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Thermal Theory for Non-Boussinesq Gravity Currents
Propagating on Inclined Boundaries
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Abstract: In this study the author derived the thermal theory for non-Boussinesq gravity currents produced from an instantaneous buoyancy
source propagating on an inclined boundary. For Boussinesq gravity currents on a slope, it is known that the gravity current front location
history follows an asymptotic relationship, x3=2f ∼ t, where xf is the front location, and t is the time, when the gravity current is sufficiently far
into the deceleration phase. For non-Boussinesq gravity currents, the distance for the acceleration phase is extended attributable to the non-
Boussinesq effects. When the gravity current is sufficiently far into the deceleration phase, this paper shows that the non-Boussinesq gravity
currents tend to approach similar asymptote in the deceleration phase as Boussinesq gravity currents, but the approach is less rapid in non-
Boussinesq gravity currents. DOI: 10.1061/(ASCE)HY.1943-7900.0000949. © 2014 American Society of Civil Engineers.
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Introduction

Gravity currents, also known as density currents, are buoyancy-
driven flows primarily in the horizontal direction (Huppert
2006). Gravity currents manifest in numerous situations, either
as a current of heavy fluid running beneath light ambient fluid,
or as a current of light fluid above heavy fluid. There are a number
of factors which cause variations in the density of fluid, including
temperature differentials, dissolved materials, and suspended
sediments. Lock-exchange flows, in which gravity currents are
produced from an instantaneous, finite buoyancy source and propa-
gate on a horizontal boundary, have drawn much attention in the
literature, e.g., Shin et al. (2004), Marino et al. (2005), Cantero et al.
(2007), and La Rocca et al. (2008). Gravity currents on a slope have
been considered less, but are also commonly encountered, such as
powder-snow avalanches (Hopfinger 1983) and spillage of hazard-
ous materials (Fannelop 1994). For more details about the diversity
of gravity currents in geophysical environments and engineering
applications, the readers are referred to Allen (1985) and Simpson
(1997).

Gravity currents down an inclined boundary can be produced
with a continuous inflow (Britter and Linden 1980; Garcia
1993, 1994) or with an instantaneous release of a finite volume
of heavy fluid (Beghin et al. 1981; Dai et al. 2012; Dai 2013).
For Boussinesq gravity currents produced from an instantaneous
buoyancy source propagating on an inclined boundary, Beghin et al.
(1981) reported that the gravity currents go through an acceleration
phase followed by a deceleration phase. Thermal theory for
Boussinesq gravity currents, which was developed therein follow-
ing the famous Morton et al. (1956), has been implemented in re-
lated gravity current problems, e.g., Dade et al. (1994) for sediment
deposition in gravity currents and Rastello and Hopfinger (2004)

for particle-entraining snow avalanches. However, the non-
Boussinesq effects were not included in these studies.

More recently, Maxworthy (2010) conducted a series of experi-
ments aiming at Boussinesq gravity currents in the deceleration
phase and proposed that the front location history follows a
power-relationship. For non-Boussinesq gravity currents, Lowe
et al. (2005) and Birman et al. (2005) studied lock-exchange prob-
lems on a horizontal boundary with experiments and numerical
simulations, respectively. But the geometric configuration makes
their problem qualitatively different from that set forth in Beghin
et al. (1981) in which thermal theory applies.

Non-Boussinesq gravity currents, in which the density contrasts
are relatively larger, are important in quite a few situations. Dense
gases are often stored as liquids at low temperatures, and these
gases on release could have densities more than twice that of
the ambient air. Powder-snow avalanches contain suspended snow
grains, and the extra density of the suspended particles is large rel-
ative to that of air, even at low concentrations. Volcanic eruptions
produce suspended ash and rocks which often take the form of
gravity currents. Basically, the Boussinesq approximation does
not hold for gravity currents driven by particles in the air when
the particle concentration exceeds a few percent (Ancey 2004).
Particulate gravity currents can also have considerable destructive
potential, e.g., pyroclastic flows and snow avalanches, and under-
standing the flow dynamics is important for risk assessment in
nearby regions (Gladstone et al. 2004). Unlike flows driven by par-
ticles in the air, turbidity currents with high sediment concentra-
tions in the water owing to extreme precipitation events may
still be considered in the Boussinesq regime (Jacobson and Testik
2013). Previous studies of gravity currents down an inclined boun-
dary have neglected the non-Boussinesq effects. In this study, the
author derived the thermal theory for non-Boussinesq gravity cur-
rents produced from an instantaneous buoyancy source propagating
on an inclined boundary. The influence of non-Boussinesq effects
is discussed for the first time with the help of analytical solutions.

Thermal Theory

The configuration of the problem is sketched in Fig. 1. Here the
nomenclature primarily follows Beghin et al. (1981) for the reader’s
convenience. The density of ambient fluid is taken as ρ0 and the
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density of heavy fluid in the lock region is ρ1, where
ϵ ¼ ðρ1 − ρ0Þ=ρ0. The cross-sectional area of the lock, which rep-
resents the amount of heavy fluid in the lock, is A0 ¼ h0l0, where
h0 and l0 are the height and length of the lock, respectively. After an
instantaneous removal of the lock gate, the gravity current front
develops, and the gravity current head approximately takes a
semielliptical shape with a height-to-length aspect ratio,
k ¼ H=L. Reported values of k range from 0.20 when θ ¼ 5° to
0.53 when θ ≈ 90°, where θ is the slope angle (Beghin et al.
1981). It should be pointed out that the semielliptical shape
assumption for the head may not be valid for the non-Boussinesq
case with extreme density contrasts. In such a case, the flow pat-
terns may change from a cloud to a wedge shape (Bonometti et al.
2008), and the mixing between the fluids is very limited.

The convection of gravity current is driven by the heavy fluid
contained within the head. Therefore, the linear momentum
equation takes the form

dðρþ kvρ0ÞS1HLU
dt

¼ B sin θ ð1Þ

where ρ = density of mixed fluid in the head; U = mass-center
velocity of the head; t = time; kv ¼ 2k = added mass coefficient
(Batchelor 1967); S1 ¼ π=4 = shape factor by which the cross-
sectional area of the semielliptical head is defined as S1HL, and
B ¼ gðρ − ρ0ÞS1HL denotes the buoyancy that is related to the
amount of heavy fluid contained in the head. It may be assumed
that the amount of heavy fluid in the head is represented by χA0,
i.e., only a fraction χ of heavy fluid in the lock is contained in the
head, and the buoyancy is

B ¼ χgðρ1 − ρ0ÞA0 ð2Þ

where Beghin et al. (1981) assumed that χ ¼ 1, and Maxworthy
(2010) experimentally found that 0.25 ≲ χ≲ 0.55 in the deceler-
ation phase. Typically, the parameter χ should be determined by
experiments and cannot be evaluated based on theoretical argu-
ments. As such, χ is left unspecified in our framework. Friction
on the slope has been considered minor and can be neglected
for slope angles greater than a few degrees (Beghin et al. 1981;
Ross et al. 2006). With turbulent entrainment assumptions (Ellison
and Turner 1959), the mass conservation takes the form

d
dt

ðS1HLÞ ¼ S2ðHLÞ1=2αU ð3Þ

where S2 ¼ ðπ=23=2Þð4k2 þ 1Þ1=2=k1=2 is another shape factor by
which the circumference of semielliptical head is defined as
S2ðHLÞ1=2, and α is the entrainment coefficient.

From Eq. (3)

H ¼ 1

2

S2
S1

k1=2αx and L ¼ 1

2

S2
S1

k−1=2αx ð4Þ

where x = distance from the virtual origin to the mass-center of
gravity current head. The virtual origin is located x0 beyond the
initial mass-center location of the heavy fluid and can be identified
by extrapolating the head height in the upslope direction. Please
note that x0α0 ≈ Oðh0Þ, where α0 is the angle of growth. Accord-
ing to Beghin et al. (1981), if the buoyancy could be released
with a shape similar to the developed state and with appropriate
vorticity, then x0 would just be the distance from the virtual origin
to the position of release. However, this is not possible in practice,
and the initial state is situated somewhat downstream of the re-
lease gate.

The entrainment coefficient, α, is related to the angle of growth,
α0, through α0 ¼ dH=dx, i.e., α ¼ ½2S1=S2k1=2�α0. Upon substi-
tution of Eq. (4) into Eq. (1) and using U ¼ dx=dt, the momentum
equation becomes

U
d
dx

ðx2UÞ þ ϵ

�
χ
2

π
k

1þ 2k
A0

α2
0

�
dU2

dx
¼ C ð5Þ

where

C ¼ 4

π
k

1þ 2k
1

α2
0

χB 0
0 sin θ with B 0

0 ¼ ϵgA0 ð6Þ

is the driving force term. It should be pointed out that Eqs. (1) and
(5) are consistent with Beghin et al. (1981) and related studies for
the Boussinesq case except the second term on the left hand side of
Eq. (5), which represents the influence of density difference on the
inertia term and has been neglected in previous works.

Boussinesq Case

Eq. (5) may be rearranged in the following form:

2xU2 þ
�
1

2
x2 þ ϵ

�
χ
2

π
k

1þ 2k
A0

α2
0

��
dU2

dx
¼ C ð7Þ

after expanding the first term on the left hand side of Eq. (5).
When the density difference is sufficiently small such that
ϵ ≪ πð1þ 2kÞα2

0x
2=4χkA2

0, the second term on the left hand side
of Eq. (7) can be approximated as 0.5x2dU2=dx, although the right
hand side of Eq. (7) remains unchanged. In other words, the influ-
ence of the density difference on the inertia term is neglected,
although its influence on the driving force term is retained, namely,
the Boussinesq case. In this case, the author derived an analytical
solution of the form

U2 ¼ U2
0

�
x0
x

�
4

þ 2

3
C
1

x

�
1 −

�
x0
x

�
3
�

ð8Þ

which is identical to the solution given by Beghin et al. (1981)
[cf. Eq. (5) therein].

It is worthy to note the condition under which the Boussinesq
approximation can be applied, i.e., ϵ ≪ πð1þ 2kÞα2

0x
2=4χkA2

0.
Because x0α0 ≈ Oðh0Þ and πð1þ 2kÞh20=4χkA2

0 ≈ Oð1Þ, the
aforementioned condition for the Boussinesq approximation is
equivalent to ϵ ≪ Oðx2=x20Þ. However, a quantitative relationship
between ϵ and x0 is not likely to be built simply based on theoretical
arguments without laboratory experiments.

When the buoyancy is released with a quiescent initial condi-
tion, i.e., U0 ¼ 0, the gravity current reaches its maximum velocity

h 0

l0
L

H

  origin
virtual 

θ

g

x f

x

Fig. 1. Sketch of a gravity current produced from a buoyancy source of
A0 ¼ h0l0 propagating down a slope which makes an angle θ with the
horizontal; the gravity current is assumed to have a semielliptical shape,
also known as the thermal cloud, with height H and length L; rectan-
gular box represents the initial finite buoyancy
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at x=x0 ¼ 41=3. In other words, for 1 ≤ x=x0 ≤ 41=3, the gravity
current is in the acceleration phase, and for x=x0 ≥ 41=3, the gravity
current is in the deceleration phase.

For sufficiently large values of x such that x=x0 ≫ 1 and with
U0 ¼ 0, the solution [Eq. (7)] approaches the following asymptote:

U ¼
ffiffiffi
2

p
ffiffiffi
3

p ffiffiffiffi
C

p
x−1=2 ð9Þ

which can be integrated using U ¼ dx=dt as

x3=2 ¼
ffiffiffi
3

p
ffiffiffi
2

p ffiffiffiffi
C

p
ðtþ t0Þ ð10Þ

where t0 = integration constant.
Because the front location of the gravity current is a more

readily measurable quantity, it is sometimes convenient and desired
to write the solution in terms of the front location, xf. Using the
geometric relation xf ¼ xþ L=2, the front location, xf , is related
to the mass-center location x through

xf ¼
�
1þ α0

2k

�
x ð11Þ

If the front location is used rather than the location of the
mass-center, Eq. (9) becomes

x3=2f ¼ K3=2
B χ1=2B 01=2

0 ðtþ t0Þ ð12Þ

where KB is expressed in terms of k, α0, and θ as

KB ¼
�
6

π

�
1=3

�
1þ α0

2k

��
k sin θ

ð1þ 2kÞα2
0

�
1=3

ð13Þ

Here, it is noted that the relationship between the front location
and time [Eq. (12)] is equivalent to the asymptotic form of the
velocity in the deceleration phase [Eq. 8)].

Non-Boussinesq Case

Without the Boussinesq approximations, the influence of density
variation on the inertia term, OðϵÞ, is retained, and the following
closed-form solution is derived:

U2 ¼ U2
0

�
1

2
x20 þ ϵAQ

�
2
�
1

2
x2 þ ϵAQ

�−2

þ C

�
1

6
ðx3 − x30Þ − ϵAQðx − x0Þ

��
1

2
x2 þ ϵAQ

�−2
ð14Þ

where U0 = initial mass-center velocity and AQ ¼ 2χkA0=
ð1þ 2kÞπα2

0.
When the buoyancy is released with a quiescent initial

condition, i.e., U0 ¼ 0

U
ffiffiffiffiffi
x0

p
ffiffiffiffi
C

p ¼
�
1

6

�
x
x0

�
3
�
1 −

�
x0
x

�
3
�
þ δ

�
x
x0

��
1 −

�
x0
x

���
1=2

×

�
x0
x

�
2
�
1

2
þ δ

�
x0
x

�
2
�−1

ð15Þ

and the location at which a gravity current reaches its maximum
velocity, ðxm=x0Þ, is found through dU=dx ¼ 0, i.e.,

�
xm
x0

�
4

þ 12δ

�
xm
x0

�
2 − ð4þ 24δÞ

�
xm
x0

�
− 12δ2 ¼ 0 ð16Þ

where δ ¼ ϵAQ=x20, named as effective density difference by the
author, is a dimensionless parameter characterizing the non-
Boussinesq effects. The Boussinesq case can be interpreted
as δ → 0.

Here, the author gives an estimate for the typical values of δ in
different circumstances. Because x0α0 ≈ Oðh0Þ and AQ=x20 ≈
Oð1Þ, it is estimated that δ ≈ OðϵÞ. Depending on how the gravity
currents are produced, the parameter δ assumes a wide range of val-
ues in different situations. For example, dense gases are typically
stored as liquids with density in the range of 410–500 kg=m3 at
low temperatures, and on release into the atmosphere, these gases
could have densities more than twice that of the ambient air,
i.e., δ ≳ 1. Powder-snow avalanches contain snow grains of which
the particle concentration varies between 0.1 and 7%, and the effec-
tive density difference varies approximately in the range of
0.5≲ δ ≲ 30. Volcanic eruptions often result in gravity currentswith
suspended ash and rocks, of which the density of particles ranges
approximately from 700 to 3,200 kg=m3, and the resulting effective
density difference is significantly higher, δ > 50. Sediment-laden
rivers often form gravity currents in a lake or reservoir, and the sedi-
ment concentrations can result in δ ≲ 0.4. In essence, the effective
density difference gives a measure of the non-Boussinesq effects.

Fig. 2 shows ðxm=x0Þ versus δ and in the limit as δ → 0,
ðxm=x0Þ → 41=3. It is shown from the thermal theory that the
acceleration phase distance is extended for non-Boussinesq gravity
currents released with zero momentum.

For sufficiently large values of x such that x=x0 ≫ 1, Eq. (14)
becomes

U
ffiffiffiffiffi
x0

p
ffiffiffiffi
C

p ≈
�
1

6

�
x
x0

�
3

þ δ

�
x
x0

��
1=2

�
x0
x

�
2
�
1

2
þ δ

�
x0
x

�
2
�−1

ð17Þ

and when x2=x20 ≫ 6δ, the solution approaches

U
ffiffiffiffiffi
x0

p
ffiffiffiffi
C

p ≈
ffiffiffi
2

p
ffiffiffi
3

p
�
x0
x

�
1=2

ð18Þ

which is the same asymptote as Eq. (8).
It is apparent that for non-Boussinesq gravity currents, the

asymptote [Eq. (8)] and consequently Eq. (9) are approached
for sufficiently large values of x such that x=x0 ≫ 1 and
x2=x20 ≫ 6δ. To show the non-Boussinesq effects, Fig. 3 shows
~U ¼ Ux1=20 =C1=2 versus x=x0, and Fig. 4 shows ðx=x0Þ3=2 versus
~t ¼ tC1=2=x3=20 for δ ¼ 0, 0.5, 1, 2, 3. There is no question that
~U ∼ ðx=x0Þ−1=2, and the relationship in Eq. (12) are approached
for sufficiently large values of x. However, it is interesting to

~

x / x0

x / x0

U

~ (            )
−1/2

δ = 0

0.5
1
2

3

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 0.0
 1.5 3.5 4.5 1.0 2.0 3.0  4.0 5.0 2.5

Fig. 2. ðxm=x0Þ3=2 versus δ; the gravity current reaches its maximum
velocity at ðxm=x0Þ; in the limit as δ → 0, ðxm=x0Þ → 41=3
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observe that the non-Boussinesq gravity currents tend to approach
the asymptotes less rapidly than the Boussinesq gravity currents
ðδ → 0Þ. As clearly shown in Fig. 4, the relationship [Eq. (12)]
is approached in the deceleration phase more rapidly when
δ → 0 than in other cases when δ ¼ 1, 2, 3.

Summary

In this study the author derived the thermal theory for non-
Boussinesq gravity currents produced from an instantaneous buoy-
ancy source propagating on an inclined boundary. For Boussinesq
gravity currents propagating on a slope, the front location follows a
relationship [Eq. (12)] when the gravity current is sufficiently far
into the deceleration phase. For non-Boussinesq gravity currents
produced from an instantaneous buoyancy source, the acceleration
phase distance is extended. When the gravity current is sufficiently
far into the deceleration phase, the author showed that the non-
Boussinesq gravity currents approach similar asymptotes in the
deceleration phase as Boussinesq gravity currents, but the approach
is less rapid.
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