—2)! ifi
thus
o()0je(y =n- (M= +n-(n—-1)-(n—2)! =2nl

P

(sl M

Since

(Xv,r Xv,) = (Xxs) Xgs)) — 2(00 xv,) — (X X)) < (Xis) Xis) — (X Xx) = 1,
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we have (xv,, xv,) = 1.
mi

16.5. Example: complex representations of cyclic groups. Assume that k = C. Let G be a cyclic group
of order n. We know by Corollary 10.9 that the irreducible representations of G all have dimension 1.
Also, since G is an abelian group, we have C(G) = G. So there are exactly |G| isomorphism classes of
irreducible G-representations.

Let g € G be a generator. Let C, := e2m/n For every i € Z, consider the irreducible G-representation
pi : G — Endc(C) defined by pi(g)(v) = ), - vforallv e C. Let x; := x,,. We have

xi(g') = Cl.

Exercise 16.5. Show that xo, ..., x,—1 are linearly independent in Map(G, C). Deduce that the irreducible
G-representations are exactly Idy, p1, ..., pn—1 up to isomorphisms.

16.6. Example: real representations of cyclic groups. Let G be a cyclic group of order n. Fix a generator
g € G. The representations p; of G that we consider previously are also representations over R, which
are isomorphic to p? defined by rotations of R? of degree 2 j. The representation p? is irreducible if
and only if rotation by 2% j doesn’t have eigenspace, which is equivalent to 2j # n. When 2j = n, the
representation pf! is decomposed as
R*=R®R_

where R is the trivial representation of G, and R_ is the representation defined by o(g) = —Idr. Let
)(;‘ = Xt We have

)(?(gk) = 2cos(2mjk/n).
Note that x = )(E_j, S0 p? ~ pj;_; by Corollary 13.5.

Exercise 16.6.

R
[n/2]-1
(2) Deduce from Corollary 12.17 the classification of irreducible real representations of G. Which

(1) Show that the characters xidg, Xo. )({*, X are linearly independent.

of them are real, complex, quaternionic?
16.7. Product of groups. Let G and H be finite groups.

Exercise 16.7.
(1) Show that the set of conjugacy classes C(G x H) is in bijection with C(G) x C(H).
(2) Let Vy,..., Vy, (resp. Wy,..., W,) be the isomorphism classes of irreducible representations of
G (resp. H). Show that the the isomorphism classes of irreducible representations of G x H is

V,'@kW]' (izl,...,m, j=1,...,7’l),

where we regard V; as the (G x H)-representation defined by the composition G x H - G —
Endy(V;), and same for W;.
(3) What is the character table over C of a finite abelian group?

16.8. Example: S;. We work with k = C. Recall that each element of &, can be decomposed into a
composition of cyclic permutations with disjoint cycles, and the conjugacy classes of &, is in bijection
with the partitions of n, which correspond to the lengths of the cyclic permutations in the decomposition.
Thus &3 has three conjugacy classes, represented by the neutral element ¢, the transposition (12), and
the 3-cycle (1,2,3). So up to isomorphisms there are exactly three irreducible representations p1, p2, P3
of G3. One of them py is the trivial representation G C k. What are the others?

Let V; be the underlying k-vector space of p;. First we notice that by Corollary 12.18, we have

6 = |G| =1 + (dim V,)? + (dim V3)2.

So necessarily dim V, = 1 and dim V3 = 2 (up to permutations).
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For p,, we can consider the signature 0 : @3 — {+1}. The group {+1} acts on k by +Id. Composing
it with o gives a representation p; of &3 on k, which is non-trivial (e.g. because x, # xp,). As
k is one-dimensional, p; is irreducible. The remaining irreducible representation p; is the standard
representation of Gs.

pr| 11 1
pp| 1 -1 1
ps| 2 0 -1

TaBLE 1. Character table of S3

16.9. Example: S5. We work with k = C. The conjugacy classes of &, are represented by
e, (12),(123),(12)(34), (1234).

As in the case of G;, the trivial representation p;, the signature representation p,, and the standard
representation p; are irreducible representations of 4 on k.

Exercise 16.8. Show that p; is also the representation of C® defined by the rotations of a cube.

Considering the S4-action on the pairs of skew-edges in a tetrahedron, we have a surjective
homomorphism &4 — S3. Thus the 2-dimensional irreducible representation V of &3 induces an
irreducible representation p4 of &,.

Exercise 16.9. Let p : G — Endy(V) be an irreducible representation of G and let y be a one-dimensional
representation of G. Show that p ® y is irreducible.

The remaining irreducible G4-representation is ps = p3 ® pa.
Exercise 16.10. What is the character table of G4 over C?

16.10. Example: 4. Let P(0) be the partition of n which corresponds to an element of ¢ € &,,. Recall
that g, 0’ € U, are conjugate then P(0) # P(c’). Conversely, there exist exactly two (resp. one) conjugacy
classes with the same partition P if P consists of distinct odd numbers (resp. otherwise). If P(c) = P(¢’)
consists of distinct odd numbers, then o and ¢’ are conjugate if and only if they are conjugate by an even
permutation in S,,. The conjugacy classes of U4 are thus represented by

e, (123), (132), (12)(34).

Note that the set of irreducible representations of a group G contains those of G/H for every normal
subgroup H < G. To find the irreducible representations of 24, we can first consider the quotient
Ay — Z/3Z, defined by the action of Ay on the pairs of skew-edges in a tetrahedron (which consists of
even permutations). The cyclic group Z/3Z has three irreducible complex representations, which lifts to
irreducible complex representations p1, p2, p3 of Uy. By the orthogonality of the character, the character
table of AUy is

e (123) (132) (12)(34)
o1 1 1 1
p2 |1 G G 1
p3 |1 G Gs 1
ml3 0 o 1

where (3 = ¢¥™/3. Computing the character of the restriction of the standard representation S, < C° to
Ay, we see that it coincides with the character of p,. Hence py is the standard representation of .
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16.11. Example: As. The conjugacy classes of As are represented by
e,(123),(12)(34), (12345), (12354).

Exercise 16.11. Show that the five classes of irreducible representation of s over C are:

(1) The trivial representation p;.

2) The standard representation of S5 restricted to Us

3) The representation p3 of C® defined by the rotations of a regular dodecahedron.
4) The composition p3 o @ where o € Aut(Us) is the conjugation of s in S5 by (45).

Py

5) The representation of Us on

2. fl)=0 }

seS

{f:S—>C

induced by the permutation of 2s on the set S of pairs of opposite faces of a regular dodecahe-

dron.

Describe the character table of 2Us over C.
Exercise 16.12. Classify the irreducible representation of &5 over C, and describe the character table.
16.12. Example: complex representations of Qg. Let
Qs :={£1,+i,+j, +k}
be the multiplicative subgroup of the quaternion algebra H over R. The conjugacy classes are
1,—1, +i, +, +k,
so Qg has five isomorphism classes of complex irreducible representations, which have dimension

1,1,1,1,2 by Corollary 12.18.
To find the irreducible representations of Qg, we can first consider the quotient

Qs/Z(Qg) ~Z/2Z x Z/2Z

by the center Z(Qs) = {+1}, There are four irreducible representations of Z/2Z x Z/2Z, which give
the one-dimensional representations of Qg. Explicitly, these are the trivial representation p;, the
representation p, defined by p, (i) = Idc, p2(j) = p2(k) = —Idc, and the other two p3, p4 defined similarly
under permutations of i, j, k. By the orthogonality of the characters of irreducible representations and
Proposition 16.2, we can deduce the character of the remaining irreducible representation ps of dimension
2, and the character table of Qg is

1 -1 +i £ =k
o1 1 1 1
p2 |1 1 -1 -1
a1 1 -1 1 -1
pa |1 -1 -1 1
ps12 =2 0 0 0

Consider the regular representation of H on H. Regarding H as a C-vector space defined by
left-multiplication, then 1, j € H form a basis of H. Let Qg act on H by right-multiplication, which is
a 2-dimensional representation ps over C. In terms of matrices with respect to the basis 1, j, we have
ps(—1) = —Id and

(V-1 0 (0 1 oo 0 V-1
P5(1)* 0 —\/jll p5(])* 1 0/’ P5()* \/jl 0 .

Hence ps is the remaining irreducible representation of Qs.
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Remark 16.13. The matrices

ps(i)/ V=1, ps(j)/ V=1, ps(k)/v/~1
are call Pauli matrices in quantum mechanics.

16.13. Multiplication table of tensor product. For simplicity, assume that k = C. Recall that if V and
W are finite dimensional G-representations, then yygw = xvxw. The character yygw determines the
G-representation V ® W, and we can compute xyxw using the character table. For instance, if G = Gs,
then we obtain the following Multiplication table of tensor products of irreducible &;3-representations.

pP1 P2 pP3
P1|pP1 P2 P3
p2 p1 pPs3
P3 P1D p2 D ps3

Exercise 16.14. Compute the multiplication table of tensor products of complex irreducible representa-
tions of S.

16.14. McKay quiver. The McKay quiver of a complex representation V of of G is a weighted quiver Q
described as follows.
o The vertices i of Q are the irreducible representations V; of G, and each vertex i is assigned
with the number (weight) dimc¢ V.
e The number of arrows n;; from i to j is equal to the multiplicity of V;in V ®x V..

Exercise 16.15. Prove the following statements
(1) If G ¢ V is faithful, then the McKay graph of V is connected. (Hint: use Proposition 15.9.)
(2) If V ~ V¥ as G-representations, then n;; = nj;.

16.15. Finite subgroups of SU(2) and affine Dynkin diagram. On the quaternion algebra H over R,
we have a norm defined by

N(a+bi+cj+dk) = \/a>+b>+ 2+ d?,

witha, b, c,d € R. Alternatively, if z = a + bi + cj + dk and z := a — bi — cj — dk denotes its conjugate, then
N(z) = zz. For every z1,z, € H, since z1z; = Z; - 21, we have N(z12z2) = N(z1)N(z2). Thus the elements of
norm 1 of H form a group, denoted by S°.

Exercise 16.16. Show that S° is isomorphic to the group of special unitary matrices

_)(x B
{5

Exercise 16.17. Let p be the real representation of S*> on H defined by conjugation

a,peC, |a|2+|,8|2—1}.

plg) 2> gzg7".
(1) Show that it preserves the norm N, and it restricts to a subrepresentation on the R-linear
subspace W — H spanned by i, j, k.
(2) Deduce that there is a surjective group homomorphism $* — SO(3, R), whose kernel is {+1}.
(3) Classifies finite subgroups which are isomorphic to some subgroup of $* ~ SU(2).

Now let G < SU(2) be a nontrivial finite subgroup and let p : G — Endc (V) be the restriction of
the standard representation of SU(2) on C2. Since SU(2) C V is faithful and self-dual, so is G C V.
Thus the McKay quiver of G C V is connected and satisfies n;; = nj;. Let M(p) be the undirected graph,
having the same vertices as the McKay quiver with ;; edges between i and .
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Exercise 16.18. The aim of this exercise is to classify M(p).

(1) Show that 2 — x,, is the character of a complex representation of G. Deduce that the quadratic
form

f=(2=x0)f. f)

on Map(C(G), R) is positive semidefinite, and not definite.
(2) Let A(p) be the adjacent matrix of M(p) and let

Clp) =2-1d — A(p).

Show that C(p) is positive semidefinite and not definite if and only if M(p) is one of the
following.

They are the affine Dynkin diagrams of type An, D,, E¢, E7, Es
(3) Describe the McKay quiver of G (including the weights).



Intermezzo

17. Frobenius divisibility
17.1. The statement.

Theorem 17.1. Let G be a finite group and let p : G — Endc (V) be a finite dimensional irreducible complex
representation of G. Then dim V divides |G|.

17.2. The proof. For every g € G, let
C9):={rgy~" |yeG}.

Define

®y:= . p(h) e Endc(V).
heC(g)

Note that @, : V — V is G-equivariant, so by Schur lemma, we have

D, = A,ldy
with ()
)
Ay = =Lxug)
whered = dim V.
We have G N
a Z = Z Agxv(9)-

secie V) it
Since Z is integrally closed and algebraic integers form a subring of C, it suffices to show prove the
following two lemmas.

Lemma 17.2. xv(g) are algebraic integers.

Proor. Since p(g) has finite order, the eigenvalues of p(g) are roots of unity. Thus xv(g) = Trp(g) is an
algebraic integer. O

Lemma 17.3. A, are algebraic integers.

Proor. Let Cy:= >ecy) I € Z[G] and let Z[Cy] be the (commutative) Z-subalgebra generated by C,.
We have a surjective ring homomorphism Z[C,] - Z[®,] < Endc(V) and Z[®,] ~ Z[A,] = Cas

rings. Since Z[G] is a finitely generated Z-module, so are Z[C,]| and Z[A,]. Hence A, is integral over Z

(by Cayley-Hamilton, see Modern Algebra II). O

17.3. An improvement.

Corollary 17.4. Let G be a finite group and let p : G — Endc (V) be a finite dimensional irreducible complex
representation of G. Then dim V divides |G/Z|, where Z is the center of G.

Exercise 17.5. We shall prove Corollary 17.4.

(1) G1 and G, be two finite groups. Let V1 be a complex G;-representation and let V; be a complex
Gp-representation. Let V1 [X] V; be the (G1 x Gy)-representation on V; ®j V, defined by

(91, 92) - (11 ®v2) = (9171) ® §202.
Show that if V7 and V are irreducible representations, then so is Vi [x] V5.
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(2) Letm € Z~¢. Let e € G be the neutral element. Show that
K={(z1,...,zn)€Z" |z1- -z =¢}

lies in the kernel of the G"-representation V&,
(3) Conclude.
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LECTURE 6

Induction and restriction

18. Induced modules and restricted modules

18.1. First example: extension of scalars. Let k be a field and let V be a vector space of dimension d
over a field k. If we choose a basis ¢y, ..., e; of V, then every element of V is a linear combination of the
e;’s with coefficients in k, which gives a k-linear isomorphism

V ~ @?:11( - e;.
Now let L/k be a field extension. The tensor product
Vii=V@&cL
that we will define as an L-vector space can be understood as the extension of scalars. With the above
chosen basis ey, .. ., ¢4, there exists a canonical isomorphism
Vi~a@! |L-e,

through which V7 can be described as an L-vector space having the same basis elements as V, but
replacing the coefficient field with L. If we have a k-linear map ¢ : U — V between k-vector spaces, it
also extends to an L-linear map

(PL : LIL - VL

defined by the same matrix.

18.2. Universal property of induced modules. We also notice that if V is a k-vector space and W is an
L-vector space, then any k-linear map ¢ : V. — W has a unique L-linear extension ¢ : V;, — W. This
motivates the following general definition.

Theorem-Definition 18.1 (Universal property of induced modules). Let v : A — B be a morphism of
k-algebras. Let V be an A-module. There exists a B-module B ®, V, together with an A-linear map

¢:V—>B@sY,

satisfying the following universal property: for any A-linear map \ : V. — W to some B-module W, there exists
a unique B-linear map { : B®a V — W such that

vy

V—89bsW
EIR7]
N
B®aV

commutes. Moreover, the pair (B ®4 V, @) is unique up to unique isomorphism. We call B®, V the induced
B-module. It is also denoted by Ind5 V.
18.3. Construction. The construction of B ®4 V is similar to the construction of tensor products we’ve
seen previously. We define the B-module B ®4 V by generators and relations as follows:

e Generators: b®vforallbe Bandve V.

e The R-submodule of relations % is generated by

b+V)®v=bRv+b ®v, bR@W+V)=bRv+bR7,
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(ba) ®v =b® (av) =b(a®v), and b(b'®v) = (bV') ®v
forallb, b’ € B,v,v' € V, and a € A. Here, the image of a in B is still denoted by a by abuse of
notation.

In other words,,

B®aV = ( P B-(b@v)) /.

beB,veV

Exercise 18.2. Prove Theorem 18.1.

Exercise 18.3. Let A — B — C be morphisms of k-algebras. Show that we have the following canonical
isomorphisms.

¢ BR4s(UDV) = (BRsU)D(B®aV);
e ARp (B@CV);A(@CV.

18.4. Restricted modules. Let A be a k-algebra and let ¢p : A — B be an A-algebra. Any B-module V
has an induced A-module structure, defined by

a-v:=qo@)- v

for everya € Aand v € V. As a morphism of B-modules is naturally a morphism of A-modules, we thus
have a functor
Res, : Modg — Mody

from the category of B-modules to the category of A-modules, called the restriction functor. For every
B-module V, the A-module Res,V is called the restricted module.

18.5. Frobenius reciprocity. Restricted modules and induced modules are related as follows.
Exercise 18.4. Show that Ind and Res, form an adjoint pair: there exist natural k-linear isomorphisms
Homg(Ind5 V, W) ~ Homu (V, Ress W)

for any A-module V and B-module W. (Hint: use the universal property.)

19. Example: extension and restriction of scalars
Let k be a field and let L/k be a field extension. Let G be a finite group.

19.1. Endomorphisms under extension of scalars. Let V be a finite dimensional k-vector space and let
feEndg(V). Let VL := L®g V and
fL = Idy @f € EndL(VL).

Then
Te(f) = Te(fr)-

In particular, if G & V is a finite dimensional representation over k, then for the induced a G-
representation on V;, over L (namely V;, = Indi[[g% V), we have
XV = Xvp-

Exercise 19.1. Let p : G — Endy be a finite dimensional G-representation over L. Show that W ~ L& V
for some G-representation V over k if and only if there exists a basis % on W such that for every g € G,
with respect to % the map p(g) is a matrix with coefficients in k.

19.2. Trace map.

Exercise 19.2. Let L/k be a finite Galois extension. Let « € L. Let P, € k[X] be the minimal polynomial
of @ and let ¢, € k[X] be the characteristic polynomial of the k-linear map

po:L—L

X — ax.



19. EXAMPLE: EXTENSION AND RESTRICTION OF SCALARS 57

Show that
C, = PgL:k(a)].
Deduce that

Trp (@) := Tru, = Z o(a).
oeGal(L/K)

We call Try i : L — k the trace map.
Example 19.3. For every z € C, Trc/r(z) = z + Z.

19.3. Endomorphisms under restriction of scalars. Now let V be a finite dimensional L-vector space
and let f € End; (V). Let V| be the underlying k-vector space of V and let f|x € Endk(V|x) be the
endomorphism f, viewed as a k-linear map.

Suppose that L/k is a finite Galois extension. It follows from Exercise 19.2 that

Tr(fh) = Trop(Te(f))-

We have the following more precise statement.

Exercise 19.4. Let W be a finite dimensional k-vector space such that V ~ L ® W as L-vector spaces.
Then the Galois action on L induces a Gal(L/k)-action on V. For every o € Gal(L/k), let V,; be the
L[f]-module whose underlying L-vector space is V, such that f acts on V by

v— (cofo o 1) (v)

Show that

L&V~ (‘D Vs
oeGal(L/k)

as L[f]-modules, where f acts on L ® V by Id; ® f.

Remark 19.5. In Exercise 19.4, the k-vector space W together with the isomorphism V ~ L ® W is
called a k-structure of V. The Gal(L/k)-action on V, depend on the choice of k-structure. If W' is
another k-structure of V, then the Gal(L/k)-action on V induced by W’ is conjugate to the previous
Gal(L/k)-action by some L-linear automorphism of V.

In particular, if p : G — End; (V) is a finite dimensional representation over L, then for the restricted
a G-representation on V| over k (namely V| = Resk[G] V), we have
Xvie = Tr o xv.
Exercise 19.6. Assume that chark = 0. Show that

Oviexvi) = [L:K Y (ovoxv,),
oeGal(L/k)

where V, is the L-linear G-representation on V defined by

g—oop(g)oo.
Show that xyy, = 0o xv.
19.4. Restriction of scalars: case C/R. Let’s look at the case C/R.

Let V be anirreducible complex representation of G and let V| be the underlying real representation.
Recall that

Xv = Xvv.

By Exercise 19.6, we then have

2if V2 Vv

(19.1) Xvie Xvie) = 2(xv, xv) +2(xv, xvv) =
(Xvirs Xvir) = 2( ) +2( ) LiEV ~ 7Y
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Exercise 19.7. Show that
CRV=VOVY

as complex G-representations.

Lemma-Definition 19.8 (Trichotomy of complex representations). Let V be an irreducible complex repre-
sentation of G. Exactly one of the following happens.

o (real type) V|R is not irreducible. In this case,
V|R >~ W @ W

for some irreducible real representation W of G of real type.
o (complex type) V| is irreducible of complex type.
o (quaternionic type) if V|r is irreducible of quaternionic type.
We have (xvig, Xvig) = 2 (resp. (Xvig, Xvig) = 4) if and only if G C 'V is of complex type (resp. real or
quaternionic type).

Proor. Suppose that Vg is irreducible. Then Vg is not of real type because (xvi,, xv|x) # 1.

Assume that V|g is notirreducible. Let W < Vg be an irreducible R[G]-submodule of multiplicity m.
Since V is an irreducible C[G]-module, we have - W # W. As1-W is also an irreducible R[G]-submodule
of V|g and W ~ 1- W as R[G]-modules, we have m > 2. Thus

4= (Wi Xvie) = 1 (Xw, xw) = 4,
which implies that m = 2 and (xw, xw) = 1. m]

19.5. Extension of scalars: case C/R.

Corollary 19.9. Let V be an irreducible real representation of G.

(1) V is of real type if and only if C ®g V is an irreducible complex representation of G of real type.

(2) V is of complex type if and only if V.~ W|g for some irreducible complex representation W of G of
complex type; in this case CQr V ~ W@ WY with W %= WV.

(3) V is of quaternionic type if and only if V.~ W|g for some irreducible complex representation W of G of
quaternionic type; in this case CQr V ~ W@ Wand W ~ WV.

Proor. Let V¢ := C®g V, regarded as a complex representation of G. We have xv = xv.

If V is of real type, then (xv., Xve) = (Xv, xv) = 1, so the complex representation V¢ is irreducible,
which is necessarily of real type.

If V is of complex type, then (xv., xve) = (Xv,xv) = 2. So V¢ = W@ W’ for some irreducible
complex G-representations W and W’ with W % W’. Since

WrR@WIR=(Vo)r=VoV
as real G-representations and V is irreducible, necessarily W|g ~ V. Finally, since
WOW =Vec~CRrW=WaWY,

we have WY ~ W’ 2 W. Hence W is of complex type.
If V is of quaternionic type, then (xv., xve) = (xv,xv) = 4. So either V¢ = W@ W or V¢ ~
W1 @ W, @ W3 @ Wy for some irreducible complex G-representations W, W1, Wy, W3, Wy. Since

(Vo =VoV

as G-representations and V is irreducible, necessarily we are in the former case, so W|g ~ V. Finally,
since
WeW=Vc=Cr W=xWa WY,
we have WY ~ W. Hence W is of quaternionic type.
The "if" part of the statements follow from the uniqueness of the Krull-Schmidt decomposition. O
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19.6. Counting irreducible real representations.

Proposition 19.10. The following numbers are equal:

(1) The number of isomorphism classes of irreducible real representations of G.

(2) r+ 5 + q, where r,c,q are the number of isomorphism classes of irreducible complex representations of
G of real, complex, quaternionic type respectively.

(3) The dimension of the invariant subspace Map(C(G), C)? under the involution

6 : Map(C(G),C) — Map(C(G),C)
frlg—fg).
(4) mHHCG

> ) where n be the number of conjugacy classes which is invariant under g — g=".

(19.2)

Proor. The equality (1) = (2) follows from Corollary 19.9. Then the number of isomorphism classes of
irreducible real representations of Gis r + 5 +¢.

Since the characters xi,..., xx of the irreducible complex representations of G form a basis of
Map(C(G), C), and since O(xv) = xv+ for any irreducible complex representation V, we have (3) = (4).
Finally, since xyyv = 6(xv) = xv if and only if V is not of complex type, we have (2) = (3). m]

19.7. Invariant forms.

Lemma 19.11. Let V be a real (resp. complex) finite dimensional G-representation. Then V admits a G-invariant
positive definite scalar product (resp. positive definite Hermitian product).

Proor. For real representation, start with any positive definite scalar product (e, e). Then
(x,y) = > (9%, 9Y)
geG

is a G-invariant positive definite scalar product. For complex representation the proof is similar. m]

Corollary 19.12. Let V be an irreducible complex representation of G.

(1) V is of real type if and only if V has a G-invariant nondegenerate symmetric bilinear form.
(2) Vis of complex type if and only if V % V'V as G-representations.
(3) V is of quaternionic type if and only if V has a G-invariant nondegenerate alternating bilinear form.

In (1) and (3), the bilinear form is unique up to scalar.

Proor. By Lemma 19.9, V is of complex type if and only if (xv|, Xv|z) = 2. which is equivalent to
(xv, xvv) = 0Dby (19.1), this proves (2).
Suppose that V is not of complex type. Then

(L xvev) = (xv.xvv) =1

by (19.1) and Lemma 19.9. Since VQ V = S2V @ /\2 V, exactly one of S2V and /\2 V has a nonzero
G-invariant element. Thus it remains to construct the bilinear forms in (1) and (3) for V of real type and
of quaternionic type respectively.

Suppose that V is of real type. Then V ~ C®g W for some real G-representation W. By Lemma 19.11,
W has a G-invariant positive definite scalar product B. The complexification of B is a G-invariant
nondegenerate symmetric bilinear form on V.

Suppose that V is of quaternionic type. By Lemma 19.11, V has a G-invariant positive definite
Hermitian product H. Let j € H ~ End(V|g) and define

a(x,y) = H(x, jy)

for every x, y € V. For any complex number c, we have jc = ¢j, so a is a complex bilinear form. As H
is positive definite, a is nondegenerate. Finally, by the uniqueness of G-invariant bilinear form up to
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scalar, there exists ¢ € C such that a(y,x) = ea(x, y) for all x, y € V. Choose a nonzero element x € V.
Since
a(x, jx) = —H(x,x) <0 and a(jx,x) = H(jx, jx) >0,
2

we have ¢ < 0. As a(x, jx) = €2a(x, jx), we have €2 = 1. Thus ¢ = —1, showing that « is alternating. O

Exercise 19.13. Determine the type of each irreducible complex representations of S;. Same for D, and

Qs.

19.8. Frobenius-Schur indicator and 2-torsions of G. For every irreducible complex G-representation
V, define the Frobenius-Schur indicator of V to be

1 if V is of real type
(19.3) FS(V) := dim(5?V)¢ — dim(A2V)¢ = {0 if V is of complex type
-1 if V is of quaternionic type

Let
G[2]:={geG|F =¢},
where ¢ € G is the neutral element.

Proposition 19.14. Let ¥ be the set of isomorphism classes of irreducible complex G-representations. We have

#G[2] = ) FS(V) - dim V.

Vel

Proor. For every g € G we have

G ifg=e
(19.4) Tg kg =4

0 otherwise .
Since

C[G] ~ @ VdimV,
Vel
we have . .
#G[2] = [€ > xdey(97) = [€ D dimV Y xv (4.
geG \%4 geG

As xv(g?) = xsv(g) — xa2v(g) by Exercise 15.15, it follows from the trace formula that #G[2] =
S ver FS(V) - dim V. O

20. Examples: induced representations

Let k be a field. For simplicity, we assume chark = 0. Let G be a finite group and let H < G be a
subgroup. For every H-representation V over k, set

Ind§;V := Indy 1V = K[G] @kpry V.
We call Ind$;V the induced G-representation of V.
20.1. An explicit description of Ind; V.
Proposition-Exercise 20.1. Let S G be a subset of representatives of G/H. For every s € S, let
Vsi=s®V c K[G] @y V.

Then
(—B Vs = k[G] ®k[H] \%

seS
as k-vector spaces.
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Through the decomposition in Proposition 20.1, the G-action on k[G] ®m V is described as follows.
For every s € Sand g € G, let s’ € S be the unique element such that
gs € s'H.
Then s’*lgs € H, so for every s ® v € V,, we have
7-(5®0) =5 ® (s 'gs-0v) e Vy.
Note that if sH = s'H, then V; = Vi as k-vector subspaces of k[G] ®i(r) V. Thus if s is referred to

an element of G/H, we may write V; := V; where § € G is any lifting of s.

Exercise 20.2. Letkbe the trivial H-representation. Show that Ind&k is the permutation G-representation
of G/H by left-multiplication.

20.2. When is a representation induced from a subgroup representation? Let V be a finite dimensional
G-representation. By construction of induced representations, one necessary condition for V to be
isomorphic to some Ind5;W is the existence of

(1) a decomposition

V=V
iel
as k-vector spaces
(2) atransitive G-action G C I such that

g-Vi=Vg.i
forallge Gandie Il

Exercise 20.3. Suppose that conversely, V is a G-representation satisfying (1) and (2) above. Leti € I
and let H = Stab(ip) for G C I. Show that

V >~ Ind5V;,.
20.3. An application of induced representations. The following statement improves Corollary 17.4.

Corollary 20.4. Let G be a finite group and let A < G be a normal abelian subgroup. Every finite dimensional
irreducible complex G-representation p : G — Endc(V) satisfies

dimV | (G:A).

Proor. Let
V|a :=ResyV = W™
i€l
be the Krull-Schmidt decomposition of V|4: each W; is an irreducible A-representation and W; % W;
whenever i # j. Write V; = Wl@m". Since A is normal in G, there exists a group action G C I such that

g-Vi="Vgyi
forallge Gandie I. As V is an irreducible G-representation, G C I is transitive.
Letip € I and let H := Stab(ip) < G. By Exercise 20.3, we have V ~ IndgV,-o, SO
dimV = (G: H)dim V.

Note that A is also a normal subgroup of H, so (dim V;))|(H : A) implies (dim V)|(G : A). Thus by
induction on (G : H), it suffices to prove the statement for the case G = H.

Suppose that G = H. Then V|4 ~ W™ for some irreducible A-representation W. As A is abelian, this
implies that for alla € A, p(a) = Ald for some A € C. Thus p(A) is in the center of p(G). It follows that

dim V' [ (p(G) : p(A)) | (G : A).
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20.4. Frobenius formula for the character of an induced representation. We compute the character
Ind%xy of Ind$;V. By the description of the G-action on @
tion 20.1, V; is G-stable if and only if 51 gs € H. Thus

(20.1) Indg)(v(g) = Z xv(s~'gs)
seS,s~lgseH

Vs through the isomorphism Proposi-

seS

Exercise 20.5. Show that

1 _
Indgixv(g) = T o ol ™.
y€G,ygy~'eH

For instance, if H is a normal subgroup of G and g ¢ H, then Ind$xv(g) = 0.
20.5. Frobenius reciprocity for characters. Define
Ind$ : X(H)x — X(G)x

by (20.1) and
ResH : X(G)k - X(H)k
by restriction.

Exercise 20.6. Show that
(Indfjp, ) = (¢, Resu)
for every ¢ € X(H)x and ¢ € X(G)k.

20.6. Example: Indgi. We identify S; with the permutation group of { 1,2,3 }, and S, < &3 with the
stabilizer of 3. Let C_ be the trivial representation of S, = {Id, 0}, and let C_ be the "sign representation"
of &, on C Whatis IndgiC,?

Let p1, p2, p3 be the three irreducible complex representations of S3 we’ve studied previously. We
have Resg,p1 = C, Resg,p» = C_, and Resg,p3 = CH C_

Using the character table of &3 together with Frobenius reciprocity, we have Indgi Xc_ = X2 D xs,
thus

IndézC, ~ pr @ p3.

Exercise 20.7. Letk = C. Weregard 3 < S, as the stabilizer of 4 for the natural S;-actionon {1,2,3,4 }.
For every irreducible complex G3-representation V, decompose Ind:i.;l V into a direct sum of irreducible
©4-representations.

20.7. Mackey’s decomposition. When is Indf;V irreducible? To answer this question, we need to
compute (Ind$xy, nd%yy) = 1, and by Frobenius reciprocity, it would be helpful if we know what
ResyInd%V is.

The following statement provides a decomposition of ResyInd$;V, in a more general setting.
Theorem 20.8 (Mackey’s decomposition). Let K,H < G be subgroups of G. Let p : H — Endy (V) be a
representation of H over k. For each i € K\G/H, choose a representative s; € G. We have an isomorphism of
K-representations

ResyIndfV ~ P Indﬁ_HS,l)mKVs"
ieK\G/H v

where V¥ is the representation ps, : S,-Hs].’1 — Endy (V) defined by
ps(9) = p(s; ' gsi)-
Proor. Let S c G be a subset of representatives of G/H. Recall from Exercise 1.9 that
K\G/H = Orb (K & (G/H))

sending KgH to K - (gH) is a bijection. Decomposing G/H into K-orbits G/H = | |icx\g/y Si such that the
image of s; lies in S;, we have

D DV: =K[G] @ V

ieK\G/H s€eS;
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as k-vector spaces. Note that for each i € K\G/H, W; := D5, Vs is K-stable, so we can regard W; as a
K-representation.
The stabilizer of s; for K & S; is (siHsl._l) n K, which induces a bijection

kL
(siHs ') n K

i

If k, k' € K has the same image in K/ (s,'Hsf1 N K), then Vi;, = Vi, as k-linear subspaces of W;. It follows
that
Wi = @ Vksi ~ Ind

keK/(siHs; ' AK)

V.,

K
(siHs; ') nK

as K-representations. Finally, since V* — V,, sending s; ® v to v is a K-equivariant isomorphism, we
have

W; ~ Ind? Vs

s,-Hsl.’l)mK
as K-representations, which finishes the proof. O

20.8. Mackey’s irreducibility criterion. As a consequence,
(Indf})(v, Indf,)(v) = (xv, ResHIndPG,XV) = Igcl/H <Xv, IndziHsil)ﬁH)(?})
1€

where 7, is the character of V*| (s:Hs— 1)~ Since

<IndziHsil)nHXSi’Xv> = ()(Si,Res(SiHsi—l)mHXv),

we have

(Ind]C—;IXV/ IndIC—;IXV) = (XV/ XV) + Z (XSi/ Res(siHs.fl)mHXV)/
ieH\G/H—{e} ’

where e is the class of the neutral element of G.

Corollary 20.9. The induced representation Ind%;V is irreducible if and only if the following properties hold:

o Visirreducible.
e Forall g ¢ H, V7 and V viewed as representations of (gHg~') n H don’t have common irreducible
factors.

20.9. An application: irreducible representations of some semidirect products. Let G be a finite group
and let A < G be a normal abelian subgroup. Assume that

G=AxH
for some subgroup H. Recall that if (a,h), (a’,h') € A x H, then
(a,h) - (a', 1) = (a(ha'h™Y), hi)).

We want to describe the complex irreducible representations of G.

Here is a construction of irreducible representations of G. Since A is abelian, any complex A-
representation x is one-dimensional, and is identified with its character y : A — C*. Consider the
G-action on the character space G C X(A)c defined by

(9-0)(a) = x(gag™)
forallge G, x € X(A)c,a € A.
Exercise 20.10. For every x € X(A)c, show that
Gy:=Stab(x) =AxH, <G

for some subgroup H, < H.
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Let W be a finite dimensional irreducible complex representation of H,, which we regard as a
representation of G, through G, —» H,. The character y is identified with an A-representation on C;
regarded x as a G,-representation, let W:=x@W Finally, let

Viw = Indg W.
Exercise 20.11.
(1) Show that the G-representation V, 1 is irreducible. (Hint: use the Mackey irreducibility
criterion.)
(2) Show that V, w ~ V,» w if and only if x is in the same orbit as Y’ (so H, is conjugates to H,/,
which yields an isomorphism G, ~ G,/), and that W ~ W’ as G, representations.

(3) Show that every finite dimensional irreducible complex G-representation is isomorphic to
some V .



LECTURE 7

Representations of symmetric groups

21. Irreducible complex representations of symmetric groups
Let n be a positive integer. What are the irreducible complex representations of &,,?

21.1. Young diagrams. The number of isomorphism classes of irreducible complex representations of
S, is equal to the number of conjugacy classes of &,, which are in bijection with the partitions of .
A partition of 1 is a sequence of positive integers

A=Az =),

such that Z;{:l Ai = n. We represent A by a Young diagram, namely k rows of boxes of lengths A4, ..., A
from top to bottom, with each row starting at the same horizontal position. We call k the length of A.

21.2. Young symmetrizers. Let A be a partition. A Young tableau T(A) associated to A is a filling of every
integer from 1 to 7 into the Young diagram A, one in each box. Let S;  [1,n] n Z (resp. S! < [1,n] n Z)
be the set of integers in the ith row (resp. column) of T,. We have

Stu-uS=Su---uS=[1LnnZ
where £ is the number of columns of A. Let
PT(A) = B1](Sl) X oo X B1](Sk) [ 6,1,
Qr = Bij(S]) x - -+ x Bij(§}) < S,

and let
1
argy == =5— € C[G,],
T Proy] gz g
1
broy == —=—— (_1)0(9)9 € C[&,],
W Q) gQZ "

where o(g) is the signature of g. Finally, let
cr(ny = ar(ybry-
We call cr(,) a Young symmetrizer.
21.3. Specht modules. For every Young tableau T(A), define the &,-representations
Vo = C[Sulery-

Theorem 21.1.

(1) The isomorphism class V, of the S,-representation Vr(,y only depends on the Young diagram A.

(2) For every pair of Young diagrams A and ', V) ~ V. ifand only if A = A'.

(3) Each V, isirreducible, and every finite dimensional irreducible complex S,-representation is isomorphic
to one of V.

We call V7, the Specht modules.

Remark 21.2. Theorem 21.1 implies that the same statements hold with C replaced by Q, and if we
define V(1) = Q[S,]cr(y) instead.

By construction, every statement in §21 still holds if we replace C be Q.

65
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21.4. The dependence of V() on the Young tableau. First we prove Theorem 21.1.(1).
Let A be a Young diagram. The group action

S, C { Young tableaux associated to A }
sending T(A) to the permutation of the entries by S, is transitive. For every g € S,, we have
Pyry = gPryg~ and Quray = 9Qryg -
Thus
Vot = Vi g7

as Gn-representations.
21.5. First examples.

Exercise 21.3.

(1) Suppose that A has only one row. Show that V) is the trivial representation.
(2) Suppose that A has only one column. Show that V', is the sign representation Cggp.
(3) Let T(A) be a Young tableau. Show that

V*T(/\) = ngn ®c Va,
where T(A) is the transpose of A (i.e., the rows of 'T(A) are the columns of T(A)).
21.6. A key property of ar(,) and br(y). The elements ar(,) and br(,) satisfy the following key property.

Proposition 21.4. We have
ar()C[Sulbry = C- ey

We will use the following lemma to prove Proposition 21.4.

Lemma 21.5. Let T(A) and T(u) be two Young tableaux. Let g € S,. Suppose that Pr(yy 0 (9Qr(ug ")
contains a permutation o € L, of signature —1. Then

ar(1)gbr = 0.
Proor. We have
ar()gbr(w) = ar()09br(w) = ar)g(g~ 09)bry = —argbr,
so arygbr) = 0. O
Proor oF ProrosiTion 21.4. Note that if g = pq for h € Pr(,y and g € Qr(y), then
ﬂT(A)ng(A) = (_1)Sgn(q)CT(A)-
Thus (1) follows from Lemma 21.5 and the following.
Lemma 21.6. Suppose that g ¢ Pr(y)Qr(y), then there exists a transposition o in Pr(yy 0 (gQT(A)g_l).

Proor. Letg e &, such that Pr(y) N (gQr(n) g~!) contains no transposition. Note that 9Qr) g = 7 T(A)-
So any pair of elements of [1, n] N Z in the same row of T(A) are not in the same column of g- T(A). Thus
there exists g’ € Q,.7(1) and p € Pr(;) such that

q9-T(A) =p-T(A).
Thus g = pq for g := g7'9''g € Qr(y). O
O
Let A and u be two Young diagrams. We write A > p if A; > p; for the smallest 7 such that A; # ;.
Proposition 21.7. Let T(A) and T(u) be two Young tableaux. If A > u, then
ar(1yC[Sulbrw = 0.
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Proor. Let g € G, By Lemma 21.5, it suffices to show that there exists Pr(y) n (9Qr(y)g ") contains a
transposition.

Let i be the smallest index such that A; > p;. We can assume that there is no pair of integers x, y
lying in the jth row in T(A) with j < i and in the same column of g - T(i). By the same argument as in
the proof of Lemma 21.6, there exist p € Pr(yy and q" € Q,.7(,) such that the first i — 1 rows of p - T(A)
and q'g - T(y) are equal. It follows from the pigeonhole principle that there exists two integers x, y lying
in the ith row of p - T(A) and in the same column of 4'g - T(u). Hence

Pypray 0 Qo) = PProyp™") 0 (@'9Qrng 4" ™) = Pray 0 (9Qrwg ")

contains a transposition. O

21.7. Idempotents. Let k be a field and let A be a k-algebra. An element e € A is called an idempotent if
e2=e IfecAis idempotent, then sois 1 — e € A, and we have

A=AedA(l—e)

as A-modules

Lemma 21.8. Let e € A be an idempotent. For every A-module V, we have
Homy (Ae, V) ~ eV

as k-vector spaces.

Proor. We have an isomorphism @ : Homy (A, V) = V sending f € Homa (A, V) to f(1). Consider the
decomposition
Homa (A, V) = Homa(Ae, V) @ Homy (Ae, V).

If f € Homy(A, V) lies in Homg (Ae, V), then
(1) = fle) = ef(1) eeV.

So
®(Homy(Ae, V)) ceV and P(Homu(A(l1—e),V)) c (1 —e)V.
As
V=eVa(l-e)V,
necessarily Homy (Ae, V) ~ eV. O

Exercise 21.9. Let T(A) and T(u) be two Young tableaux.

(1) Show that
> n! c
T ™ Py [Qroy dim Vg T

C

(2) Show that
Homg, (Vr(1y, Vr(w) = cr)ClSuler)

as C-vector spaces.

21.8. Irreducible representations of S,. Now we finish the prove of Theorem 21.1. We first prove
Theorem 21.1.(2) and the first statement of Theorem 21.1.(3).

Proposition 21.10.

(1) Each V, is irreducible.
(2) If A and u are distinct Young diagrams, then V) % V.

Proor. We can assume that A > u without loss of generality. Let T(A) and T(u) be Young tableaux
whose underlying Young diagrams are A and u respectively. By Exercise 21.9, we have

Home, (Vr(1), V() = cr)Cl[Suler(y)-
Hence V1(,) is irreducible by Proposition 21.4 and Exercise 21.9.(1), and V), # V, by Proposition21.7. O
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Finally, since there is a bijection between the conjugacy classes of S, and the partitions of 7, the
second statement of Theorem 21.1.(3) follows.

Exercise 21.11. Identify the Young diagram for each finite dimensional irreducible complex representa-
tions of S5 and Sy.

22. Frobenius character formula

This part is handwritten.



LECTURE 8

Lie algebras

23. Algebraic groups and Lie algebras

This part is handwritten.

24. The category of Lie algebras

Let g be a Lie algebra over a field k. We have defined Lie algebras and morphism of Lie algebras in
the previous lecture.

24.1. Ideals. An ideal of g is a k-linear subspace I < g such that [I, g] < I. (Note that since [I,g] = [g,I],
we don’t need to define left of right ideals.) An ideal is in particular a Lie subalgebra, but the converse
is false in general.

Note that ideals of g are nothing but subrepresentations of the adjoint representation of g.

Exercise 24.1. LetI,] c gbe two ideals. Show that I + J,I n ], and [I, J] are also ideals of g.

Exercise 24.2.

(1) Let f : g — h be a morphism of Lie algebras. Show that ker(f) is an ideal of g.
(2) LetI c gbe an ideal. Show that the Lie bracket on g descends to a Lie bracket on the quotient
vector space g/I. Thus g/I is a Lie algebra.

24.2. Universal enveloping algebra. Every associative k-algebra A is a Lie algebra, with the Lie bracket
defined by

[, y] = xy —yx
for all x, y € A. The forgetful functor from the category of associative k-algebras to the category of Lie
algebras over k has a left adjoint.

Theorem-Definition 24.3. For every Lie algebra g, define the associative k-algebra

()
<VRW—w®0v— [v,w]lv,we g>"

U(g) :=
The functor U is left adjoint to the forgetful functor: for every associative k-algebras, we have natural isomorphisms
Homye(g,A) ~ Homk_Alg(U(g),A).
The k-algebra U(g) is called the universal enveloping algebra of g.

In particular, the universal enveloping algebra satisfies the following universal property. For any
associative k-algebra A and any morphism of Lie algebras p : ¢ — A satisfying

p(lx yl) = xy — yx
for all x, y € g, there exists a unique morphism p : U(g) — A of k-algebras such that

A4
' oA

9)

U(g

g

commutes.

69
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Exercise 24.4. Prove Theorem 24.3.

24.3. Poincaré-Birkhoff-Witt theorem.

Theorem 24.5. Let X;icr be a basis of g as a k-vector space. Fix a total order < on I. Then
{ X X, i< <in}

is a basis of the k-vector space U(g).

We refer to [3, Theorem 9.10] for a proof of the PBW theorem for finite dimensional g. The general
statement follows from the finite dimensional case.

Corollary 24.6. The canonical map g — U(g) is injective.

24.4. The category of Lie algebra representations. As a corollary of Theorem 24.3, the category of Lie
algebra representations of g is equivalent to the category of the representations of U(g).

Corollary 24.7. We have an equivalence of categories
Rep(g, k) ~ Rep(U(g), k).

We can therefore transfer every notion and theorem about the representations of U(g) to the
representations of g (subrepresentations, quotients, irreducibility, semisimplicity, etc.).

24.5. Centers. The center of g is defined as

Z(g) ={xeg|[xy]=0forallyeg}.
We say that the Lie algebra g is abelian if g = Z(g).
Exercise 24.8. Show that g is abelian if and only if U(g) is commutative.

24.6. Hom and ®. Let V and W be k-vector spaces. Let py : ¢ — Endy(V) and pw : ¢ — Endx (W) be
two representations of g. Then we have a representation of g on the tensor product V ®x W, defined as

(pv @ pw)(x) = pv(x) ® Idw + Idy ® pw(x).
Similarly, we have a representation of g on Homy (V, W) defined by
x-f=pw(x)of—fopy(x)
for any x € g and f € Homy (V, W).

Exercise 24.9. Show that the constructions ® and Hom for Lie algebra representations coincide with
the constructions ® and Hom for representations of associative algebras under the equivalence in
Corollary 24.7.

In particular, the dual representation of g — End(V) is
prv(x) = —pv(x)”
for every x € g.

Exercise 24.10. Let V be a Lie algebra representation of g. Show that e ®y V is left adjoint to Homy (V) e)
in the category of g-representations.

24.7. Invariant elements and an example: the Killing form. Let V be a representation of g. An element
v € Vis called invariantif g - v = 0.

Example 24.11. By definition A bilinear form B € V¥ ®y V¥ on V is invariant if
B(x-v,w)+ B(v,x-w) =0

forallo,we V.
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Exercise 24.12. Let g be a finite dimensional Lie algebra over k. For every x, y € g, define
K(x,y) := Tr(ad(x) cad(y)) € k.
Show that K is an invariant symmetric bilinear form on g.

We call K the Killing form of g.

25. sl

This part is handwritten.

26. On the structure of Lie algebras

This part is handwritten.

27. The Schur-Weyl duality

The Schur-Weyl duality exhibits some parallels between the irreducible representations of S, and
those of GL(W) for a vector space W. We start with an example.

27.1. S"W and A" W as irreducible GL(W) representations. Let W be a C-vector space of dimension
.

Exercise 27.1. Let m € Z~. Let p : GL(W) — Endy(S"W) or p : GL(W) — Endi(/\" W) be the induced
representations on E := S"W or E := /\" W. The aim of this exercise is to show that "W and A" W
(for m < n) are irreducible GL(W)-representations.

(1) Find h € GL(W) such that p(h) is diagonalisable with distinct eigenvalues.

(2) Let B = {ey,...,e,} be a basis of E which diagonalize p(h). Show that any GL(W)-
subrepresentation U < E is generated by a subset of B.

(3) Choose a basis {wy,...,w, } of W, and let E;; denote the elementary matrices on W. By
considering the matrices Id + E;; with i # j, show that E is an irreducible GL(W)-representation.

We will see that the irreducible representations S"W and /\" W correspond to the Specht modules
Vyfor A = (m)and A = (1,...,m) respectively.

27.2. Dual pairs. Let A and Bbe k-algebras. Let Vbean (A, B)-bimodule. The (A, B)-bimodule structure
on V gives rise to morphisms of k-algebras

B — Ends(V) and A — Endg(V).

We say that A and B form a dual pair with respect to the (A, B)-bimodule V if the above morphisms are
isomorphisms.

Exercise 27.2. Show that A and A°? form a dual pair with respect to A viewed as a natural (A, A°P)-
bimodule.

Lemma 27.3. Let A and B be a dual pair with respect to an (A, B)-bimodule V.

(1) The left A-module and the right B-module structures of V are faithful.
(2) Suppose that V is finite dimensional. Then A is semisimple if and only if B is semisimple.

Proor. (1) is clear. The first statement of (2) follows from Proposition 12.15 and Corollary 12.11. O
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27.3. The double centralizer theorem.

Theorem 27.4. Let A be a semisimple k-algebra and let V be a finite dimensional faithful A-module. Then A
and B := End4 (V) form a dual pair with respect to the (A, B)-bimodule V. Moreover, we have

VPV W
i=1
as (A, B)-bimodules, for some irreducible left A-modules V; and irreducible right B-modules W;. The left

A-modules V; are pairwise non-isomorphic, and so are the right B-modules W;.

Proor. Let Vy,...,V, be the irreducible A-submodules of V which are pairwise non-isomorphic with
multiplicities my, ..., m,. By Proposition 12.15, we have

B ~ Maty,, (Dy) x - -+ x Maty, (D,),
where D; := End4(V;). If we define W; := Homy (V;, V) as a right B-module, then

n

V ~ @Vl' Rk Wi
i=1

as (A, B)-bi modules. Since Homu(V;, V) ~ D:,"’, the right B-modules W; are irreducible by Proposi-
tion 12.10.(1). Finally, for every i, let w; € W; be a nonzero element and let ¢; € Mat,,,(D;) < B be the
identity matrix. We have w; - ¢; = 6;w;, thus all W; are non-isomorphic as B-modules. O

27.4. Symmetric groups and general linear groups. Let W be a C-vector space. For every n € Z-, let
S, act on W®" by

0 (W ®  QWy) = Wy(1) ® @ Wy(n)
for pure tensors. We will apply Theorem 27.4 to the S,-representation W®”", and see that S, and gl(W)
(or GL(W)) form a dual pair.

Proposition 27.5. We have
Ende, (W®") = Im(U(al(W)) — Endi(W®")),
which is the subalgebra of Endy (W®") generated by elements of the form
A(f) = (fRIAd®---®Id)+ (R f®---®@Id) + -+ (IdRId®---® f).

Proor. The last statement follows from the definition of tensor products of Lie algebra representations.
Since each A, (f) : W® _ W ig S,-equivariant, we have the inclusion o. For the other inclusion,
we first observe the following.

Exercise 27.6. Show that Endz,(W®") < Endi(W®") is the image of the k-linear map
S"Endi (W) — Endy (W®")

(27.1) fiee fu Z fo) ® -+ ® fi(m)-

0eES,

Let U := Endy (W) as a k-vector space. Since the GL(U)-representation on S"U is irreducible by
Exercise 27.1 and the subset { u" € S"U | u € U } is GL(U)-stable, the whole space S"U is generated by
elements of the form u". For every positive integer 7, let H; € Q[Xj, ..., X,;] be the polynomial

Hy=X| ++X,.
By the Newton identities, there exists a polynomial P € Q[Xj, ..., X,] such that
P(Hi,...,H,) = X1+ X,
Let u € End (W) and consider the ring homomorphism

Q[X,...,X,] — Endy (W®")
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defined by
Xi—»ld® - u®---®lId

where u is in the ith place, we have
P(A, (1), Ap(u?), ..., A(u™) = u®--- @ u.
This shows the other inclusion c. O

27.5. The Schur-Weyl duality. Letn € Z., and let A be a partition of n. Let W be a k-vector space. We
define
S*W := Homg, (V;, W®")

as a k-vector space. Here, V, is the Specht module associated to A, and &, acts on wen by

0 (W1 Q- @Wn) = We(1) @+ @ Wy(n)
for pure tensors. The space S'W has a natural GL(W)-representation and gl(W)-representation (on the
right).

Exercise 27.7. Suppose that V has dimensiond € Z.. Let I';, be the set of partitions of n such that the
number of rows of the corresponding Young diagram is less than or equal to d. Show that S*W = 0 if
and only if A € I'y,.

Corollary 27.8 (Schur-Weyl duality). Let V be a finite dimensional complex vector space of dimension d and
let n be a positive integer. The C-algebra C[S,,] and the image of U(gU(W)) form a dual pair with respect to W&".
In particular,

n
We ~ P V@ S'W
Ael“d,,,

as (C[S,], U(gl(W)))-bimodules, and also as (S, x GL(W))-representations.

Proor. The isomorphism as (C[S,], U(gl(W)))-bimodules follows from Theorem 27.4 and Proposi-
tion 27.5. Since &, x GL(W) < C[S,] x U(gl(W)) and the (&, x GL(W))-action is the restriction of the
bimodule structure, the last statement follows. O

Corollary 27.9.

(1) S*W is irreducible as gl(W)-representation and GL(W)-representation.
(2) For every A, u € Ty, we have S"W ~ SEW if and only if A = p (as gl(W)-representations and
GL(W)-representations).

Proor. The statements for gl(W) follow from Corollary 27.8, Theorem 27.4, and Theorem 21.1. As
GL(W) is Zariski dense in gl(W) (i.e. if GL(W) is not contained in the zero locus Z(P) of any polynomial
function P on gl(W) such that Z(P) < gl(W)), we obtain the statements for GL(W). O

27.6. Schur functors. Schur functors S* generalize the constructions of symmetric and alternative
powers of vector spaces.

Exercise 27.10.

(1) Show that S™W =~ Sym"W as GL(W)-representations and A(W)-representations.
(2) Show that SUDW ~ A" W as GL(W)-representations and A(W)-representations.

Here is an explicit description of S*W.
Exercise 27.11. Let A be a partition of n and let
p1 == e

be the length of the columns of A. We have

th He
S'W (AW & [\ WK,
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where K is the subspace spanned by the elements of the form w; ; constructed as follows. Fix a Young
tableau T associated to A. Let I be a subset of a column C; of T. Choose another column C; of T. Let

ZI,]' C Gn

be the subset such that (I) = C;j and o preserves the vertical order, and o(x) = x for every x ¢ I. The
elements w; ; are those of the form

T/U[,]‘:: w1®...®w”_ Z wo(1)®"'w6(ﬂ)'

UEZL/‘
For instance, if A = (3,2) and wefill 1,...,5 from top to bottom, then left to right, then

(w1 N Wy N ZU3) ® (ZU4 A ZU5)

(27.2)

=(wy A Ws Aw3) ® (W1 Awp) + (Wy AWy Aws) ® (W Aws) + (w1 AWy Aws) ® (ZUZ A W3)
in S'V.
Exercise 27.12.

(1) Show that the (comultiplication) map ¢ : AW - (A>W) @ W defined by
UADAW— UAD) QW+ (VAW @U+ (WAU)RD

on pure tensors is well defined.
(2) Show that we have an exact sequence

3 2
AW S (AW)@W - SCHOW - 0.

27.7. Final remark: algebraic irreducible representations of GL(V). Let W be a finite dimensional
complex vector space. What are the finite dimensional irreducible representations of GL(W)? Apart
from the Schur constructions S*W are irreducible, the one-dimensional representations defined by

(det)* : GL(W) — C*

for every k € Z are also irreducible. The tensor products S*W ® (det) are also irreducible, and these are
all the finite dimensional algebraic irreducible representations of GL(W). Here, a GL(W)-representation
V is called algebraic if

GL(W) — GL(V)

is defined by rational functions.

Theorem 27.13 (See Fulton-Harris, Section 15.5). Every finite dimensional algebraic irreducible representa-
tions of GL(W) is isomorphic to S"W ® (det)* for some k € Z, n € Z—g and A € Ty
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