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Abstract This paper describes the spatiotemporal epist-

ematics knowledge synthesis and graphical user interface

(SEKS–GUI) framework and its application in medical

geography problems. Based on sound theoretical reasoning,

the interactive software library of SEKS–GUI explores

heterogeneous (spatially non-homogeneous and temporally

non-stationary) health attribute distributions (disease inci-

dence, mortality, human exposure, epidemic propagation

etc.); expresses the health system’s dependence structure

using (ordinary and generalized) spatiotemporal covariance

models; synthesizes core knowledge bases, empirical evi-

dence and multi-sourced system uncertainty; and generates

a meaningful picture of the real-world system using space–

time dependent probability functions and associated maps

of health attributes. The implementation stages of the

SEKS–GUI library are described in considerable detail

using appropriate screens. The wide applicability of

SEKS–GUI is demonstrated by reviewing a selection of

real-world case studies.
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1 Introduction

The study of a health system’s attributes (e.g., mortality

pattern, disease propagation velocity, exposure distribu-

tion, and system performance indicators) is an important

affair in medical geography that can play a vital role in a

large number of public health situations, including popu-

lation risk analysis, public awareness, health policy and

decision making (Haggett 2000; Cromley and McLafferty

2002; Gatrell 2002). A health system typically involves a

number of interacting agents and the associated knowledge

bases (Christakos and Hristopulos 1998). In this context,

some of the health attributes of interest are emergent

properties that manifest the composite geographical-tem-

poral organization of the system. The study of a health

system may cross disciplines and is basically a knowledge

synthesis affair that combines (a) a stochastic theory of

space–time dependence representation under conditions of

multi-sourced uncertainty with (b) an epistematics meth-

odology that is the fusion of human teleology and evolu-

tionary epistemology.

The spatiotemporal random field (S/TRF) model of

stochastics aims to study the properties of a health system

as a whole and connect them to causal relations and space–

time patterns under conditions of uncertainty. S/TRF tools

include spatiotemporal probability density functions

(PDF), ensemble averages (ordinary and generalized

covariance and variogram functions), and local scale het-

erogeneity characteristics (spatial and temporal orders). A

detailed presentation of stochastics, in general, and the S/

TRF model, in particular, can be found in Christakos

(1991, 1992), Christakos and Hristopulos (1998) discuss

several of its applications in health sciences. Epistematics

involves models of the processes (perceptual, intellectual

and linguistic) by which knowledge and understanding are
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achieved and communicated; these models include both

mental constructions of the actual health system and the

general conditions of the mind that enable scientists to

develop different disciplines that operate in an autonomous

way but allow disciplinary integration to obtain a realistic

world view (Knorr Cetina 1999; Keil and Wilson 2000;

Meyer and van der Hoek 2004; Rescher 2005; Christakos

et al. 2005).

Ultimately, much medical geography research strives to

develop integrated health systems to aid in innovative in-

quiry and interdisciplinary problem solving, effectively

joining communities of scholars from different fields of

study. For these efforts to succeed, practicing scientists,

scholars and research administrators from a range of dis-

ciplines should be interested in creating and working in

environments that support traversing of intellectual, cul-

tural, and organizational boundaries. By capitalizing on

interdisciplinary knowledge synthesis, medical geography

research emphasizes the importance of multiple focuses

and perspectives in scientific investigations, including the

development of interactive software libraries of spatio-

temporal modelling and mapping.

2 The SEKS–GUI software library

Space–time data analysis in a modern statistical framework

was introduced by Christakos (1990, 1991, 1992). Sub-

sequent developments include the works of Goodall and

Mardia (1994), Haas (1995), Bogaert (1996), Serre et al.

(1998), Kyriakidis and Journel (1999), and Cressie and

Huang (1999). More recent works include Ma (2003),

Kolovos et al. (2004), Stein (2005), and Porcu et al.

(2006); see the relevant spatiotemporal statistics literature.

The study of many medical geography problems is

essentially a knowledge synthesis affair that, generally,

involves four major stages: adequate conceptualization,

rigorous formulation, substantive interpretation, and inno-

vative implementation. Each stage requires the interdisci-

plinary effort of individuals familiar and receptive to

important science integration goals, extensively discussed

in the public health literature (Gatrell 2002; Christakos

et al. 2005; Ebi et al. 2005). The SEKS–GUI computer

software library (spatiotemporal epistematics knowledge

synthesis graphical user interface; for the most recent user

manual, see Kolovos et al. 2006) is used in the imple-

mentation stage of knowledge synthesis. Let Xp = X(p)

denote a health attribute, where p = (s,t) is a point in the

space–time domain (the vector s denotes the geographical

location and the scalar t denotes the time under consider-

ation). SEKS–GUI is primarily a spatiotemporal modelling

and mapping library that includes:

• Stochastic models of composite space–time depen-

dence, uncertainty representation, and data assimilation

(Table 1).

• Spatiotemporal covariance models of Xp (ordinary, cX,

and generalized, jX) for health systems with different

kinds of correlation structure (Table 2).

• Varying levels of continuity orders (m and l) expressing

heterogeneities in the spatial and temporal patterns of

the health attribute Xp (Table 2).

• Mapping techniques with attractive features from a

theoretical and an applied perspective (Table 4).

Table 1 roughly categorizes the stochastic models

providing the theoretical support of the SEKS–GUI in

terms of spatiotemporal dependence, uncertainty repre-

sentation and data assimilation criteria. In addition to the

considerable number of covariance models mentioned in

Table 2, there are other classes of models (Kolovos et al.

2004) that can be included in the SEKS–GUI framework.

Noteworthy elements of SEKS–GUI are its generalization

powers that account for space–time heterogeneous depen-

dence, non-Gaussian probability laws and non-Bayesian

data assimilation (Table 4). Many well-known ontologic

predictors are based on the minimum prediction variance

criterion and are often subject to linearity and Gaussian

assumptions, whereas the SEKS–GUI predictors are based

on maximum information and adaptation principles and

are, in general, nonlinear (a list of predictors is given in

Table 3). Another significant advantage of this group of

techniques is the systematic generation of complete PDF at

all mapping points (Fig. 1) rather than a single value for

the health attribute under consideration. In fact, many on-

tologic techniques can be derived as special cases of the

more general epistematics framework.

For illustration, we consider two techniques currently

used in SEKS–GUI: the BME (Bayesian maximum en-

tropy) and the GBME (generalized BME), see Tables 3 and

4 (a detailed description of these techniques and their real-

world applications can be found in the relevant literature,

including Christakos and Bogaert 1996; Christakos 2000;

Douaik et al. 2004, 2005; Quilfen et al. 2004; Law et al.

2006; Wibrin et al. 2006; Yu and Christakos 2006; Orton

and Lark 2007). Both techniques are based on epistematics

ideals seeking a maximally informative model of the

attribute map subject to the available general (core)

knowledge; subsequently, each technique assimilates site-

specific knowledge by means of conditional (or adaptation)

principles. In practice, data-detrending and transformation

operators may be used in BME implementation, yielding

spatially homogeneous and temporally stationary attribute

representations. The GBME technique directly accounts for

heterogeneous and non-Gaussian data distributions, which

means that transformation and detrending operators are not
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needed. For both techniques, numerical codes have been

developed and bundled into a user interface creating an

easy-to-use SEKS–GUI framework. This framework ad-

dresses the needs of users with multidisciplinary back-

grounds, without imposing any programming requirements.

The spatiotemporal modelling codes are unified within

the GUI framework such that the SEKS–GUI comprehen-

sively features:

• The theoretical support of interdisciplinary synthesis,

operational conditionals, stochastic logic and general-

ized random fields.

• A user-friendly interface with screens that facilitate

space–time data modelling and mapping and allow

users to control each stage of their investigation.

• Built-in functions so that users need to neither handle

individual library functions nor connect the processing

software steps. Since these steps appear seamless, users

can concentrate on substantive modelling activities.

• A complete graphics-based environment that offers

significant flexibility in providing the input, deciding

the investigation course, choosing among an array of

predictors, and selecting from a broad variety of output

visualization options.

The above features, combined with the unique charac-

teristics of the knowledge synthesis methodology imple-

mented in the software libraries supporting the interface,

Table 1 A categorization of stochastic models by spatiotemporal

dependence, uncertainty representation and data assimilation criteria

Spatiotemporal

dependence

Uncertainty

representation

Data assimilation

Homogeneous/

stationary: ordinary

S/TRF theory

Gaussian

probability laws

Bayesian conditional

rules (operational)

Non-homogeneous/

non-stationary:

generalized

S/TRF theory

Non-Gaussian

probability laws

Non-Bayesian

adaptation principles

(stochastic logic)

Table 2 Examples of space–time covariance models

Spatiotemporal

dependence

Separable

models

Non-separable

models

Homogeneous/stationary
P

qcp,q (r) andP
qcp¢,q (s)

P2
q¼1 cp;qðrÞ cp0;qðsÞ

cp,1 (r) cp¢,1 (s) cp (r + us)

Non-homogeneous/

non-stationary

j (r,s)

m, l

Note The functions cp,q (r), p = 1, ...,7 and q is a non-negative integer,

represent the spatial exponential (p = 1), Gaussian (p = 2), spherical (p
= 3), sine (p = 4), cosine (p = 5), and Mexican-hat (p = 6) and nugget-

effect (p = 7) model; and the cp¢,q (s), p¢ = 8,...,14, represent the

temporal exponential (p¢ = 8), Gaussian (p¢ = 9), spherical (p¢ = 10),

sine (p¢ = 11), cosine (p¢ = 12), Mexican-hat (p¢ = 13) and nugget-

effect (p¢ = 14) models; the r and s denote the spatial and the temporal

lag, respectively. The functions cp (r + us) represent the composite

space–time exponential (p = 1), Gaussian (p = 2) and polynomial-

exponential (p = 3) models; r is the vector distance and u is a prop-

agation speed. The j (r,s) is the polynomial generalized covariance of

orders m (spatial) and l (temporal)

Table 4 Some features of the BME and GBME mapping techniques

Space–time dependence
representation

Heterogeneous, in general

(homogeneous- stationary

are special cases)

Site-specific knowledge
assimilated

Hard data and soft

(uncertain) information

Predictor

Non-linear, in general

(linear is special case)

Prediction maps

Complete PDF at each

space–time grid point

Joint PDF at several points

Mean, mode, and median

at each point

Underlying probability laws

Non-Gaussian, in general

(Gaussian is special case)

Accuracy maps

Error variance, std.

deviation, skewness,

and confidence intervals

General (core) knowledge
processed

Theoretical models,

scientific laws, and

empirical relations

Forthcoming

Multi-attribute

(Vector) mapping

Functional

(change-of-support)

mapping

Table 3 A classification of mapping techniques

Ontologic spatiotemporal

techniques

Epistematics spatiotemporal

techniques

STK (spatiotemporal kriging) BME (Bayesian

maximum entropy)

GSTK (generalized

spatiotemporal kriging)

GBME (generalized BME)

KF (Kalman filter) MBME (Material

biconditional ME)

GMBME (Generalized MBME)

s

t

Fig. 1 An illustration of a set of health attribute PDF that vary across

space–time
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make SEKS–GUI a useful addition to the spectrum of

analysis and interpretation tools of modern geographic

information science (GIS).

3 A brief tour of SEKS–GUI

SEKS–GUI is designed around a sequence of consecutive

screens that guide users through the main phases of spa-

tiotemporal modelling and mapping. Each screen consti-

tutes a modelling advancement by itself, in the sense that

when reaching its end the user has completed successfully

a different investigation stage. Users actively participate by

inserting data files, providing insight about the data,

selecting meaningful space–time correlation ranges and

prediction parameters, and expressing preferences con-

cerning the mode of attribute mapping and the associated

visualization means. Issues unrelated to substantive

investigation require minimal effort, buttons and drop-

menus facilitate case-related decisions, a broad range of

informative space–time maps can be readily generated, and

brief explanations and tool-tips are provided ‘‘on the

spot’’. Individual screens are built to resemble a wizard-

type of set-up, in the sense that users can easily provide

their input or make alternative choices according to the

needs of their investigation.

A comprehensive user manual addresses a broad range

from the novice user to the field expert. Naturally, the

preparation of input data is required prior to using the

SEKS–GUI. This initial action involves compiling, gath-

ering and rendering data in forms that can be employed by

the interface. Also, since attribute predictions will be pro-

duced at specified spatiotemporal grid nodes, the user must

define a suitable mapping grid (see Sect. 3.1).

A brief outline of the main phases of SEKS–GUI is

given in Fig. 2. The screens follow a phase progression

that is contingent on the spatiotemporal technique

implemented. For the BME technique, we consider five

phases: definition of investigation type and provision of

input information; space–time exploratory analysis; sep-

arable and non-separable covariance modeling; systematic

prediction of the health attribute at all grid nodes; and

visualization of the results. The GBME technique, on the

other hand, consists of fewer (four) phases, since the

space–time (generalized) covariance modelling is intrin-

sically performed at the prediction phase. In addition, a

shorter sequence of screens is required at the exploratory

phase.

3.1 Phase 1: Supplying the information

Initially, the users are asked to choose between the BME

and the GBME techniques. Inputs at this phase include,

directly or indirectly, the general (core) and the site-spe-

cific knowledge bases, as well as information regarding

specifics of the space–time mapping grid. In most medical

geography applications, core knowledge may be available

in the form of:

(a) Theoretical covariance models (ordinary or general-

ized) known to adequately describe the general cor-

relation structure of a certain range of health systems.

Theoretical models are included in the SEKS–GUI

list of covariance models (Table 2; SEKS–GUI is

continuously updated to include new models).

(b) Natural laws, scientific relationships and empirical

charts that are relevant to the health system attributes.

Depending on the situation, such information may be

used to derive the corresponding covariance model,

which can then be added to the list of models (e.g., an

exposure law leads to the corresponding covariance

equation, which is solved yielding a physically

meaningful theoretical model).

Research studies have shown that, depending on the

situation, the SEKS–GUI framework can integrate natural

laws, exposure-population effect associations, epidemic

relations, and carcinogenesis models expressed in a sto-

chastic form (Serre and Christakos 1999; Christakos and

Kolovos 1999; Kolovos et al. 2002; Serre et al. 2003;

Quilfen et al. 2004; Christakos et al. 2002, 2004, 2005).

Fig. 2 Brief outline of the main SEKS–GUI phases
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Automatic incorporation of core knowledge in SEKS–GUI

by means of interactive screens is a major area of ongoing

research and development.

A site-specific knowledge base, on the other hand, can

be conveniently split into two major sub-categories:

• Hard data, i.e. measurements and observations that are

characterized by a satisfactory level of accuracy and are

expressed as numerical attribute values across space–

time.

• Soft data, i.e. measurements and observations that

include a significant amount of uncertainty that cannot

be ignored. Soft data may have the form of interval

values and (Gaussian, triangular, uniform or custom-

defined) distributions that approximate local or global

data uncertainties (Fig. 3).

A sequence of SEKS–GUI screens serves the purpose of

accepting data based on the knowledge bases described

above. A core base that includes theoretical covariance

models is considered in Phase 1, whereas model parameter

estimation uses site-specific knowledge bases (Sect. 3.3

below). Hard and soft data inputs are acceptable in both

Text and Excel-formatted spreadsheet files (Fig. 4); the

users also select a Text or an Excel-formatted file to define

space–time coordinates for the output nodes.

3.2 Phase 2: Exploratory analysis

The second sequence of SEKS–GUI screens evaluates the

knowledge bases to be used in the investigation. Because

duplicate coordinates (co-located data) may result in

covariance matrix singularities, the matter is considered

carefully in SEKS–GUI (see Appendix A). Depending on

the spatiotemporal technique, the SEKS–GUI follows dif-

ferent paths. The GBME technique allows the input

information to be forwarded directly to the prediction

phase (Sect. 3.3 below).

The BME technique, on the other hand, requires addi-

tional exploratory work, since the corresponding prediction

phase uses a detrended-normally distributed dataset.

Applying a Gaussian kernel on the dataset detrends it: the

kernel searches for neighboring data within user-defined

ranges of the spatiotemporal domain and extracts the trend

using a smoothing moving window. However, because any

extreme values could bias the moving window, trend

estimates may be drastically affected. SEKS–GUI

addresses the matter by identifying potential outliers in the

datasets and isolating them from the detrending process.

Extreme outliers are excluded from data trend calculations

using criteria based on box plot graphical techniques (Box

et al. 1994). Outliers, if any, are not excluded from the

prediction process; in fact, the original dataset is left

unaltered for the prediction phase. Mean trend calculations

use attribute values usually represented by hard data, but

the dataset may contain limited (or no) hard data, in which

case SEKS–GUI resolves the issue by employing soft data

in trend calculation, as well. Figure 5 displays the detr-

ending screen for BME. Once the spatiotemporal trend has

been calculated, it is used to detrend the soft data, as well.

The final stage of Phase 2 is to assess data normality. Using

both the hard values and the soft approximations as the

detrended dataset, the SEKS–GUI compares its cumulative

distribution function (CDF) versus the Gaussian one with

the detrended data mean and variance. In the corresponding

screen (Fig. 6), the user decides whether the data will un-

dergo a transformation from their original space into a

space where their distribution will resemble a Gaussian

one. SEKS–GUI offers the transformation options dis-

cussed in Appendix B.

To summarize Phase 2, detrended data are manipulated

to comply with the requirements of the prediction phase.

Various alternatives can be tried to optimally handle the

available information, and each alternative transforms the

detrended dataset of the original space into a different set

of values. Note that varying dynamics may develop within

the dataset as a result of these manipulations. Based on

suggestions made by Olea (2006), a transformation is

automatically suggested when the maximum deviation of

the detrended distribution from normality is larger than

10% etc.

3.3 Phase 3: Spatiotemporal covariance analysis

This third sequence of screens in the SEKS–GUI deals with

the investigation of spatiotemporal correlation patterns that

characterize the attribute distribution.

Fig. 3 Drawings of soft data (SD) at the spatial coordinates (xA,yA)

used in SEKS–GUI: a Gaussian distribution for attribute u with mean

mA and variance vA. b Uniform distribution (mA, vA). c A user-

defined distribution (the datum PDF has three bins with limits are l1A,

l2A, l3A and l4A; within each bin the PDF changes linearly between

the values p1A, p2A, p3A and p4A)
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If the BME technique is selected, three steps are re-

quired as follows:

(a) Divide the domain under consideration into an

appropriate number of space–time neighborhoods

based on the user’s insight, the geographical con-

straints, and the spatiotemporal distribution of the

data available.

(b) Use BME for each space–time neighborhood. Within

the neighborhood, explore different classes of spatial

and temporal distances (lags) between data points and

calculate experimental (sample or raw) covariance

values for each lag class.

(c) Fit a model to the experimental covariance values of

step a to obtain a closed-form expression of the

attribute dependence across space–time.

As in the detrending stage of exploratory analysis, point

values are used. The covariance of the soft data can be

calculated using soft data means (e.g., interval data mid-

points). Accordingly, the SEKS–GUI uses the set consist-

ing of detrended and possibly transformed hard data and

soft data approximations. Within each of the space–time

neighborhoods [defined in step (a)], the isotropic or

anisotropic experimental covariance values are calculated

in step (b) based on the user-defined spatial and temporal

classes. In step (c), a theoretical covariance model—or a

combination of two individual models nested in each other

and selected from a list of permissible functions

(Table 2)—may be fitted to the available information at

each space–time neighborhood. Since this procedure is

often based on visual inspection, there may be no single

best fit. Instead, the fit will depend on the user’s choice of

the parameters and experience with the particular dataset,

which may prove more valuable than a strict statistical

fitting procedure. The covariance parameters (sill and

range) are then adjusted until an optimal fit is reached (both

individual and nested models can be considered). An

example of fitting a theoretical model to the experimental

covariance values is displayed in Fig. 7.

If the GBME technique has been selected, the (gener-

alized) space–time covariance modelling is handled

intrinsically at the prediction phase (Sect. 3.4). In partic-

ular, the SEKS–GUI automatically tests all permissible

combinations of space–time heterogeneity orders (m and l)

and generalized covariance models (jX) within the local

neighborhoods by means of cross validation at a set of test

points, selecting as optimal the one with the highest aver-

age predictive power (for a detailed introduction to the

generalized random field theory and its applications, see

Christakos 1991, 1992; Christakos and Lai 1997; Yu and

Christakos 2006). Note that the jX-class is richer than that

Fig. 4 A screenshot of the soft data wizard in SEKS–GUI, at the

stage of providing the soft information

Fig. 5 A screenshot of the detrending screen at the exploratory

analysis stage of the BME version. The map displayed is the mean

trend of the total ozone distribution over US on July 9, 1998, as

calculated within SEKS–GUI

Fig. 6 A screenshot of the data transformation screen at the

exploratory analysis stage of the BME version. The plot compares

the CDF of the detrended user data (solid line) and the normal

distribution defined by the detrended data distribution mean and

variance (dashed line). Note that based on this comparison SEKS–

GUI suggests use of a data transformation
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of ordinary covariances (cX). The user may decide to obtain

visualizations of jX at selected regions, given that incor-

poration of all grid nodes may require large computer

storage capabilities.

Spatial and temporal variations are interrelated, as the

geographical propagation of an attribute may also be af-

fected by temporal mechanisms. The heterogeneity orders

provide a quantitative assessment of the rate of space–time

change in attribute patterns and may determine how ‘‘far

away’’ in space and ‘‘deep’’ in time the analysis searches

for information about the attribute. Not only does the

spatial order m change in space, but the temporal order l
does as well. In the last phase (Sect. 3.5 below), the user

may choose to obtain a visual representation of the geo-

graphical m – l distribution, thus gaining information about

the relative attribute trends in space–time (m – l > 0 im-

plies higher degree spatial trends; m – l < 0 implies higher

degree temporal trends).

3.4 Phase 4: Spatiotemporal prediction

The screens for this phase are similar for both the BME and

the GBME techniques. The following options are available

when using the BME technique:

(a) Prediction mode: gives the mode of the prediction

PDF at each output space–time grid node, and takes

the least amount of time to calculate.

(b) Prediction moments: generates the mean, variance

and skewness coefficient of the prediction PDF at

each output grid node.

(c) Prediction PDF: provides the complete prediction PDF

at each grid node, thus requiring more computational

power/time to complete than previous options.

(d) Prediction confidence intervals: in addition to the

PDF of the previous option, it offers the confidence

interval at a user-preset percentile. Being the most

computationally intensive option, this is the most

time-consuming of all others.

GBME, on the other hand, can be used to provide only

prediction moments [option (b)]. With the exception of

option (b), each choice above produces outputs that include

the results of the preceding choices (e.g., the calculation of

prediction confidence intervals will provide information

about the PDF moments). Prior to initiating the prediction

process, users can adjust the prediction parameters (such as

the maximum number of hard and soft data to be consid-

ered at a time) and the estimates of the space–time corre-

lation ranges. Users are also provided with two additional

parameters, namely the minimum amount of data to use

and the rate at which the data search radius should increase

if the quantity of sufficient data is not found in the current

neighborhood. The SEKS–GUI continuously informs the

users of the prediction progress (Fig. 8 shows a GBME

prediction screen), and if a premature interruption occurs,

parameter adjustment may be necessary. Typical reasons

for interruptions may include singularities in the covari-

ance matrices (suggesting a revision of the covariance

model) or limited data availability (suggesting an increase

in the maximum number of data considered). If transfor-

mations had been applied to the initial dataset, the pre-

diction outcomes are subsequently back-transformed into

their original space.

3.5 Phase 5: Visualization

The final phase creates maps based on the outcomes of

Phase 4. The users may choose to use the results of

Sect. 3.4 or to load an output file with the prediction out-

comes from different investigations. The latter option

allows the users to advance directly to the visualization

Fig. 7 A screenshot of the covariance analysis phase of the BME

version. The plot displays the experimental covariance derived from

the data as circles connected with the larger tiles, and the covariance

model fitted to them as the surface with the semi-transparent smaller
tiles

Fig. 8 A screenshot of the prediction phase for the GBME version
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screen upon starting to run SEKS–GUI, as mentioned

earlier in Sect. 3.1.

Once the prediction outcomes are available, the user can

choose from a series of maps, depending on the situation.

Specifically, the options include the following types of

maps:

• BMEmean or GBMEmean. The mean of the prediction

PDF at each mapping grid node (Fig. 9)—moments,

PDF or confidence intervals are required.

• BMEmode. The mode of the prediction PDF at each

output grid node—modes are required.

• Prediction error variance. The variance of the predic-

tion PDF at each output grid node—moments, PDF or

confidence intervals required.

• Prediction standard deviation. The standard deviation

of the prediction PDF at each output grid node—mo-

ments, PDF or confidence intervals required.

• Prediction skewness. The skewness of the prediction

PDF at each output grid node—moments, PDF or

confidence intervals required.

• Prediction PDF. The prediction PDF are plotted at pre-

selected output locations (Fig. 10). The PDF are

projected vertically on a map of the grid so that graph

cluttering is prevented—PDF or confidence intervals

required.

• Size of the prediction confidence interval. At each grid

node the difference between the attribute values at the

limits of the confidence interval is calculated. This map

displays the widths of attribute values within which the

prediction lies for the confidence level selected by the

user—confidence intervals required.

• Lower and upper limits of the prediction confidence

intervals. These intervals are calculated at each output

grid node for the confidence level selected by the

user—confidence intervals required.

• Prediction PDF values at the confidence interval limits.

This map represents the corresponding predictions at

each grid node—confidence intervals required.

• Spatial heterogeneity orders. These are maps of the m
and l orders at each grid node (the m and l usually take

the values 0, 1 or 2)—GBME results required.

• Space–time heterogeneity differences. This is a map of

m – l at each grid node that can take integer values in

the ±2 range (Fig. 11)—GBME results required.

It should be noted that when the BME technique has

been selected in a previous phase, the maps in the original

space are the back-transformed predictions with the mean

trends restored at the prediction locations, when applicable.

Additionally, the moment maps are based on the raw pre-

diction PDF moments, which, themselves, have been back-

transformed; consequently the mean trends at these loca-

tions have been restored. If a transformation has been ap-

plied, one can also display maps in the transformation

space; basic information regarding the transformation can

be also provided. Maps in the transformation space feature

detrended data derived directly from the raw predicted

PDF. When, instead, the GBME technique has been used,

no such issues arise.

3.6 Comments

Although the BME and GBME techniques share the same

methodological framework of knowledge synthesis, they

exhibit subtle differences in the underlying stochastic the-

ory and the practical implementation features. These mat-

ters should be taken into account by the SEKS–GUI users

Fig. 9 A screenshot of the visualization phase using the BME

version. The map displays the predicted total ozone means at the user-

defined output grid nodes on July 9, 1998. The map was derived from

raw predictions that were back-transformed into the original space

and had the trends added back

Fig. 10 A screenshot of the visualization stage using the BME

version. The map displays a collection of predicted total ozone PDF

on July 9, 1998 that were back-transformed into the original space

with the trend added back. The PDF shown are all on the same scale

at selected output locations
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when they choose between the two techniques. Some of the

implementation differences between BME and GBME are

briefly discussed in Appendix C (for more information

about the two theories and technical details, the interested

reader is referred to the relevant literature).

4 Real-world case studies

The SEKS–GUI framework has been implemented in a long

list of real-world cases studies. Some of these studies are

briefly described in the following subsections, where refer-

ences to the original works are given for the interested reader.

4.1 Bubonic plague epidemic in India

Yu and Christakos (2006) studied the spatiotemporal evo-

lution of bubonic plague in India during the years 1896–

1906 using modern geographical information science

techniques. In the past, most investigations focused on

selected cities to conduct different kinds of studies, such as

the ecology of rats. No detailed maps existed incorporating

the space–time dependence structure and sources of

uncertainty in the epidemic data, providing a composite

space–time picture of the disease propagation characteris-

tics. SEKS–GUI provided the technical means to study the

spatiotemporal distribution of bubonic plague under con-

ditions of uncertainty and multi-sourced databases; to

incorporate various forms of interdisciplinary knowledge;

and to generate informative maps of mortality rates and

geographical disease spread as well as epidemic indicator

plots, which all provided novel perspectives concerning the

distribution and space–time propagation of the deadly

epidemic. For illustration, a limited set of mortality maps is

shown in Fig. 12. The bubonic plague in India exhibited

strong seasonal and geographical features. During its entire

duration, the plague continued to invade new geographical

areas, while following a re-emergence pattern at many

localities; its rate changed significantly during each year

and the mortality distribution exhibited space–time heter-

ogeneous patterns. Combined with indicator plots, mor-

tality maps can make possible the comparison of the

propagation patterns of different diseases.

4.2 Black Death epidemic in Europe

For the first time, a series of detailed space–time maps of

Black Death characteristics (mortality, infected area prop-

agation, centroid evolution etc.) were obtained throughout

the fourteenth century AD Europe (Christakos et al. 2005).

The maps integrated a variety of interdisciplinary knowl-

edge bases about the devastating epidemic and provided

researchers and the interested public with an informative

description of the Black Death dynamics (temporal evo-

lution, local and global geographical patterns and propa-

gation speeds). For illustration, a set of maps representing

the total geographical area in Europe infected by Black

Death at different times is shown in Fig. 13. The com-

parative modelling of Black Death in Europe versus bu-

bonic plague in India led to a number of interesting

findings (Christakos et al. 2007). Geographical epidemic

indicators confirmed that Black Death mortality was two

orders of magnitude higher than that of bubonic plague.

Modern bubonic plague is a rural disease typically devas-

tating small villages in the countryside, whereas Black

Death indiscriminately attacked both large urban centers

and the countryside. The epidemics had reverse areal

extension features in response to annual seasonal variations

(e.g., Fig. 14). During the Indian epidemic, the disease

disappeared and reappeared several times at certain loca-

tions; in Europe, once the disease entered a place, it lasted

for a time proportional to the population and then disap-

peared for several years. On average, Black Death moved

much faster than bubonic plague to reach virgin territories,

despite the fact that India is slightly larger in area than

western Europe and had a railroad network almost instantly

moving infected rats, fleas, and people from one end of the

subcontinent to the other. These findings threw new light

on the epidemics and need to be taken into consideration in

the discussion concerning the two devastating diseases and

the lessons learned from them.

4.3 Human exposure due to Chernobyl fallout

in Ukraine

The vast territories radioactively contaminated during the

1986 Chernobyl accident (in former Soviet Union-Ukraine)

provide a substantial dataset of radioactive monitoring

data, which can be used for the verification and testing of

Fig. 11 A screenshot of the visualization phase for the GBME

technique. At every grid node the map displays the difference m – l of

the spatial and temporal heterogeneity orders at this node
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health risk assessment methods. Using the Chernobyl

dataset for such a purpose was motivated by its geo-

graphical structure (large-scale correlations, short-scale

variability, spotty features etc.). The BME technique esti-

mated the extent and magnitude of the radioactive soil

contamination by 137Cs, which allowed incorporation of a

wide variety of knowledge bases leading to informative

contamination maps (Savelieva et al. 2005). Exact mea-

surements were combined with secondary local informa-

tion to assess the uncertainty of soil contamination

predictions at unsampled locations. The uncertainty anal-

ysis evaluated the ability of the prediction PDF to repro-

duce the distribution of the raw repeated measurements

available in certain populated sites. Moreover, the analysis

provided an illustration of the improvement in mapping

accuracy obtained by adding soft data to the existing hard

data and demonstrated that the BME technique performed

well both in terms of prediction accuracy as well as in

terms of prediction error assessment, both useful features

for the Chernobyl fallout study.

4.4 Cancer distributions associated with Arsenic

in Bangladesh drinking water

The occurrence of Arsenic in drinking water is an issue

of considerable health interest. In the case of Bangladesh,

Arsenic concentrations have been closely monitored since

the early 1990s through an extensive sampling network.

Human exposure analysis was used to study lifetime

population damage due to Arsenic exposure across Ban-

gladesh (Serre et al. 2003). Geographical information

science offered powerful tools to assimilate a variety of

knowledge bases (physical, epidemiologic, toxicokinetic

and demographic) and uncertainty sources (soft data,

measurement errors and secondary information). Maps of

naturally occurring Arsenic distribution in Bangladesh

drinking water were generated. Global indicators of the

adverse health effects on the population were derived,

and valuable insight was gained by blending information

from different scientific disciplines. For illustration,

Fig. 15 shows bladder cancer maps (cases per km2)

Fig. 12 Space–time mortality rate maps (%) of bubonic plague in India during 1902–1903
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obtained by integrating an empirical exposure-response

(linear) model versus a multistage carcinogenesis (non-

linear) model in the mapping process. In both cases, the

results indicated an increased lifetime bladder cancer

probability for the Bangladesh population due to Arsenic.

The health effect estimates and the associated uncertainty

assessments provided valuable tools for a broad spectrum

of end-users.

4.5 Patterns of ozone health effects in Eastern USA

Population exposure assessment to potentially harmful

pollutants is an important area from both the scientific re-

search and the health management standpoints. In this work

the GBME technique was used to study the impact of

spatiotemporal ozone exposure distributions on the health

of human populations in the eastern USA (Christakos and

Kolovos 1999). The spatiotemporal analysis started with

exposure distributions producing the input to toxicokinetic

laws linked to effect models which, in turn, were integrated

with relationships that describe how effects are geograph-

ically distributed across populations. The approach

emphasized the functional relationships between space–

time ozone maps, toxicokinetic models of burden on target

organs and tissues, and population health effects. These

relationships offered a meaningful interpretation of the

exposure and biological processes affecting human expo-

sure. Maps describing possible distributions of exposure,

burden and health damage were produced that were asso-

ciated with ‘‘representative’’ receptors belonging to a

specific cohort (e.g., group of people with similar time/

activity profiles); see, e.g., Fig. 16 (different cohorts were

associated with different sets of maps). These maps can

help health scientists and administrators derive valuable

conclusions about the expected health effects for a specific

population cohort within a specified geographical area and

time period.

Fig. 13 Total geographical area in Europe infected by Black Death at different times–denoted in black

Fig. 14 Geographical extent of infected area, A (in 1,000 km2) at

any given time for the Black Death in Europe and for the bubonic

plague in India
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4.6 El Niño effects on the influenza mortality risk

in California

Recent El Niño events have pointed out the need to develop

modelling techniques assessing climate-related health

events. Experts agree that climate changes affect the spread

of infectious diseases and that the geographic range of

infectious diseases might expand as a result of these

changes. Nevertheless, the world health modelling com-

munity cannot yet predict, with reasonable accuracy, when

or where exactly these effects will occur or how large the

threat of these diseases will be to particular populations.

Choi et al. (2006) compared the spatiotemporal patterns of

influenza mortality risk in the state of California during El

Niño versus normal weather periods. By focusing on

county-specific mortality data, various sources of uncer-

tainty were taken into account and influenza mortality

maps and risk profiles were generated. Significant effects

of climate change on the influenza risk distributions were

detected. Geographical maps of risk variation during El

Niño differed from those during normal weather (e.g.,

Fig. 17), the corresponding covariances exhibited distinct

space–time dependence features, and the temporal mean

mortality profiles were considerably higher during normal

weather than during El Niño. These rather unexpected re-

sults of spatiotemporal analysis are worth further investi-

gation that seeks substantive and biologically plausible

explanations. The findings of this study offered a meth-

odological framework to evaluate public health manage-

ment strategies.

4.7 A geographical study of breast cancer dynamics

in North Carolina

This work was concerned with the study of breast cancer

dynamics in North Carolina, such as incidence variation

(Christakos and Lai 1997). The S/TRF-m /l model used in

this study is significantly general in theory so that it effi-

ciently represented non-homogeneous characteristics of

disease variation. Geographical maps provided a detailed

quantitative description of the cancer incidence variation

throughout the state during various time periods (e.g.,

Fig. 18). The associated mapping accuracy was also cal-

culated throughout North Carolina and for the specified

time periods. The maps offered valuable information about

the breast cancer landscape and dynamics in various parts

of the state. Field studies could be initialized across a range

of high versus low rate areas identified by the maps in an

effort to uncover environmental or life-style factors that

might be responsible for the high rates; also, the maps can

elucidate causal mechanisms at a certain scale, explain

disease occurrences and offer guidance in the administra-

tion of health services.

4.8 Spatiotemporal analysis of environmental

exposure-health effect associations

This work studied causal associations between environ-

mental exposures and health effects by synthesizing sour-

ces of physical exposure and population health knowledge

(Christakos and Serre 2000). The strength and consistency

Fig. 15 Bladder cancer maps (cases per km2) using the empirical exposure-response (linear) model and the multistage carcinogenesis (non-

linear) model
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of the exposure-effect association were evaluated on the

basis of health effect predictions that the combined phys-

ical-health analysis generated in space–time. A North

Carolina study involved mortality (in deaths per 100,000

people per day) and cold temperatures (in �F). The mor-

tality-temperature association was measured by the ratio

bDX of the normalized death rate prediction error difference

(i.e., death rate prediction error based on both mortality and

Fig. 16 Maps of the health damage indicator (cases per km2) in the New York city–Philadelphia area on July 20, 1995 due to ozone exposure for

two different population cohorts

Fig. 17 Risk maps of influenza mortality rates at different times (per 105 individuals of the 65 years or older population group). The right
column corresponds to the normal weather period and the left column to the El Niño period
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temperature information vs. error based on mortality data

only). The bDX profile (Fig. 19a) was consistently negative,

which supported the existence of a mortality-temperature

association (of varying magnitude) during the specified

period. The spatial distribution of the association was

represented by the b DX map (Fig. 19b), which showed a

stronger association in the mountainous area (south-west

part of North Carolina); a weaker association occurred at

the eastern part of the state and, also, in the urban area near

Charlotte. These geographical differences were explained

in physical terms; e.g., the moderating influence of the

ocean on cold temperatures could explain the weaker effect

of the latter along the coastline, and the living conditions

(higher exposure to cold temperature in mountainous/rural

areas than in urban areas). Accounting for a potential

confounder (particulate matter exposure) resulted only in a

slightly different strength in the reported mortality-tem-

perature association, thus supporting the view that partic-

ulate matter had no significant confounding effect on the

resulting association between cold temperature exposure

and death rate.

4.9 Efficient mapping of California mortality

distributions at different spatial scales

The meaningful characterization of health attributes often

involves the assessment of their spatiotemporal variation at

multiple scales. In many studies data are available at a

larger scale (say, counties), whereas the health geographer

is interested in a smaller scale analysis (say, residential

neighborhoods). An adequate analysis should depend on

the scale at which the attribute is considered, rather than

being limited by the scale at which the data are available.

Choi et al. (2003) used a BME-based multiscale approach

to study California mortality distributions at different

geographical scales. Figure 20a is the mortality rate at the

county scale (this map did not represent the true rate dis-

tribution at the local scale, but rather the rate distribution

averaged over a region approximating the size of a county).

Then, the mortality rate distribution was derived at the

local scale by means of the multiscale approach (Fig. 20b).

Significant differences in the mortality rate distribution can

be seen. Figure 20a exhibits smoother patterns, because is

limited by the observation scale and the site-specific base

used soft data located only at the county centroids. Though

this practice is common, it can lead to artificial patterns

(the maps exhibit islands of either high or low values

around the centroids). On the other hand, the multiscale

approach did not suffer from these limitations. In order to

filter out artificial effects, it used a BME feature that pro-

cesses soft information at the data points themselves. The

generated map (Fig. 20b) displayed more variability at the

local scale, whereas the artificial features around the

county centroids have been toned down; the contours lines

of mortality rate followed more the outline of county

boundaries (for which the information was collected),

rather than the centroid locations (which were arbitrary

choices). Accuracy measures demonstrated that the multi-

scale approach offered more accurate mortality predictions

at the local scale than existing approaches that did not

account for scale effects (an error reduction of up to 20%

relative to the predictions of the scale-free approach was

found). Hence, depending on the data characteristics and

the purpose of the health study, the multiscale mapping

approach can be used to generate accurate and informative

maps at any scale of interest, without restriction to the scale

of the measurement.

5 Discussion

The SEKS–GUI toolkit allows health scientists, interdis-

ciplinary knowledge synthesis experts and spatiotemporal

statisticians, among others, to blend different knowledge

bases in a rigorous way and generate a variety of space–

time predictive maps of considerable scientific value.

Dealing with the lives of humans, it is only natural for

researchers to be rigorous and open to different types of

information, as well as transparent in the communication of

their prediction uncertainty.

Fig. 18 North Carolina breast cancer incidence maps in the year a 1991 and b 1992

Stoch Environ Res Risk Assess

123



The use of knowledge synthesis in the medical geogra-

phy discipline utilizes powerful analytical and computa-

tional methods that incorporate knowledge that would

otherwise be dismissed and is more informative than other

GIS software since it generates the complete probability

distribution at each point in space–time. By incorporating

space–time dependency representations under conditions of

uncertainty, researchers are able to characterize patterns

and processes with far greater prediction accuracy and

error assessment. This work focuses on innovative imple-

mentation of knowledge synthesis research using the

SEKS–GUI computer software library, a user-friendly

interface that allows users to focus on the substantive

problem at hand without becoming mired into program-

ming and data transformation details. The tools and theory

of SEKS–GUI have been available previously, yet now the

GUI front end of the toolkit allows even non-experts to

explore their data in novel ways. The techniques of spa-

tiotemporal analysis field are powerful and sophisticated.

The usage of spatiotemporal analysis techniques in the

practical health policy arena may be far from matching

their potential value. Nevertheless, the GUI front end to

SEKS is an attempt to address this gap.

The SEKS–GUI enables users to account for spatio-

temporal heterogeneous dependence, non-Gaussian proba-

bility laws, non-linear predictors and operational data

assimilation, and to generate complete PDF (uni- and

multi-variate) at all mapping grid nodes. In this work, we

focus on two of the techniques available: BME and GBME,

both of which incorporate general (core) and site-specific

knowledge bases, including hard (certain) and soft

(uncertain) data (unique to SEKS–GUI is an ability to

process soft information at the mapping grid nodes, as

well). Through a series of detailed screens—from data

input and exploration to spatiotemporal covariance analysis

and prediction—the user arrives at the visualization stage

where a wide variety of maps are available to add insight

into the spatiotemporal characteristics of the health system.

A series of real-world case studies were presented to

give the reader a clear picture of the SEKS–GUI efficiency

and versatility, as well as the valuable insights and im-

proved results obtained in terms of the SEKS–GUI (com-

posite space–time maps of the health attributes, accuracy

analysis, risk assessment distributions etc.).

The SEKS–GUI will evolve as future needs present

themselves; new space–time covariance models will be

included; vector attributes (i.e., the space–time modeling

and mapping of several health-related attributes simulta-

Fig. 19 a Time profile and b spatial map of b DX (in %); winter of

1996

Fig. 20 Map of spatial distribution of mortality rate (death per 100,00 people per day) in California on January 1, 1989, a at the county scale,

b at the local scale (multiscale approach)

Stoch Environ Res Risk Assess

123



neously) will be taken into account; other kinds of spa-

tiotemporal predictors will be included, like the MBME

and GMBME (Table 3); and new core knowledge bases

will be assimilated (physical laws, health models, scientific

theories etc.). More vivid and descriptive maps can be

created, when more knowledge bases (physical, epidemi-

ologic, demographic, secondary information etc.) are

assimilated into modeling. SEKS–GUI provides a rela-

tively straightforward framework by which to achieve this

goal.

Acknowledgments The research was supported by grants from the

Fred J. Hansen Institute (Grant No. 54266A P3590), the Oak Ridge

National Lab (OR7865-001.01), and the National Institute of Envi-

ronmental Health Sciences (P30ES10126).

Appendix A: The case of co-located data at Phase 2

Because duplicate coordinates (co-located data) may result

in covariance matrix singularities, an initial check for

duplicates is performed. The same adverse effect may

occur at the prediction phase when geographical data are

very close to each other. Co-location is not necessary

associated with common public health problems in which a

common geocode is assigned to participants with missing/

incomplete addresses or to those residing in a specified

geographic region to assure confidentiality. The interface

defines the degree of proximity with respect to the geo-

graphical extent of the dataset and treats data that are too

close to each other as co-located. Many methods may be

used to alleviate the co-location issue, among them value

averaging, slight spatial data displacement, and choosing a

datum as the representative value of the co-located dataset.

Another possibility is to merge co-located hard data into a

unique soft data interval ranging within the span of the co-

located hard data values. To preserve the character of the

user’s dataset, the SEKS–GUI performs a simple averaging

of the co-located hard data values and deals with co-loca-

tion of soft uncertain data with other soft or hard data by

means of slight random displacements.

Appendix B: Transformation options at Phase 2

By way of a summary, SEKS–GUI offers the following

transformation options:

(a) No transformation. The detrended dataset is left

unaltered and the user proceeds to the prediction

phase with the data in their original space.

(b) N-scores transformation (also known as normal

scores or Gaussian anamorphosis; Olea 1999). The

detrended dataset is transformed to a N(0, 1) Gaussian

distribution and the resulting dataset (used in space–

time prediction) lies in the N-score space. Back-

transformation to the original space is possible by

using the N-score matrix. Since some extreme values

may not back-transform properly using the N-score

matrix, the SEKS–GUI sets upper and lower trans-

formation limits that depend on the data span of the

particular study, thus providing a means for extreme

predictions to be appropriately back-transformed. All

the N-score transformation functions are automatic

and seamless to the user.

(c) Box-Cox transformation (Box et al. 1994). The detr-

ended dataset is tested with a series of power trans-

formations based on a k-parameter typically ranging

within ± 2. The transformation eventually uses the k-

value bringing the data distribution closest to a

Gaussian one. The resulting data values to be used in

prediction are in the Box-Cox space. The back-

transformation depends on the optimal k-value chosen

for the specific dataset. Note that the Box-Cox

transformation is defined for positive data values

only, while the detrended data will likely feature

negative or zero values. If negative values are present,

a constant is added to the detrended set so that all

transformed values are positive. After being back-

transformed to the original space, the constant is re-

moved. The interface also accounts for the possibility

of zero values (which pose problems when calculating

logarithms). The above functions are performed

automatically and are seamless to the user.

Appendix C: The BME and GBME techniques

Some of the implementation differences between BME and

GBME are briefly discussed below (for more information

about the two theories and technical details, the interested

reader is referred to the relevant literature).

The two techniques may use different modelling

assumptions and emphasize distinct core knowledge bases.

For practical reasons, BME studies heterogeneity in an

indirect way: it assumes a decomposition of the original

attribute distribution into a mean function and a residual

attribute, and a transformation operator is applied to the

residual before BME is implemented. GBME theory deals

directly with attribute heterogeneity in terms of space–time

increments of the original distribution. Accordingly, the

numerical implementation of GBME requires fewer steps

than BME and its implementation is intrinsic, to a con-

siderable extent. On the other hand, the BME steps are

explicit, often allowing an increased participation of the

user. GBME provides information about the space–time
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dependence structure in terms of the heterogeneity orders,

which are not available in BME. GBME correlation anal-

ysis focuses on a local space–time scale at each prediction

point, whereas BME analysis applies at a larger geo-

graphical scale that includes several prediction points.

Accordingly, the GBME should perform best when enough

data points are available at each local scale. On the other

hand, there are more data points available at the BME

scale, often generating smoother maps. While BME uses

ordinary covariance functions that need to be positive-

definite, GBME uses generalized covariance functions that

need to be only conditionally positive-definite. Under

certain conditions, the user may consider the implementa-

tion of a combination of BME and GBME, i.e., a decision

is made to apply the BME technique in some sub-regions

of the study area and the GBME technique in some others.

References

Bogaert P (1996) Comparison of kriging techniques in a space–time

context. Math Geol 28(1):73–86

Box GEP, Jenkins GM, Reinsel GC (1994) Time series analysis,

forecasting and control, 3rd edn. Prentice Hall, Englewood Clifs

Choi K-M, Serre ML, Christakos G (2003) Efficient mapping of

California mortality fields at different spatial scales. J Expo Anal

Environ Epidemiol 13(2):120–133

Choi K-M, Christakos G, Wilson ML (2006) El Niño effects on

influenza mortality risks in the state of California. J Public

Health 120:505–516

Christakos G (1990) Random field modelling and its applications in

stochastic data processing. Ph.D. Thesis, Division of Applied

Sciences, Harvard University, Cambridge, MA

Christakos G (1991) On certain classes of spatiotemporal random

fields with application to space–time data processing. IEEE

Trans Syst Man Cybern 21(4):861–875

Christakos G (1992) Random field models in earth sciences. Acad

Press, San Diego. New edition, Dover Publishing Inc., Mineola,

NY, 2005

Christakos G (2000) Modern spatiotemporal geostatistics. Oxford

University Press, New York

Christakos G, Bogaert P (1996) Spatiotemporal analysis of spring-

water ion processes derived from measurements at the Dyle

Basin in Belgium. IEEE Trans Geosci Remote Sens 34(3):626–

642

Christakos G, Hristopulos DT (1998) Spatiotemporal environmental

health modelling. Kluwer, Boston

Christakos G, Kolovos A (1999) A study of the spatiotemporal health

impacts of ozone exposure. J Expo Anal Environ Epidemiol

9(4):322–335

Christakos G, Lai J (1997) A study of the breast cancer dynamics in

North Carolina. Soc Sci Med D Med Geogr 45(10):1503–1517

Christakos G, Bogaert P, Serre ML (2002) Temporal GIS. Springer,

New York (with CD-ROM)

Christakos G, Kolovos A, Serre ML, Vukovich F (2004) Total ozone

mapping by integrating data bases from remote sensing instru-

ments and empirical models. Geosci Remote Sens 42(5):991–

1008

Christakos G, Olea RA, Serre ML, Yu HL, Wang L-L (2005)

Interdisciplinary public health reasoning and epidemic model-

ling: the case of black death. Springer, New York

Christakos G, Olea RA, Yu H-L (2007) Recent results on the

spatiotemporal modelling and comparative analysis of Black

Death and Bubonic Plague epidemics. J Public Health (in

press)

Cressie N, Huang HC (1999) Classes of nonseparable, spatio-

temporal stationary covariance functions. J Am Stat Assoc

94:1330–1340

Cromley EK, McLafferty SL (2002) GIS and public health. The

Guilford Press, New York
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