- 1. 9.8.12, (a), (d) and (e). in the texbook For (e), please exclude the asymptotic attractors considered in (a) and (b) and change the condition "a < c or d < b" to "a < c and d < b".
- 2. Reconsider the fitness game exemplified by the story of dodos that we discussed in class. Suppose that instead of two types of genes, Dove and Hawk, there are *n* types of genes. Let $p = (p_1, ..., p_n)^T$ denote the fractions of the population hosting each replicator. Let *A* denote the n * n payoff matrix. The fitness $f(p) = (f_1(p), ..., f_n(p))^T$ is hence given by f(p) = Ap, and the average fitness $\bar{f}(p) = p^T f(p)$. In this case, the replicator equation is:

$$p'_{i} = p_{i}(f_{i}(p) - \bar{f}(p)), \quad i = 1, ...n.$$
 (1)

- (a) Suppose (p^*, p^*) is a Nash equilibrium of the game with a normal form A. Please prove that p^* is a rest point of the replicator dynamics (1).
- (b) Suppose that (1, 0, ..., 0) is an asymptotic attractor of the replicator dynamics described in (1). Please prove that ((1, 0, ..., 0), (1, 0, ..., 0)) is a Nash equilibrium.
- 3. Consider the following game:

	s_1	s_2	s_3
s_1	0,0	6,-3	-4,-1
s_2	-3,6	0,0	5,3
s_3	-1,-4	3,5	0,0

In a payoff vector, the 1st element denotes the row player's payoff and the 2nd element denotes the column player's payoff. s_i denotes a strategy, i = 1, 2, 3.

- (a) Please find all the Nash equilibrium.
- (b) Please find all the evolutionarily stable strategies of this game.

4. Consider the following replicator equations of (p_1, p_2, p_3) :

$$p'_1 = p_1(p_2 - p_3),$$

$$p'_2 = p_2(p_3 - p_1),$$

$$p'_3 = p_3(p_1 - p_2),$$

where $p'_{i} = dp_{i}/dt, i = 1, 2, 3.$

- (a) Please find all the rest point(s) for these equations.
- (b) Please prove that $d(p_1p_2p_3)/dt = 0$.
- (c) Please find all the asymptotic attractor(s) for these equations.(Feel free to use the claim in (b), even if you fail to provide a proof to it.)