賽局論作業

Please read sections 15．1－15．3 and section 21．4．

1．Consider a duopoly with Cournot（quantity）competition．The market demand is：

$$
q=100-p
$$

where q and p are the quantity and the price，respectively．The unit cost of each firm is a constant：$\$ 10$ ．So，given the opponent＇s output q_{j} ，firm i considers to：

$$
\max _{q_{i}}\left(90-q_{i}-q_{j}\right) q_{i} .
$$

Please solve for the Cournot equilibrium（or Nash equilibrium）．
2．Reconsider the previous problem．It is common knowledge that the unit cost of firm 1 is $\$ 10$ ．But now，the constant unit cost of firm 2 could be either $\$ 10$ or $\$ 20$ ．Firm 2 knows its own cost．Firm 1 consid－ ers the unit cost of firm 2 to be $\$ 10$ or $\$ 20$ with equal probabilities． Please calculate firm 1＇s output in a Bayes－Nash equilibrium．

3．Consider the first－price sealed bidding for an object．Two bidders have independent private value．A bidder knows his own value，but other people consider the value to be either v_{1} or v_{2} with probability p_{1} and p_{2} ，respectively where $v_{2}>v_{1}$ ．If two bidders submit the same bid， a fair random draw will decide who gets the object and the winner has to pay for the bid．It is known that in a symmetric Bayes－Nash equilibrium，a bidder with value v_{1} will submit a bid $b=v_{1}$ ．On the other hand，a bidder with value v_{2} will play a mixed strategy over a continuous range $[x, y]$ ．
（a）What is x precisely？
（b）In equilibrium，what is the expected gain of a bidder with v_{2} ？ （It＇s a function of $v_{1}, v_{2}, p_{1}, p_{2}$ ．）
（c）What is y precisely？
4．An all－pay sealed bidding works very much like a first－price sealed bidding except that every bidder has to pay his／her submitted bid
even when he/she loses. Bob and Carol are the only bidders interested in A's house. It is common knowledge that their valuations of this house are independently and uniformly distributed between 0 and 1 , and each one knows his own private value. In a symmetric Bayes-Nash equilibrium, each bidder adopts a bidding function $B(v)$ where v is a bidder's private value and $B^{\prime}>0$. Please solve for $B(v)$ step by step. (We'll ignore the case of a tie since its probability is zero.)
(a) With a private value v, how should Bob decide his optimal bid β to maximize his expected wealth? Write out Bob's objective function.
(b) Let C be the inverse function of B. Please rephrase Bob's objective function in terms of C.
(c) Solve for $B(v)$ from the FOC.

解答

$1 q_{1}=q_{2}=30$.
2 Let $q_{2}^{h}\left(q_{2}^{l}\right)$ be the output of firm 2 when its unit cost are $\$ 20$ ($\$ 10$). In a BNE,

$$
q_{2}^{h}=\frac{80-q_{1}}{2}, \quad q_{2}^{l}=\frac{90-q_{1}}{2} .
$$

Firm 1 hence considers to:

$$
\max _{q_{1}} 0.5 q_{1}\left(90-q_{1}-q_{2}^{h}\right)+0.5 q_{1}\left(90-q_{1}-q_{2}^{l}\right) .
$$

$q_{1}=95 / 3$.
3a The bidder with v_{2} plays against an opponent who bids v_{1} with probability p_{1}, and some random bid in the range $[x, y]$ with probability p_{2}. Let $E \pi(b)$ denote the expected profit of the bidder with v_{2} when he bids b. Then $E \pi(b)$ stays constant in the range $[x, y]$ (or at least in an area which probability measure is 1).

Suppose that $x<y<v_{1}$. For a bidder with value v_{2}, since he is willing to randomize, it must be that $E \pi(b)$ stays the same in the range of $[x, y]$. But note that $E \pi(x)=0$ and $E \pi(y)>0$. So he shouldn't randomize in this range.

Suppose $x<v_{1}<y$.

$$
E \pi(b)= \begin{cases}\left(v_{2}-v_{1}\right)\left(p_{1} / 2+p_{2} F\left(v_{1}\right)\right) & \text { if } b=v_{1} \\ \left(v_{2}-b\right) p_{2} F\left(v_{1}-\epsilon\right) & \text { if } b=v_{1}-\epsilon \text { where } \epsilon>0\end{cases}
$$

In some area $\left[v_{1}-\epsilon, v_{1}\right)$ with a strictly positive measure, we have $E \pi\left(v_{1}\right)>$ $E \pi\left(v_{1}-\epsilon\right)$, but this is the area that the bidder should bid with zero probability. In sum, $x \geq v_{1}$.

On the other hand, if $y>x>v_{1}$, For a bidder with value $v_{2}, E \pi(b)$ stays the same in the range of $[x, y)$. Changing to bid $v_{1}+\epsilon$ will not hurt the winning probability when compared with the bid of x, but will lower the payment when winning. Hence $x=v_{1}$.

3b

$$
\forall b \in\left[v_{1}, y\right],\left(v_{2}-b\right)\left(p_{1}+p_{2} F(b)\right)=c,
$$

where c is some constant. Because $F\left(v_{1}\right)=0, c=\left(v_{2}-v_{1}\right) p_{1}$.
3c From above, $\left(v_{2}-y\right)=\left(v_{2}-v_{1}\right) p_{1}, y=v_{1} p_{1}+v_{2} p_{2}$
4a

$$
\max _{\beta}(v-\beta) P(\beta>B(w))-\beta[1-P(\beta>B(w))],
$$

where w is Carol's private value.

4b

$$
\max _{\beta}(v-\beta) C(\beta)-\beta[1-C(\beta)]
$$

4c The FOC gives:

$$
v C^{\prime}(\beta)=1
$$

Because $\beta=B(v)$, It means:

$$
v C^{\prime}(B(v))=1, \quad \text { or } \quad v \frac{d v}{d b}=1
$$

where $b=B(v)$. Since $v=d b / d v, B(v)=v^{2} / 2+k$. It's clear that $B(0)=0$, so $k=0$ and $B(v)=v^{2} / 2$.

