賽局論作業，Ch． 7

1． 7.11 .24
2． 7.11 .30
3． 7.11 .32
4．Consider a two person zero－sum game with a payoff matrix M which specifies the payoff to the row player．Let $\underline{m}(\bar{m})$ denote the row （column）player＇s security level when both players consider to use only pure strategies，and let $\underline{v}(\bar{v})$ denote the row（column）player＇s security level when both players consider to use mixed strategies．
（a）Please compare \underline{m} and \underline{v} ．（Give the mathematical forms of \underline{m} and \underline{v} ，and analyze their difference rigorously）
（b）Suppose $\underline{m}=\bar{m}$ ．Prove that the row player＇s security level is \underline{m} when both players consider to use mixed strategies．（You could quote the result that $\bar{v} \geq \underline{v}$ ．Other than that any claim has to be provided with a detailed proof．）

5．Consider a zero－sum game between two players．In a m by n payoff matrix，element $\pi_{i, j}$ stands for the payoff to the row player，when the row player adopts his i－th strategy，and the column player adopts his j－th strategy．Please formulate a constrained optimization problem to find the row player＇s mixed security strategy．Specify clearly the decision variables，the objective function and the constraints．

解答

1 (a) row player's security strategy is his 3rd one, and column player's security strategy is her 3rd one. $v=3$.
(b) row player's security strategy is to play the 2nd one with probability $1 / 7$ and the 3 rd one with probability $6 / 7$. column player's security strategy is to play the 1 st one with probability $4 / 7$ and the 3 rd one with probability $3 / 7 . v=18 / 7$.

2 The strategic form is as follows.
$(2,1) \quad(1,2)$
$(2,2) \quad 1 \quad 1$
$(1,3) \quad 0 \quad 2$
Maximin value $=1<\operatorname{minimax}$ value $=2$. There is no saddle point.
We shall then search for the Nash equilibrium with mixed strategies. Consider Baloney to play $(2,1)$ with probability p, and $(1,2)$ with probability $1-p$. If Baloney's strategy will make Blotto indifferent among his three pure strategies, then p is chosen such that $2 p=1=2(1-p)$, i.e. $\mathrm{p}=1 / 2$. The value of the game is thus 1 .

On the other hand, Blotto's strategy will also make Baloney indifferent between his two pure strategies. Moreover, because the value of the game is 1 , no matter which pure strategy Baloney chooses, the expected outcome is 1 . Let q_{1}, q_{2}, q_{3} denote the probability that Blotto will use $(3,1),(2,2)$ and $(1,3)$. Then $2 q_{1}+1 q_{2}+0 q_{3}=0, q_{1}+1 q_{2}+2 q_{3}=1$. As long as $q_{1}=q_{3}$, the above equality holds.

So, in a mixed-strategy Nash equilibrium, Baloney mixes $(2,1)$ and $(1,2)$ with equal probability, and Blotto mixes $(3,1)$ and $(1,3)$ with equal probability. There are more than one Nash equilibrium.

3 Change payoff 4 in figure 7.17 (a) to W to indicate Kirk wins, and all other payoff to L to indicate Kirk loses. Apparently, Spock has some dominant strategies which guarantee her to win. These strategies ask Spock to hit either grid 2 or grid 3 first. If the first bomb is a miss, Spock knows where the ship is. On the other hand, if the first bomb is a hit, the furthest grid is ruled out. And Spock can sink the ship with the remaining two bombs.

4a Let P and Q denote the row player and the column player's space of
mixed strategies. Let q and q denote an element of P and Q, respectively.

$$
\begin{aligned}
\underline{v} & =\max _{p \in P} \min _{q \in Q} p^{t} M q \\
& =\max _{p \in P} \min _{j} p^{t} M_{\cdot j} \\
& \geq \max _{i} \min _{j} M_{i j} \\
& =\underline{m}
\end{aligned}
$$

4b From previous problem, $\underline{v} \geq \underline{m}=\bar{m} \geq \bar{v}$. Since $\underline{v}=\bar{v}, \underline{v}=\underline{m}$.
5 Let q_{i} denote the probability for the row player to play his i-th pure strategy, $i=1, \ldots, m$. The problem is:

$$
\begin{array}{ll}
\max _{q_{i}} & s \\
\text { s.t. } & \sum_{i=1}^{m} q_{i} \pi_{i, j} \geq s, \text { for } j=1, \ldots, n
\end{array}
$$

