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a  b  s  t  r  a  c  t

The  power-law  for gravity  currents  on  slopes  is  essentially  an
asymptotic  form  of  the  solution  of thermal  theory  developed  in
Beghin,  Hopfinger,  and  Britter  (J.  Fluid  Mech.  107  (1981)  407–422),
when  the  gravity  current  is  sufficiently  far  into  the  deceleration
phase. The  power-law  not  only  describes  the  long-term  front  loca-
tion  versus  time  relationship  but  also  provides  a  useful  means  to
estimate  the  buoyancy  contained  in  the gravity  current  head.  How-
ever,  the  hypothesis  that  gravity  current  is sufficiently  far into  the
deceleration  phase  is  hardly  satisfied  in experiments.  In  this  paper,
we  re-formulated  the  power-law,  considering  the  influence  of  bot-
tom  friction,  and  supplement  the  formulation  by  proposing  a cor-
rect  version  of  the power-law.  When  the  gravity  current  is  not  suffi-
ciently  far  into  the deceleration  phase,  we  showed  that  the  power-
law  still  robustly  describes  the  front  location  versus  time  relation-
ship,  but  the  amount  of  heavy  fluid  in  the  head  can  be easily  under-
estimated.  The  underestimation  of  heavy  fluid  in  the  head  also
depends  on  where  the  gravity  current  is  in the  deceleration  phase.
Therefore,  a correction  factor  is suggested  according  to  the  location
of  gravity  current.  The  amount  of  heavy  fluid  in  the  head,  when  esti-
mated  by  the  power-law,  should  be understood  as  the  ‘effective’
buoyancy  in  driving  the  gravitational  convection  and  is  deemed  as
a  lower  limit  for  the  estimation  of  buoyancy  contained  in  the  head.

© 2013 Elsevier B.V. All rights reserved.

1. Introduction

Gravity currents, also known as density currents, are gravitationally driven flows due to a den-
sity difference. A number of factors that are likely to cause variations in the density of fluid include
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temperature differentials, dissolved and suspended materials, such as salt and suspended sediments.
Lock-exchange flows, in which gravity currents are produced from an instantaneous, finite buoyancy
source and propagate on a horizontal boundary, have drawn much attention in the literature (see,
for example, Shin et al., 2004; Marino et al., 2005; Cantero et al., 2007). Gravity currents on a slope
have been considered less, but are also commonly encountered, such as powder-snow avalanches
(Hopfinger, 1983) and spillage of hazardous materials (Fannelop, 1994). On a point of terminology,
gravity currents on a slope is more precisely described as a ‘thermal cloud’, ‘gravity cloud’, or ‘boluse’
because the flow is more like a cloud with some tail following. In the literature, the terms are used
interchangeably and the general term gravity current is adopted here to be consistent with the recently
published work by Maxworthy (2010). For more details about the diversity of gravity currents in geo-
physical environments and engineering applications, the readers are referred to Allen (1985), Fannelop
(1994), and Simpson (1997).

Perhaps the best-known publication on the gravity currents produced from instantaneous buoy-
ancy sources propagating on slopes is due to Beghin et al. (1981). When the buoyancy closed in the
lock is instantaneously released on a slope, the produced gravity currents go through an acceleration
phase followed by a deceleration phase, according to the front velocity history. Thermal theory, which
was developed therein following the famous Morton et al. (1956), has formed the basis for related
gravity current studies (see, for example, Dade et al., 1994; Rastello and Hopfinger, 2004). Recently, a
series of experiments aiming at gravity currents in the deceleration phase was  reported in Maxworthy
(2010) and the power-law which describes the front location versus time relationship and gives an
estimate for the amount of heavy fluid contained in the head in the deceleration phase was proposed
therein. As will be shown in the following section, the power-law for gravity currents in the decel-
eration phase is essentially an asymptotic form of the solution of thermal theory when the gravity
current is sufficiently far into the deceleration phase, while in fact, this hypothesis is hardly satisfied
in experiments. Nonetheless, it was reported that the power-law is robust (Maxworthy, 2010) even
when this hypothesis is not satisfied, which begs the following questions: how could the power-law
possibly be robust when the gravity current is not sufficiently far into the deceleration phase and,
more importantly, when applied in this situation, does the power-law provide an accurate estimate
for the amount of heavy fluid contained in the gravity current head?

This paper provides the answers to these questions and is organized as follows. The detailed deriva-
tion of power-law, including the influence of bottom friction, is presented in Section 2. The expression
for an important model constant KB, which helps determine the amount of heavy fluid contained in
the gravity current head, was incorrect in Maxworthy (2010) and is corrected here. The power-law
method used to estimate the amount of heavy fluid in the head is introduced in Section 3 and a cor-
rection factor is suggested when the gravity current is not sufficiently far into the deceleration phase.
Conclusions are drawn in Section 4.

2. Derivation of the power-law

The configuration of the problem of a gravity current propagating on a slope is sketched in Fig. 1.
Here the nomenclature mainly follows Beghin et al. (1981) for the reader’s convenience. The den-
sity of ambient fluid is taken as �0 and the density of heavy fluid in the lock region is �1, where
� = ��1/�0 = (�1 − �0)/�0. The cross-sectional area of the lock, which equivalently represents the
amount of heavy fluid in the lock, is A0 = h0 × l0. After an instantaneous removal of the lock gate,
the gravity current front develops and the gravity current head approximately takes a semi-elliptical
shape with height to length aspect ratio k = H/L.

The convection of gravity current is driven by the heavy fluid that is contained within the head.
Therefore, the linear momentum with bottom friction term takes the form

d(� + kv�0)S1HLU

dt
= Bsin� − Cf �U2L, (1)

where � is the density of mixed fluid in the head, U is the mass-center velocity of the head, t is the
time, kv = 2k is the added mass coefficient (Batchelor, 1967), S1 = �/4 is a shape factor (Beghin et al.,
1981) by which the cross-sectional area of the semi-elliptical head is defined as S1HL,  Cf is the friction
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Fig. 1. Gravity current generated from an instantaneous buoyancy source propagating on a slope inclined at an angle of �. The
buoyancy is confined in the shaded region with dimensions of h0 × l0. At t = 0, the buoyancy is released from quiescent condition
and  allowed to propagate downslope. H and L are the height and length of the gravity current head. The ‘virtual origin’, which
is  defined through extrapolation of H, is located x0 beyond the initial mass-center location of the heavy fluid. The angle of
growth, ˛0, is defined by the line joining the gravity current heights, i.e. dH/dxf . The front location is denoted by xf and the head
mass-center location is denoted by x, where the distances are all measured from the ‘virtual origin’.

coefficient on the bottom, which is approximately Cf ≈ 10−2 for a rough boundary and Cf ≈ 2 ×10−3

for a saline cloud (Rastello and Hopfinger, 2004), and B = g(� − �0)S1HL denotes the buoyancy that is
related to the amount of heavy fluid contained in the head. Here it is assumed that a fraction � of
heavy fluid in the lock is contained in the head, i.e.

B = �g��1A0, (2)

where � = 1 was assumed in Beghin et al. (1981) and � < 1 was  reported in Maxworthy (2010). With
turbulent entrainment assumptions (Ellison and Turner, 1959), the mass conservation takes the form

d

dt
(S1HL)  = S2(HL)1/2˛U, (3)

where S2 = (�/23/2)(4k2 + 1)
1/2

/k1/2 is another shape factor (Beghin et al., 1981) by which the cir-
cumference of semi-elliptical head is defined as S2(HL)1/2 and  ̨ is the entrainment coefficient.

From (3)

H = 1
2

S2

S1
k1/2˛x and L = 1

2
S2

S1
k−1/2˛x, (4)

where x is the distance from the ‘virtual origin’ to the mass-center of gravity current head. The ‘virtual
origin’ is located x0 beyond the initial mass-center location of the heavy fluid. In practice, the initial
state of the thermal cloud is situated somewhat downstream of the release gate (Beghin et al., 1981).
Please note that here the distances are all measured from the ‘virtual origin’ so an additive constant
of x0 for all the distances is not needed.

Since the front location of the gravity current is a more readily measurable quantity, it is desired
to rewrite the solution in terms of the front location, xf. Using the geometric relation xf = x + L/2 and
the identity  ̨ = [2S1/S2k1/2]˛0 for the angle of growth ˛0, the following relationship, which translates
from the mass-center coordinate system to that using the front location, is derived as

xf =
(

1 + ˛0

2k

)
x. (5)

Upon substitution of (4) into (1) and using U = dx/dt,  the momentum equation becomes

U
d

dx
(x2U) + �

(
�

2
�

k

1 + 2k

A0

˛2
0

)
dU2

dx
= C − Cf xU2

(1 + 2k)˛0S1
[1 + O(�)], (6)
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where

C = 4
�

k

1 + 2k

1
˛0

2
�B′

0sin� with B′
0 = �gA0, (7)

is the driving force term. Here the O(�) arises because the friction term in (1) is approximated by
Cf�0U2L and the difference is of the order of magnitude O(�) = O((� − �0)/�0). With the Boussinesq
approximations, that the influence of density variation on the inertia term, O(�), is neglected but the
driving force term, O(�g), is retained, the following closed-form solution is derived

U2 = U2
0

(
x0

x

)4+2Cf /(1+2k)˛0S1
+ 2

3 + 2Cf /(1 + 2k)˛0S1
× C

1
x

[
1 −

(
x0

x

)3+2Cf /(1+2k)˛0S1
]

, (8)

where U0 is the initial mass-center velocity. Transforming (8) into the coordinate system using front
location, we have

U2
f = U2

f 0

(
xf 0

xf

)4+2Cf /(1+2k)˛0S1

+ 2
3 + 2Cf /(1 + 2k)˛0S1

× C
(

1 + ˛0

2k

)3 1
xf

[
1 −

(
xf 0

xf

)3+2Cf /(1+2k)˛0S1
]

, (9)

where Uf0 is the initial front velocity and xf0, i.e. xf0 = (1 + ˛0/2k)x0, is the distance from the ‘virtual
origin’ to the initial front location.

If the gravity current starts from a quiescent initial condition, the solution (9) can be further
simplified when the gravity current is sufficiently far into the deceleration phase, i.e. when xf/xf0 � 1,

Uf =
[

2
(3 + 2Cf /(1 + 2k)˛0S1)

]1/2

C1/2
(

1 + ˛0

2k

)3/2
xf

−1/2. (10)

Upon integration, (10) can be rewritten in the following form with an integration constant t0

xf = KB�1/3B′
0

1/3(t + t0)2/3 or xf
3/2 = KB

3/2�1/2B′
0

1/2(t + t0), (11)

where

KB =
(

36
6� + 4�Cf /(1 + 2k)˛0S1

)1/3 (
1 + ˛0

2k

)[
ksin�

(1 + 2k)˛0
2

]1/3

. (12)

It is worthy to point out that in Maxworthy (2010), KM = KB�1/3. Please note that the power-law
(11) is equivalent to the asymptotic form of the front velocity in the deceleration phase, i.e.

Uf xf
1/2

B′
0

1/2
= 2

3
KM

3/2, (13)

which is consistent with that given by Beghin et al. (1981).
When the front location and time are plotted as xf

3/2 against t, KM
3/2B′

0
1/2 represents the slope of the

linear regression line and can be deduced directly from the experimental data. Meanwhile, the slope
of the linear regression line would be KB

3/2B′
0

1/2 if the gravity current head were to contain the full
charge of buoyancy in the lock. Here the solution of KB, (12), does not converge to that presented as (3.4)
in Maxworthy (2010) even when Cf = 0. Where the difference between (12) and (3.4) in Maxworthy
(2010) really comes from is not immediately apparent from viewing the two  expressions. However,
the power-law certainly was derived from the thermal theory, therefore the expression for KB has to
be corrected here.

As reported in Beghin et al. (1981), the aspect ratio of ‘thermal cloud’ can increase from k ≈ 0.17 to
0.53 and the entrainment coefficient can increase from  ̨ ≈ 0.081 to 0.59 as the bottom slope increases
from 0◦ to 90◦. It would not be possible to show directly the dependence of KB on � without explicit
relationships of k(�) and ˛0(�). Here both k and ˛0, are measured quantities that depend on the slope
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Fig. 2. Functional dependence of KB on k and ˛0 at different friction coefficients Cf . Panel (a): KB versus k while ˛0 = 0.0336;
panel (b), KB versus ˛0 while k = 0.25. Solid line represents KB according to (12) with Cf = 0; dash-dot line (-·-) represents KB

with Cf = 2 ×10−3; dotted line (· · ·) represents KB with Cf = 10−2. Dashed line represents KB from (3.4) in Maxworthy (2010). The
bottom slope is set at � = 10.6◦ for illustrative purposes.

angle. To illustrate the functional dependence of KB on k and ˛0, Fig. 2(a) shows KB for 0.1 ≤ k ≤ 0.5
while ˛0 is fixed; Fig. 2(b) shows KB for 0.1 ≤ ˛0 ≤ 0.5 while k is fixed. For illustrative purposes, friction
coefficients Cf = 0, 2 × 10−3, 10−2 are chosen, the bottom slope is set at � = 10.6◦, the angle of growth
is set at ˛0 = 0.0336 in Fig. 2(a), and the aspect ratio is set at k = 0.25 in Fig. 2(b). Since both k and ˛0
increase with increasing bottom slope, KB should not be interpreted as either monotonically increasing
or decreasing with slope angle.

3. Estimation for the buoyancy in gravity current head

The power-law (11) provides a useful means for the estimation of the buoyancy contained in gravity
current head. When xf

3/2 is plotted against t, the numerical value of coefficient KM can be derived using
linear regression of the front location data in the deceleration phase. The fraction of heavy fluid that
is contained in the gravity current head, �, is estimated via

� =
[

KM

KB

]3
. (14)

In other words, KM = KB would indicate the gravity current head carrying the full amount of heavy
fluid in the lock into the deceleration phase. Note here that the estimate for KM has influence not only
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Table 1
KA derived from the solution of (15), as shown in Fig. 3(b), in different ranges of xf/xf0. The power-law is of the form (xf /xf 0)3/2 =
KA

3/2(t̃ + t̃0), where t̃0 is the t̃-intercept. Here the model equation is designed such that KB = 1. (1 − R2)-value of linear regression
is  also listed for reference.

Range of xf/xf0 KA t̃0 [KA/KB]3 1 − R2

2.0–2.5 0.969 0.300 0.911 1.792 × 10−5

2.5–3.0 0.984 0.213 0.952 3.248 × 10−6

2.0–3.0 0.977 0.258 0.934 3.176 × 10−5

3.0–3.5 0.990 0.161 0.971 8.132 × 10−7

3.5–4.0 0.994 0.126 0.981 2.521 × 10−7

3.0–4.0 0.992 0.144 0.976 1.840 × 10−6

4.0–4.5 0.996 0.102 0.987 9.114 × 10−8

4.5–5.0 0.997 0.084 0.991 3.698 × 10−8

4.0–5.0 0.996 0.093 0.989 2.341 × 10−7

on the estimation for the buoyancy in the head but also on the front velocity in the deceleration phase,
cf. (13).

However, mindful that in addition to the correction made on KB, the derivation of power-law (11)
is not possible without an important hypothesis, i.e. xf/xf0 � 1, which is in fact not really attained in
experiments. As an example, the experiment 18/9/07 reported in Fig. 16 of Maxworthy (2010) shows
that the front location is in the limited range of 1.0 ≤ xf/xf0 � 3.0 and the power-law is approached for
the front location approximately in the range of 2.0 � xf/xf0 � 3.0. This reported observation begs the
following questions: how could the power-law be robust when the gravity current is not sufficiently far
into the deceleration phase? More importantly, how accurate is the estimation of buoyancy contained
in the head provided by the power-law when applied in this situation?

To answer the proposed questions, we consider a model equation, cf. (9),

Ũ2
f =

(
2
3

)2
(

xf 0

xf

)[
1 −

(
xf 0

xf

)3
]

, (15)

where the (̃) denotes dimensionless variables and the gravity current is assumed to start from a quies-
cent initial condition. Here the length and time scales are chosen as A0

1/2 and A0
1/4/(�g)1/2, respectively.

The influence of bottom friction is minor and is neglected in (15) for illustrative purposes. Without loss
of generality, here we assume that � = 1. The coefficient (2/3)2 in the model equation (15) is chosen
such that KB = 1. While in Maxworthy (2010) KM is used to designate the experimental or measured
value, here we use KA in place of KM in the power-law to ease the confusion on whether the power-law
is applied to experimental or theoretically derived results.

Fig. 3 shows the front velocity versus front location and (xf/xf0)3/2 versus t̃  that are solved numeri-
cally from the model equation (15). It is evident from Fig. 3(a) that the asymptotic relationship for the
front velocity, i.e. Ũf = (2/3)(xf /xf 0)−1/2, is not strictly observed until xf/xf0 � 5.0 and the front location
and time relationship follows the power-law (11) with KA = 1 only when t̃ � 8.0, as illustrated by the
dashed line in Fig. 3(b). For a limited range of xf/xf0, that is shorter than xf/xf0 ≈ 5.0, the power-law still
seems to work but the numerical value of coefficient KA becomes less than unity.

The numerical solution to (15) is then used to validate the power-law. When (xf/xf0)3/2 is plotted
against t̃, KA and t̃0 can be deduced from the slope of the linear regression line and the t̃-intercept,

respectively. Table 1 lists the numerical value of KA and
[
KA/KB

]3
, that are derived from the power-law

when applied to the solution of model equation (15) in a limited range of xf/xf0 as listed. When applied
in a limited range of front location, the power-law appears to be very robust even when xf/xf0 < 5.0,
as elucidated by the (1 − R2)-value. Note that KA approaches to unity as xf/xf0 increases and when

xf/xf0 � 5.0, the estimated fraction of heavy fluid in the head,
[
KA/KB

]3
, is expected to be less than

unity by within 1%. However, as opposed to our assumption of � = 1, the estimated fraction of heavy
fluid in the gravity current head is less than unity by as much as 7% when the power-law is applied to
the front location in the range of 2.0 ≤ xf/xf0 ≤ 3.0, as an example. Of course, [KA/KB]3 should approach
to unity if the hypothesis xf/xf0 � 1 is satisfied, as shown by the dashed line in Fig. 3(b). However,
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Fig. 4. The fraction of heavy fluid contained in the head, �, versus slope angle, �. � is estimated via (14) using the data provided
in  Beghin et al. (1981) where KM is back calculated via (13) and KB is computed using the measured quantities provided therein.
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due to the application of power-law to a limited range of xf/xf0, the estimated fraction of heavy fluid
in the head falls below unity. The power-law (11) provides a robust means for the estimation of
heavy fluid in the gravity current head, nevertheless, the amount of heavy fluid in the head could
be easily underestimated when the gravity current is not sufficiently far into the deceleration phase.
To remedy the underestimation, we could multiply the estimated fraction by a correction factor, i.e.
[KB/KA]3, when the power-law is approached for the front location in the ranges as listed.

It would also be of interest to analyse how the value of � varies with bottom slope. Using the
data provided for Uf xf

1/2/B′
0

1/2 and other measured quantities in Beghin et al. (1981), it is possible
to back calculate KM and KB and estimate �. Fig. 4 shows the dependence of � on �. For the whole
range of slope angles considered therein, i.e. 5◦ � � ≤ 90◦, it is evident that the fraction of heavy fluid
contained in the head exceeds 75%. In the subrange 5◦ � � � 10◦, it is likely that the fraction increases
with increasing slope angle, while in the subrange 10◦ � � ≤ 90◦, the fraction falls within 0.9 < � < 1.0
and appears to slightly decrease with increasing slope angle. Considering the original experiments and
measurements might be subject to uncertainties, more precise estimates for � await further studies.

4. Conclusions

The power-law for gravity currents on slopes is essentially an asymptotic form of the solution of
thermal theory, when the gravity current is sufficiently far into the deceleration phase. The power-law
not only describes the front location versus time relationship but also provides a robust means for the
estimation of heavy fluid contained in the gravity current head. The expression for an important model
constant KB in the formulation is now corrected.

The hypothesis that gravity current is sufficiently far into the deceleration phase is usually not
satisfied in experiments. Even though the power-law still works in this situation, the derived constant
KM is easily underestimated and consequently so is the amount of heavy fluid contained in the head.
When the gravity current is not sufficiently far into the deceleration phase, the shortcoming of under-
estimation of KM can be remedied by multiplying a correction factor according to where the gravity
current is in the deceleration phase.

It is worthy to point out that the power-law method is based on the momentum equation. The
amount of heavy fluid in the head estimated with the power-law should be understood as the ‘effective’
buoyancy that plays the role as the driving mechanism for the ‘thermal cloud’ convection. In other
words, the amount of heavy fluid in the head so estimated is deemed as a lower limit for the estimation.
As shown in previous work (e.g. Dai et al., 2012), the gravity current head may  contain more heavy
fluid in the head region as part of it is so diluted or dissipated from the moving head and is considered
‘ineffective’ in driving the gravitational convection of ‘thermal cloud’.
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