賽局論作業

1．9．8．12，（a），（d）and（e）．in the texbook
For（e），please exclude the asymptotic attractors considered in（a）and（b）and change the condition＂$a<c$ or $d<b$＂to＂$a<c$ and $d<b$＂．

2．Reconsider the fitness game exemplified by the story of dodos that we discussed in class．Suppose that instead of two types of genes，Dove and Hawk，there are n types of genes．Let $p=\left(p_{1}, \ldots, p_{n}\right)^{T}$ denote the fractions of the population hosting each replicator．Let A denote the $n * n$ payoff matrix．The fitness $f(p)=\left(f_{1}(p), \ldots ., f_{n}(p)\right)^{T}$ is hence given by $f(p)=A p$ ，and the average fitness $\bar{f}(p)=p^{T} f(p)$ ．In this case，the replicator equation is：

$$
\begin{equation*}
p_{i}^{\prime}=p_{i}\left(f_{i}(p)-\bar{f}(p)\right), \quad i=1, \ldots n . \tag{1}
\end{equation*}
$$

（a）Suppose $\left(p^{*}, p^{*}\right)$ is a Nash equilibrium of the game with a normal form A ．Please prove that p^{*} is a rest point of the replicator dynamics（1）．
（b）Suppose that $(1,0, \ldots, 0)$ is an asymptotic attractor of the replica－ tor dynamics described in（1）．Please prove that $((1,0, \ldots, 0),(1,0, \ldots, 0))$ is a Nash equilibrium．

3．Consider the following game：

	s_{1}	s_{2}	s_{3}
s_{1}	0,0	$6,-3$	$-4,-1$
s_{2}	$-3,6$	0,0	5,3
s_{3}	$-1,-4$	3,5	0,0

In a payoff vector，the 1st element denotes the row player＇s payoff and the 2 nd element denotes the column player＇s payoff．s_{i} denotes a strategy，$i=1,2,3$ ．
（a）Please find all the Nash equilibrium．
（b）Please find all the evolutionarily stable strategies of this game．
4. Consider the following replicator equations of $\left(p_{1}, p_{2}, p_{3}\right)$:

$$
\begin{aligned}
p_{1}^{\prime} & =p_{1}\left(p_{2}-p_{3}\right), \\
p_{2}^{\prime} & =p_{2}\left(p_{3}-p_{1}\right), \\
p_{3}^{\prime} & =p_{3}\left(p_{1}-p_{2}\right),
\end{aligned}
$$

where $p_{i}^{\prime}=d p_{i} / d t, i=1,2,3$.
(a) Please find all the rest point(s) for these equations.
(b) Please prove that $d\left(p_{1} p_{2} p_{3}\right) / d t=0$.
(c) Please find all the asymptotic attractor(s) for these equations. (Feel free to use the claim in (b), even if you fail to provide a proof to it.)

