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High-resolution simulations of unstable cylindrical gravity currents when wandering and splitting
motions occur in a rotating system are reported. In this study, our attention is focused on the situation
of unstable rotating cylindrical gravity currents when the ratio of Coriolis to inertia forces is larger,
namely, 0.5 ≤ C ≤ 2.0, in comparison to the stable ones when C ≤ 0.3 as investigated previously
by the authors. The simulations reproduce the major features of the unstable rotating cylindrical
gravity currents observed in the laboratory, i.e., vortex-wandering or vortex-splitting following the
contraction-relaxation motion, and good agreement is found when compared with the experimental
results on the outrush radius of the advancing front and on the number of bulges. Furthermore, the
simulations provide energy budget information which could not be attained in the laboratory. After
the heavy fluid is released, the heavy fluid collapses and a contraction-relaxation motion is at work for
approximately 2−3 revolutions of the system. During the contraction-relaxation motion of the heavy
fluid, the unstable rotating cylindrical gravity currents behave similar to the stable ones. Towards the
end of the contraction-relaxation motion, the dissipation rate in the system reaches a local minimum
and a quasi-geostrophic equilibrium state is reached. After the quasi-geostrophic equilibrium state,
vortex-wandering or vortex-splitting may occur depending on the ratio of Coriolis to inertia forces.
The vortex-splitting process begins with non-axisymmetric bulges and, as the bulges grow, the kinetic
energy increases at the expense of decreasing potential energy in the system. The completion of vortex-
splitting is accompanied by a local maximum of dissipation rate and a local maximum of kinetic energy
in the system. A striking feature of the unstable rotating cylindrical gravity currents is the persistent
upwelling and downwelling motions, which are observed for both the vortex-wandering and vortex-
splitting motions and were not previously documented for such flows. Depending on the Reynolds
number, the bulges around the circumference of the unstable rotating cylindrical gravity currents may
or may not develop into cutoff distinct circulations. The number of bulges is seen to be dependent on
the ratio of Coriolis to inertia forces but independent of the Reynolds number for the range of Reynolds
number considered in this study. Published by AIP Publishing. https://doi.org/10.1063/1.5011070

I. INTRODUCTION

Gravity currents, also known as buoyancy or density cur-
rents, are ubiquitous phenomena in natural and man-made
environments when fluid of one density flows into fluid of
a different density. The density difference between the fluids,
which may be attributed to temperature differentials, dissolved
materials, and suspended sediments, provides the driving force
for such flows. The readers are referred to Refs. 1 and 2 for
a comprehensive introduction to this topic and examples in
geophysical and industrial environments.

Gravity currents have been studied extensively in the
laboratory using lock-exchange experiments. In a typical lock-
exchange experiment, a horizontal channel with a rectangular
cross section is used and a vertical barrier is placed inside
the channel, where the two sides of the barrier are filled with
fluids of different densities. Removal of the barrier then sets
the two fluids into motion. Gravity currents produced in the
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typical lock-exchange experiments propagate as statistically
two-dimensional, planar gravity currents. Planar gravity cur-
rents have drawn the most attention and have been investigated
with the help of laboratory experiments (e.g., Refs. 3–13) and
numerical simulations (e.g., Refs. 14–19), to mention but a few.
There are also situations when the gravity currents are not con-
strained by the lateral walls but are allowed to spread radially
outward over the entire horizontal plane. In such situations, the
gravity currents propagate as statistically axisymmetric flows,
also known as cylindrical gravity currents. In contrast to the
planar gravity currents, experimental and computational inves-
tigations of the cylindrical gravity currents are comparatively
limited.3,4,20–28

In situations when the cylindrical gravity currents prop-
agate in a rotating system, the influence of the Coriolis force
may play a major role.29–33 A related example in oceanography
is the warm or cold core “ring,” “vortex” or “lens,”34–37 which
is a flow structure associated with an isolated mass of anoma-
lous water, significantly warmer or colder, saltier or fresher
than its surroundings and it is not uncommon that such vortices
can disintegrate into several pieces as discussed in Ref. 34.

1070-6631/2018/30(2)/026601/14/$30.00 30, 026601-1 Published by AIP Publishing.

https://doi.org/10.1063/1.5011070
https://doi.org/10.1063/1.5011070
https://doi.org/10.1063/1.5011070
mailto:hdai@ntu.edu.tw
http://crossmark.crossref.org/dialog/?doi=10.1063/1.5011070&domain=pdf&date_stamp=2018-02-08


026601-2 A. Dai and C.-S. Wu Phys. Fluids 30, 026601 (2018)

Such flows under the influence of the Coriolis force are
modeled in the laboratory by performing lock-exchange exper-
iments for cylindrical gravity currents on a rotating turntable.
For cylindrical gravity currents produced from a full-depth
cylindrical lock-release in a rotating system, the governing
parameter is the ratio of Coriolis to inertia forces, i.e.,

C =
Ω̃R̃0√
g̃′0H̃

, (1)

where Ω̃ is the angular velocity of the rotating system, R̃0 is
the radius of the cylindrical lock, H̃ is the depth of the fluid,
and g̃′0 is the reduced gravity.

In the experiments of Ref. 34, the heavy fluid is confined
inside the cylindrical lock, of which the depth is the same as
that of the light ambient fluid, so the vortex is formed on the
bottom once the lock is removed. It was reported that, when
C ≤ 0.37, the “bottom vortex” is stable in the sense that a
state of equilibrium, i.e., a steady-state lens, is approached.
Alternatively, when C > 0.37, the “bottom vortex” adjusts to a
quasi-geostrophic equilibrium state but then becomes unstable
in the sense that it may move around the centre of rotation,
i.e., vortex-wandering, or may break up into multiple distinct
circulations, i.e., vortex-splitting.

For stable cylindrical gravity currents in a rotating sys-
tem, i.e., “bottom vortex” when C ≤ 0.37, the problem using
laboratory experiments, shallow-water formulation, and finite-
difference numerical solutions of the axisymmetric Navier-
Stokes equations was investigated in Refs. 38–40. Following
the release of heavy fluid, Coriolis effects are negligible dur-
ing the initial one-tenth of a revolution of the system and
a maximum radius of propagation is reached in less than
half of a revolution of the system. Thereafter a contraction-
relaxation motion of the heavy fluid and a regular series of out-
wardly propagating new pulses were observed. The problem
by means of three-dimensional high-resolution simulations of
the Navier-Stokes equations and provided more in-depth flow
information, including the energy budgets and lobe-and-cleft
structure, during the adjustment process was investigated in
Ref. 28.

For unstable cylindrical gravity currents in a rotating sys-
tem, i.e., “bottom vortex” when C > 0.37, the “bottom vortex”
initially adjusts to a quasi-geostrophic equilibrium state and,
at this state, its radius is related to the ratio of Coriolis to inertia
forces by

R̃ − R̃0

R̃0
≈

1
2C

, (2)

as confirmed by Ref. 34. After adjustment, the “bottom vor-
tex” becomes unstable and exhibits non-axisymmetric bulges,
which grow to an amplitude such that they become cutoff
distinct circulations for sufficiently large ratio of Coriolis to
inertia forces. The number of bulges, m, is related to the ratio
of Coriolis to inertia forces by

m ≈ 3.6C, (3)

where m takes integer values only. Here m = 1 denotes the
vortex-wandering motion and m ≥ 2 denotes the vortex-
splitting motion. It was also confirmed by Ref. 34 that the

aspect ratio of the cylindrical lock, R̃0H̃−1, has unnoticed influ-
ence on the results. Experiments in which the fluid inside
the cylindrical lock is less dense than the environment so
the vortex is formed at the free surface, i.e., “surface vor-
tex,” rather than on the bottom were performed in Ref. 41.
It was found that the “surface vortex” is always unstable,
even when C ≤ 0.37. The stability of the “bottom vortex”
when C ≤ 0.37 to the action of the viscous Ekman layer at
the bottom was attributed in Ref. 41. The “surface vortex”
by direct numerical simulation was investigated in Ref. 42
and good agreement with the experiments in Ref. 41 was
found.

This study aims at deepening our understanding of
the unstable rotating cylindrical gravity currents, i.e., the
unstable “bottom vortex” when C > 0.37. In the labo-
ratory, the rotating experiments can provide the number
of bulges but there exist technical difficulties in obtain-
ing the time evolution of the whole density and velocity
fields, especially when vortex-wandering or vortex-splitting
occurs. Due to the non-axisymmetric nature of the unsta-
ble rotating cylindrical gravity currents, the detailed flow
information must be captured by means of three-dimensional
high-resolution simulations without imposed axisymmetry
conditions.

This study is also a continuation of the three-dimensional
high-resolution simulations of cylindrical gravity currents in
a rotating system reported by Ref. 28 but aims at inves-
tigating the problem in the parameter range of 0.5 ≤ C
≤ 2.0, in comparison to the stable rotating cylindrical grav-
ity currents in the parameter range of 0 ≤ C ≤ 0.3 reported
in Ref. 28. Specifically, C = 0.5, 0.75, 1.0, 1.25, 1.5, 1.75,
2.0 are considered in this study. The investigation is con-
ducted by means of three-dimensional high-resolution sim-
ulations of the incompressible variable-density Navier-Stokes
equations with the Coriolis term. With the detailed infor-
mation in the flow field, qualitative and quantitative mea-
sures for the formation of unstable rotating cylindrical gravity
currents are now shown more clearly for the first time. In
Sec. II, we describe the formulation of the problem and the
numerical procedure. The qualitative and quantitative results
are presented in Sec. III. Finally, conclusions are drawn
in Sec. IV.

II. FORMULATION

Figure 1 gives a sketch of the configuration for simulations
of cylindrical gravity currents produced by a full-depth lock-
release in a rotating system. The nomenclature follows Ref. 28
but for the reader’s convenience, the formulation is presented
here without being curtailed. The heavy fluid of density ρ̃1 is
confined in the cylindrical lock region of radius R̃0 and filled
to the same depth H̃ as the light ambient fluid outside the
cylindrical lock region. The density of the light ambient fluid
is ρ̃0. Here the radius of the cylindrical lock is chosen the
same as the depth of the fluid, i.e., R̃0 = H̃ . Before the release
of heavy fluid, the system of heavy fluid and light ambient
fluid is in solid-body rotation with constant angular velocity Ω̃
about the vertical axis x3 with a gravitational acceleration in the
antiparallel direction of x3. In tensor notation, the governing
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FIG. 1. Sketch of the initial condition for a cylindrical
gravity current, produced by a full-depth lock release, in
a rotating system. At t = 0, heavy fluid of density ρ̃1 is
confined in the cylindrical lock of which the radius is
R̃0 = H̃. Outside the cylindrical lock is the light ambient
fluid of density ρ̃0. Before the heavy fluid is released from
the lock, the system is in solid-body rotation with constant
angular velocity Ω̃ about the vertical axis x3. Removal of
the cylindrical lock sets the quiescent fluid, observed in
the rotating frame, into motion.

equations, with the Coriolis term and using the Boussinesq
approximation, take the form

∂uk

∂xk
= 0, (4)

∂ui

∂t
+
∂(uiuk)
∂xk

= ρeg
i −

∂p
∂xi
− 2CR−1

0 εijkeΩj uk

+
1

Re
∂2ui

∂xk∂xk
, (5)

∂ρ

∂t
+
∂(ρuk)
∂xk

=
1

ReSc
∂2ρ

∂xk∂xk
. (6)

Here ui denotes the velocity, ρ denotes the density, eg
i denotes

the unit vector in the direction of gravity, eΩj denotes the unit
vector in the direction of rotation, p denotes the pressure, and
εijk denotes the Levi-Civita symbol. Please note that the cen-
trifugal term is combined with the pressure term in (5) without
loss of generality. The set of Eqs. (4)–(6) has been made dimen-
sionless by the lock height, H̃, as the length scale and the
buoyancy velocity

ũb =

√
g̃′0H̃ with g̃′0 = g̃

ρ̃1 − ρ̃0

ρ̃0
, (7)

as the velocity scale. The lock height, H̃, is used as the length
scale and the dimensionless radius of the lock is defined as
R0 = R̃0/H̃. Since the radius of the cylindrical lock is set to be
the same as the depth of the fluid, the dimensionless radius of
the lock is unity, i.e., R0 = 1. The dimensionless density, i.e.,
the concentration of fluid mixture, is given by

ρ =
ρ̃ − ρ̃0

ρ̃1 − ρ̃0
. (8)

The relevant dimensionless parameters are the ratio of
Coriolis to inertia forces, defined by (1) and the Reynolds
number Re defined by

Re =
ũbH̃
ν̃

. (9)

The two fluids are assumed to have identical kinematic vis-
cosities ν̃ and diffusion coefficients κ̃. They are related by the
Schmidt number

Sc =
ν̃

κ̃
, (10)

which represents the ratio of the kinematic viscosity to molec-
ular diffusivity. In saline experiments, Sc ≈ 700, but it has
been observed by many researchers (e.g., Refs. 14, 15, 43,
and 44) that the influence of Schmidt number on the dynam-
ics of the gravity current is weak as long as Sc ≈ O(1) or

larger. Here we follow suit and employ Sc = 1 in the simula-
tions. The Ekman number, which expresses the ratio of viscous
to Coriolis forces, can be expressed in terms of the previous
dimensionless parameters by E = R0(CRe)−1.

The set of equations in the velocity-pressure formulation
is solved with resolution Nx1 × Nx2 × Nx3 . The length is non-
dimensionalized by the lock height, H̃ , and the flow domain is
Lx1 ×Lx2 ×Lx3 = 10×10×1 to allow unhindered development
of the currents. Fourier expansion with periodic boundary con-
dition is employed in the horizontal directions, i.e., x1 and x2.
Chebyshev expansion with Gauss-Lobatto quadrature points
is employed in the wall-normal direction, i.e., x3. As argued
by Ref. 40, the free surface deviates from the horizontal but
neglecting such a deviation is justified for small density con-
trast between heavy and light ambient fluids and for ratio of
Coriolis to inertia forces of order unity. Following previous
experimental and numerical investigations,28,38,40 no-slip and
no-stress conditions are employed for the velocity field at the
bottom and top boundaries, respectively, and no-flux condition
is employed for the density field at both the bottom and top
boundaries. The influence of periodic boundary condition in
the horizontal directions is considered unimportant here since
previous investigations14,45 have shown that the interaction of
the gravity currents with the boundary becomes important only
when the front reaches within one depth scale of the boundary
for the planar case and even less significant for the cylindri-
cal case. As will be shown later, the maximum outrush radius
in this study R ≈ 2.2 occurs when C = 0.5 and our computa-
tional domain is sufficiently large to avoid the influence of the
boundary.

The flow field is advanced in time by the low-storage third-
order Runge-Kutta scheme.46 The convection, buoyancy, and
Coriolis terms are treated explicitly while the diffusion terms
are treated implicitly with the Crank-Nicolson scheme. The
convection term is evaluated using the Arakawa method47 to
reduce the aliasing error. The de-aliased pseudospectral code
has been employed in Ref. 28 for the investigation of cylindri-
cal gravity currents in a rotating system and good agreement
with experimental and theoretical results was found. In all
simulations, the velocity field was initialized with quiescent
conditions everywhere. The initial density field is prescribed
unity in the heavy fluid region and zero elsewhere with a
smooth error-function type transition in the interface region.48

To resolve the flow structures of the gravity currents in the
flow domain, adequate resolution requires a grid size of ∆x1

≈ (ReSc)�1/2 in the horizontal directions.14 In this work, five
different Reynolds numbers are considered: Re = 500, 1000,
2000, 4000, and 6000. The grid employed for Re = 500 and
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1000 is Nx1 × Nx2 × Nx3 = 256 × 256 × 84, the grid for
Re = 2000 and 4000 is 512 × 512 × 128, and the grid for
Re = 6000 is 616 × 616 × 160 and thus the grids involve 5.5,
33.6, and 60.7 × 106 grid points, respectively. The time step
was chosen to produce a Courant number less than 0.5. The
Courant number, which is checked at very grid point and dur-
ing the entire simulation time, is defined as the summation in
all three directions of flow velocity multiplied by the time step
and divided by the grid size.

III. RESULTS
A. Vortex-wandering motion, i.e., m = 1

We begin by presenting the results for the cylindrical grav-
ity current, produced by a full-depth lock release, in a rotating
system at C = 0.5 and Re = 4000. It is worth noting that this ratio
of Coriolis to inertia forces C = 0.5 marginally exceeds the limit
for stability and this case serves as a bridge between the stable
currents reported by Ref. 28 and the unstable ones with vortex-
splitting, i.e., m ≥ 2. As will be shown in more detail below, the
current at C = 0.5 exhibits the contraction-relaxation motion,
similar to the stable currents, prior to the quasi-geostrophic
equilibrium state and displays a non-axisymmetric vortex-
wandering motion, i.e., m = 1, after the quasi-geostrophic
equilibrium state.

The initial configuration of the problem considered in this
study is sketched in Fig. 1. Before the lock is removed, the sys-
tem is in solid-body rotation and both heavy and light fluids are
quiescent in the rotating frame of reference. After the lock is
removed, a current propagating radially outward on the bottom
boundary is produced. It is well known from previous inves-
tigations (e.g., Refs. 28, 38, and 40) that the stable currents
have features without counterparts in non-rotating situations.
A major feature in the stable currents, due to the presence of
the Coriolis force, is the attainment of a maximum radius of
propagation.

Figure 2 shows one quarter of the current at C = 0.5 and
Re = 4000 visualized by a density isosurface of ρ = 0.15. For
illustrative purposes, the time instances are chosen at Ωt/2π
= 1.0, 3.0, i.e., when the system has rotated through 1.0 and
3.0 revolutions. As the stable currents do during the adjust-
ment to an equilibrium state of motion, the unstable current at
C = 0.5 and Re = 4000 exhibits the contraction-relaxation
motion between the centre and the outer rim of the heavy fluid
prior to Ωt/2π ≈ 2.5. Also, the core region of heavy fluid at
the centre of rotation remains in contact with the surface, as
confirmed by the observations for the currents produced from
a full-depth lock release in the laboratory.34,49

We may also visualize the currents using quantities aver-
aged in the wall-normal and in the azimuthal directions. For
any flow variable f, its average in the wall-normal direction is

f̂ (x1, x2) =
∫ 1

0
f (x1, x2, x3) dx3, (11)

and its average in the azimuthal direction is

f̄ (r, x3) =
1

2π

∫ 2π

0
f (r, θ, x3) dθ, (12)

FIG. 2. Rotating cylindrical gravity current at C = 0.5 and Re = 4000 visual-
ized in one quadrant of the computational domain by isosurface of ρ = 0.15.
For illustrative purposes, time instances are chosen atΩt/2π = 1.0 (a), 3.0 (b).
Density contours are also shown by solid lines in the (x1, x3) plane.

where (r, θ, x3) is converted from (x1, x2, x3), in a consistent
way as the velocity in cylindrical coordinates (ur , uθ , u3) is
converted from that in Cartesian coordinates (u1, u2, u3).

Figure 3 shows the density averaged in the wall-normal
direction. It is observed that, prior to Ωt/2π ≈ 0.2, the current
maintains nearly perfect axisymmetry, as also confirmed in
Ref. 28 for the stable currents. Afterwards, the variations in
the azimuthal direction develop and the flow becomes three-
dimensional, as shown in Fig. 3 at Ωt/2π = 0.3, 0.5. During
the initial period of time of approximately 2.5 revolutions of
the system, the current exhibits contraction-relaxation motion.
The contraction-relaxation motion gradually diminishes as
the system approaches the quasi-geostrophic equilibrium
state.

To better visualize the contraction-relaxation motion of
the heavy fluid and the new pulses travelling from near the cen-
tre of rotation to the outer rim of the heavy fluid, Fig. 4 shows
the density and velocity averaged in the azimuthal direction at
different time instances in the range of 0.8 ≤ Ωt/2π ≤ 1.4 for
the current at C = 0.5 and Re = 4000. As shown in Fig. 4(a) at
Ωt/2π = 0.8, the body of the current contracts radially inward
and the contracting fluid meets outward propagating fluid. The
dashed boxes indicate the region where inward and outward
moving fluids meet, and a new pulse begins to emerge in the
upper part of the body of the current. At Ωt/2π = 1.0, 1.2
shown in Figs. 4(b) and 4(c), the region where inward and
outward moving fluids meet, as indicated by the dashed box,
continues to move outward. AtΩt/2π = 1.4 shown in Fig. 4(d),
a new pulse begins to form and the contraction-relaxation
motion repeats itself. The contraction-relaxation motion and
the new pulses for the current at C = 0.5 and Re = 4000 prior to
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FIG. 3. Rotating cylindrical gravity
current at C = 0.5 and Re = 4000 visual-
ized by the density averaged in the wall-
normal direction, i.e., ρ̂(x1, x2), plotted
on the (x1, x2) plane. For illustrative
purposes, time instances are chosen at
Ωt/2π = 0.2 (a), 0.3 (b), 0.5 (c), 1.0 (d),
2.0 (e), 3.0 (f). The white dashed lines in
(d)–(f) represent x1 = 0 and x2 = 0 and
serve as a guide to show the wandering
motion more clearly.

Ωt/2π ≈ 2.5 are consistent with the observations for the stable
currents at C ≤ 0.37 made in Ref. 28, to which the readers are
referred for more detailed analyses of the rearrangement of the
heavy fluid in the contraction-relaxation motion. Please note
that although the contraction-relaxation motion prior toΩt/2π
≈ 2.5 is consistent with previous investigations by Refs. 40 and
28 for the stable currents, the radius of the current in this study
is shorter and as such the new pulse formation is less clearly
seen in Fig. 4 than in the energy budget analysis, which will be
discussed later and in which the energy is transformed between
potential energy and kinetic energy.

After Ωt/2π ≈ 2.5, the core of the current begins to
move around the centre of rotation in the cyclonic direc-
tion, which we term vortex-wandering, as shown in Fig. 3 at
Ωt/2π = 3.0. A striking feature of the unstable current, when

vortex-wandering occurs, is the presence of upwelling and
downwelling motions around the core region of unstable cur-
rent. Figure 5 shows the density and velocity contours taken
at different levels for the unstable current at C = 0.5 and
Re = 4000 and, for illustrative purposes, the time instance is
chosen at Ωt/2π = 3.0, when vortex-wandering occurs. While
the vectors in Fig. 5 represent the velocity field in the x1-x2

plane, the solid (dashed) lines represent the contours of pos-
itive (negative) values of the vertical velocity u3. It becomes
clear that the upwelling and downwelling motions manifest
themselves across the depth of the flow from the bottom to the
top boundary. The centre of upwelling motion and the cen-
tre of downwelling motion rotate around each other in the
cyclonic direction and move along with the wandering vortex.
It is important to note that such upwelling and downwelling
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FIG. 4. Rotating cylindrical gravity current at C = 0.5 and Re = 4000 visu-
alized by the density and velocity averaged in the azimuthal direction, i.e.,
ρ̄(r, x3), ūr (r, x3) and ū3(r, x3), plotted on the (r, x3) plane. For illustrative
purposes, time instances are chosen atΩt/2π = 0.8, 1.0, 1.2, 1.4. Density con-
tours are shown by the solid lines and velocity is shown by the vector field on
the (r, x3) plane. The dashed boxes indicate the regions where the contracting
fluid meets outward propagating fluid and inside where a new pulse emerges.

motions are not present for the stable currents in the steady-
state lens motion and were not documented in the literature for
the unstable currents, either.

B. Vortex-splitting motion, i.e., m ≥ 2

We now turn the attention to the rotating cylindrical grav-
ity currents, produced by a full-depth lock release, when
the ratio of Coriolis to inertia forces takes larger values of
C = 0.75, 1.0, 1.25, 1.5, 1.75, 2.0 and the Reynolds number is
chosen at Re = 4000. Under these conditions, the unstable cur-
rents exhibit the contraction-relaxation motion similar to the
current at C = 0.5 and Re = 4000, prior to the quasi-geotrophic
equilibrium state. However, after the quasi-geostrophic equi-
librium state, instead of vortex-wandering, vortex-splitting
occurs for the unstable currents at 0.75 ≤ C ≤ 2.0 and
Re = 4000. Such a special feature, namely, vortex-splitting,
is distinct from vortex-wandering in the rotating cylindrical
gravity current at C = 0.5 and Re = 4000. Since the vortex-
splitting processes in the currents at 0.75 ≤ C ≤ 2.0 and
Re = 4000 are qualitatively similar, we present the detailed
analysis for the case of C = 1.0 and Re = 4000 and the details
for other cases are omitted for brevity.

As an example, Fig. 6 shows one quarter of the current at
C = 1.0 and Re = 4000 visualized by a density isosurface of
ρ = 0.15 and the time instances are chosen atΩt/2π = 1.0, 5.0.
Prior to Ωt/2π ≈ 2.2, the unstable current is still in the adjust-
ment towards the quasi-geotrophic equilibrium state and the
contraction-relaxation motion is at work, as shown in Fig. 6(a);

when vortex-splitting is completed, a distinct circulation is
shown in the domain of Fig. 6(b).

Figure 7 shows the density averaged in the wall-normal
direction for the current at C = 1.0 and Re = 4000 and the
time instances are chosen at Ωt/2π = 0.5, 1.0, 2.0, 2.0, 4.0,
5.0. During the vortex-splitting process, as shown in Fig. 7
for Ωt/2π ≥ 3.0, a number of bulges develop along the cir-
cumference of the current. These bulges grow in size as time
progresses and eventually break up into several distinct circu-
lations. Figure 8 shows the density and velocity contours taken
at different levels for the unstable current at C = 1.0 and Re
= 4000 and the time instance is chosen at Ωt/2π = 4.0, when
vortex-splitting occurs. Such detailed flow information during
vortex-splitting shows that, as the bulges develop, upwelling
and downwelling motions develop and pierce through the
current.

C. Outrush radius and number of bulges

As the wandering and splitting motions have been pre-
sented in detail in Secs. III A and III B, here we compile the
outrush radius of the currents and the number of bulges along
the circumference of the currents at different values of the ratio
of Coriolis to inertia forces while the Reynolds number is fixed
at Re = 4000. We also compare our simulations with existing
experimental and theoretical results.

The outrush radius is defined with the help of the den-
sity averaged in the wall-normal direction (e.g., Figs. 3 and 7)
and is taken as the furthest radial position where heavy fluid
reaches at the quasi-geostrophic equilibrium state. As will be
shown later in Sec. III D, at the quasi-geostrophic equilib-
rium state, the contraction-relaxation motion diminishes and
the potential energy and kinematic energy reach a temporar-
ily stable state. Figure 9 shows the relationship between the
outrush radius of the advancing front, at the quasi-geostrophic
equilibrium state, and the ratio of Coriolis to inertia forces,
which agrees well with the experiments and the theoretical
relationship (2).

The number of bulges developing during vortex-splitting
is found to depend on the ratio of Coriolis to inertia forces,
as shown in Fig. 10 and described in (3). It is seen that the
simulation results agree reasonably well with the experiments
when C > 1 and agree remarkably well when C . 1.

D. Energy budgets

As elucidated by the energy budget analysis reported
by Ref. 28 for the stable currents, during the contraction-
relaxation motion of the heavy fluid, energy is transformed
between potential energy and kinetic energy, while it is mainly
the kinetic energy that is consumed by the dissipation. Here
we perform the energy budget analysis for the unstable cur-
rents and our attention is particularly focused on the time after
the quasi-geostrophic equilibrium state. Information on the
energy budget can be difficult to attain in the experiments on
a rotating turntable. Thanks to the three-dimensional high-
resolution simulations, a complete and time-dependent energy
budget is now made possible. In the following, we will provide
a computational analysis of the energy budget for the unstable
currents.
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FIG. 5. Rotating cylindrical gravity current at C = 0.5, Re = 4000 and the time instance is chosen at Ωt/2π = 3.0, when vortex-wandering, i.e., m = 1, occurs.
For illustrative purposes, the horizontal velocity (shown by vectors), vertical velocity contours (shown by solid and dashed lines for positive and negative values
of u3), and density contours (shown in background with the same color range as Fig. 3) are selected at a number of x1-x2 planes, i.e., x3 = 0.785 (a), 0.604 (b),
0.408 (c), 0.225 (d).

The equation for the time derivative of the kinetic energy
is obtained by multiplying the momentum equation (5) by ui,
i.e.,

D
Dt

(
1
2

uiui

)
= −

∂

∂xi
(pui) +

2
Re

∂

∂xj

(
sijui

)
−

2
Re

sijsij − ρu3, (13)

where D/Dt denotes the material derivative, sij denotes the
strain rate tensor, sij =

1
2 (ui,j + uj,i), and u3 denotes the

velocity component in x3 direction. It is interesting to note
that the Coriolis term in (5) vanishes when multiplied by ui

and therefore the energy equation (13) has the same form as
that for gravity currents in a non-rotating system. Integration
of (13) over the entire flow domain V leads to the evolution
equation of the total kinetic energy Ek , i.e.,

dEk

dt
= −

2
Re

∫
V

sijsijdV −
∫

V
ρu3dV , Ek(t) =

∫
V

1
2

uiuidV , (14)

where the divergence terms on the right-hand side of (13)
vanish after integration. We define the potential energy in the
system as

Ep(t) =
∫

V
ρx3dV , (15)
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and the time derivative of the potential energy in the system is

dEp

dt
= Φz + Φi, Φz =

∫
V
ρu3dV , Φi =

∫
V

x3
Dρ
Dt

dV , (16)

where Φz represents the vertical buoyancy flux and Φi repre-
sents the rate of conversion from internal to potential energy
due to irreversible diffusion in the density field.50–52 We fur-
ther define the irreversible conversion of internal energy into
potential energy as

Ei =

∫ t

0
Φi(τ)dτ. (17)

The first term on the right-hand side of (14) represents the
dissipation rate and we use Ed to denote the time integral of
dissipation rate, i.e.,

Ed(t) =
∫ t

0
ε(τ)dτ, ε =

2
Re

∫
V

sijsijdV . (18)

Using (16)–(18), Eq. (14) is essentially a statement of
energy balance, i.e., that Ek + Ep + Ed � Ei is a constant
during the motion of currents. Here the irreversible conversion
of internal to potential energy, Ei, deserves some discussion.
When the diffusion of density is absent, the potential energy
in the system can only change via vertical buoyancy flux. With
the diffusion of density, the potential energy can increase via
irreversible diffusion of density even when the stratified fluid
is quiescent. It was previously reported by Ref. 28 that the
effects of diffusion in the density field on the potential energy
can be neglected for the stable currents and the overall energy is

FIG. 6. Rotating cylindrical gravity current at C = 1.0 and Re = 4000 visual-
ized in one quadrant of the computational domain by isosurface of ρ = 0.15.
For illustrative purposes, time instances are chosen atΩt/2π = 1.0 (a), 5.0 (b).
Density contours are also shown by solid lines in the (x1, x3) plane.

conserved to a high degree of accuracy during the contraction-
relaxation motion of the heavy fluid. We will show later in this
section that while the effects of diffusion in the density field can
be neglected during the contraction-relaxation motion of the
heavy fluid prior to the quasi-geostrophic equilibrium state, the
effects of diffusion in the density field may become significant
during vortex-splitting after the quasi-geostrophic equilibrium
state.

In order to quantitatively measure the upwelling and
downwelling motions in the unstable rotating cylindrical grav-
ity currents, the vertical buoyancy flux Φz can be further
decomposed into two parts, i.e.,

Φz = Φ
+
z + Φ−z , (19)

where

Φ
+
z =

∫
V
ρu3 |u3>0dV , Φ

−
z =

∫
V
ρu3 |u3<0dV , (20)

are the vertical buoyancy fluxes associated with the upwelling
motion and the downwelling motion, respectively.

Since the energy budgets for the unstable currents with
m ≥ 2 are qualitatively similar, we focus on the case of the
current at C = 1.0 and Re = 4000 and other cases are not
discussed in detail for brevity. The energy budgets are nor-
malized with the initial potential energy in the system and the
superscript “n” denotes normalized contributions. Figure 11
shows the energy budget analysis for the current at C = 1.0 and
Re = 4000 prior to and after the quasi-geostrophic equilibrium
state. In this case, the quasi-geostrophic equilibrium state is
reached approximately when Ωt/2π ≈ 2.2. The overall energy
in the system during the simulations, including the contribu-
tion from the term En

i , is observed to be conserved to a very
high degree of accuracy.

Prior to the quasi-geostrophic equilibrium state, the heavy
fluid initially collapses radially outward after being released
and the kinetic energy increases at the expense of decreas-
ing potential energy, as shown in Fig. 11(a). Following the
collapse of heavy fluid, the contraction-relaxation motion of
the heavy fluid is at work and both the potential energy
and kinetic energy in the system show cyclic rise and fall
until the quasi-geostrophic equilibrium state is approached.
Figure 11(b) shows the time histories of the normalized dissi-
pation rate, εn = dEn

d/dt, and the normalized rate of conversion
of internal energy into potential energy, Φn

i = dEn
i /dt. It is

observed that the first local maximum of dissipation rate occurs
atΩt/2π ≈ 0.4, which is approximately when the axisymmetric
flow structures break up into three-dimensional ones as evi-
denced by the lobes developing on the outer rim of the current
in Fig. 7(a).

When the quasi-geostrophic equilibrium state is appro-
ached, the potential energy in the system retains approximately
En

p ≈ 0.7 of the initial potential energy and the kinetic energy
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FIG. 7. Rotating cylindrical gravity current at C = 1.0 and Re = 4000 visualized by the density averaged in the wall-normal direction, i.e., ρ̂(x1, x2), plotted on
the (x1, x2) plane. For illustrative purposes, time instances are chosen at Ωt/2π = 0.5 (a), 1.0 (b), 2.0 (c), 3.0 (d), 4.0 (e), 5.0 (f).

remains approximately at En
k ≈ 0.1. Based on the energy bud-

gets at different values of C (not shown here), the fraction of
initial potential energy that is retained at the quasi-geostrophic
equilibrium state increases as the ratio of Coriolis to inertia
forces increases. In addition, the dissipation rate decreases to
a local minimum while the rate of conversion of internal energy

into potential energy reaches a plateau value atΦn
i ≈ 1.1×10−3

as the quasi-geostrophic equilibrium state is approached. We
should point out that, prior to the quasi-geostrophic equilib-
rium state, the conversion of internal energy into potential
energy is comparatively small, i.e., En

i < 2%. Therefore, it
is not unreasonable to assume that the effects of diffusion in
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FIG. 8. Rotating cylindrical gravity current at C = 1.0, Re = 4000 and at Ωt/2π = 4.0, when vortex-splitting, i.e., m = 3, occurs. For illustrative purposes,
the horizontal velocity (shown by vectors), vertical velocity contours (shown by solid and dashed lines for positive and negative values of u3), and density
contours (shown in background with the same color range as Fig. 7) are selected at a number of x1-x2 planes, i.e., x3 = 0.785 (a), 0.604 (b), 0.408 (c),
0.225 (d).

the density field on the potential energy are negligible during
the adjustment prior to the quasi-geostrophic equilibrium state,
as was done for the investigation of stable currents. Since the
contraction-relaxation motion and the energy transformation
between potential energy and kinetic energy in the system have
been discussed in-depth in Ref. 28, we shall not further discuss
the energy budgets prior to the quasi-geostrophic equilibrium
state and we now turn the attention to the energy budgets after
the quasi-geostrophic equilibrium state.

Please note that here we use vortex-splitting as a notion
of “process” during which unstable disturbances grow and,
as will be shown later, upward and downward fluxes
increases, and finally distinct circulations emerge. When the
vortex-splitting process occurs, Fig. 11(a) shows that the
kinetic energy in the system increases significantly during
2.7 . Ωt/2π . 5.7 at the expense of decreasing poten-
tial energy. Such an observation confirms that in this study,

the potential energy is the source for the kinetic energy of
non-axisymmetric disturbances via baroclinic instability. As
vortex-splitting occurs, Fig. 11(b) shows that the dissipation
rate reaches a second local maximum and the rate of con-
version of internal energy into potential energy also increases
significantly. After vortex-splitting, the potential energy in the
system maintains at a relatively constant level while the kinetic
energy in the system decreases over time due to dissipation. It
is worth noting that while it is appropriate to assume that the
effects of diffusion in the density field on the potential energy
are negligible prior to the quasi-geostrophic equilibrium state,
it may not be so after the quasi-geostrophic equilibrium state,
as an example, En

i ≈ 0.1 at Ωt/2π = 10.
A distinct feature arising in the unstable currents is the

presence of upwelling and downwelling motions, as qualita-
tively described in Secs. III A–III C. Figure 11(c) shows quan-
titatively the upward buoyancy flux associated with upwelling
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FIG. 9. Outrush radius of the advancing front, when the rotating cylin-
drical gravity current reaches the quasi-geostrophic equilibrium state, as a
function of the ratio of Coriolis to inertia forces. The outrush radius is nor-
malized by the radius of the cylindrical lock, i.e., (R̃ − R̃0)/R̃0. Reynolds
number is chosen at Re = 4000 in the simulations and at Re ≈ O(104) in
the experiments of Ref. 34. Simulation results, including the stable rotating
cylindrical gravity currents (•) for C = 0.1, 0.2, 0.328 and the data (�) from
the present study, are compared with the experimental data (◦) of Ref. 34
and with the theoretical relationship (2), represented by the straight solid
line.

motion, the downward buoyancy flux associated with
downwelling motion and the total vertical buoyancy flux.
It is clear from the inset of Fig. 11(c) that the vortex-
splitting process is accompanied by the increasing upward and
downward buoyancy fluxes. Once vortex-splitting succeeds,
the upwelling and downwelling motions recede after Ωt/2π
≈ 4.3 but nonzero upward and downward buoyancy fluxes
remain.

E. Influence of the Reynolds number

The motion of the unstable currents can be expected to
vary with the Reynolds number, due to the changing balance
between the inertial and viscous forces. Here we examine

FIG. 10. Number of bulges along the circumference of the rotating cylindri-
cal gravity currents, when vortex-slitting occurs, as a function of the ratio
of Coriolis to inertia forces. Reynolds number is chosen at Re = 4000 in
the simulations and at Re ≈ O(104) in the experiments of Ref. 34. Simula-
tion results, including the stable rotating cylindrical gravity currents (•) for
C = 0.1, 0.2, 0.3,28 represented by m = 0, and the data (�) from the present
study, are compared with the experimental data (◦) of Ref. 34 and with the
theoretical relationship (3), represented by the straight solid line. The vertical
dashed line represents C = 0.37, which is a borderline between stable and
unstable currents.

FIG. 11. Energy budget analysis for the rotating cylindrical gravity current
at C = 1.0 and Re = 4000. Time is shown in terms of the number of rev-
olutions that the system has rotated through, i.e., Ωt/2π. Panel (a) shows
the normalized potential energy En

p (□), kinetic energy En
k (◦), dissipated

energy En
d (4), conversion of internal energy into potential energy En

i (5),
and En

k + En
p + En

d − En
i (�). Panel (b) shows the normalized rate of dissipa-

tion εn = dEn
d/dt(4) and rate of conversion of internal energy into potential

energy Φn
i = dEn

i /dt(5). Panel (c) shows the normalized vertical buoyancy
flux associated with upwelling motion Φn+

z (4), the vertical buoyancy flux
associated with downwelling motion Φn−

z (5), and the total buoyancy flux
Φn

z = Φ
n+
z + Φn−

z (□). The inset in panel (c) shows the close-up view of the
normalized buoyancy fluxes during 3 ≤ Ωt/2π ≤ 6.

how the vortex-splitting of the unstable currents, if it occurs,
depends on the Reynolds number. To do this, we restrict our
attention to the currents with the ratio of Coriolis to iner-
tia forces maintained at C = 1.0 and the Reynolds number
varied at four additional values of 500, 1000, 2000, and
6000.

Interestingly, for all currents at C = 1.0 considered in
this study, there are three non-axisymmetric bulges develop-
ing along the circumference of the currents irrespective of
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FIG. 12. Rotating cylindrical gravity currents at C = 1.0 and different Reynolds numbers, when vortex-splitting begins, visualized by the density averaged in
the wall-normal direction, i.e., ρ̂(x1, x2), plotted on the (x1, x2) plane. For illustrative purposes, the time instances are chosen at Ωt/2π = 7.5 for Re = 500 (a),
Ωt/2π = 7.1 for Re = 1000 (b), Ωt/2π = 6.3 for Re = 2000 (c), and Ωt/2π = 3.5 for Re = 6000 (d).

the Reynolds number. However, depending on the Reynolds
number, these non-axisymmetric bulges may or may not grow
to an amplitude such that they become cutoff distinct circula-
tions. For the lowest two Reynolds numbers of 500 and 1000
considered in this study, the non-axisymmetric bulges mani-
fest themselves along the circumference of the currents but do
not break up into distinct circulations, as shown in Figs. 12(a)
and 12(b). For the higher Reynolds numbers considered in
this study, i.e., Re = 2000 and 6000, it is observed that the
non-axisymmetric bulges develop and eventually become cut-
off distinct circulations, as shown in Figs. 12(c) and 12(d). Our
results indicate that, for the unstable currents, the occurrence
of vortex-splitting depends not only on the ratio of Coriolis to
inertia forces but also on the Reynolds number. Nevertheless,
the number of bulges is seen to be independent of the Reynolds
number for the range of Reynolds number considered in this
study.

IV. CONCLUSIONS

In this study, we investigated the unstable cylindrical
gravity currents, produced by a full-depth lock release, in a

rotating system by means of three-dimensional high-resolution
simulations of the incompressible variable-density Navier-
Stokes equations with the Coriolis term and using the Boussi-
nesq approximation for small density difference. Here the
depth of the fluid is chosen the same as the radius of the cylin-
drical lock and the ambient fluid is non-stratified. Our attention
is focused on the situation when the Coriolis to inertia ratio is
larger, namely, 0.5 ≤ C ≤ 2.0, in comparison to the parameter
range for the stable currents investigated in Ref. 28.

Based on the laboratory experiments for the unstable cur-
rents conducted in Ref. 34, it has been reported that, after
the heavy fluid is released from a cylindrical lock, the col-
umn of heavy fluid slumps to occupy a conical region and
the contraction-relaxation motion diminishes as the quasi-
geostrophic equilibrium state is approached. After the quasi-
geostrophic equilibrium state, depending on the ratio of
Coriolis to inertia forces, different modes of unstable currents,
i.e., vortex-wandering and vortex-splitting, can be identified.
In this study, we confirmed the laboratory observation and
revealed more detailed flow information.

Prior to the quasi-geostrophic equilibrium state, the heavy
fluid collapses radially outward and a contraction-relaxation
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motion is at work for approximately 2–3 revolutions of the
system. During the contraction-relaxation motion of the heavy
fluid, energy is transformed back and forth between potential
energy and kinetic energy, where both show cyclic rise and
fall until the quasi-geostrophic equilibrium state is approached.
When the contraction-relaxation motion is at work, a new pulse
of heavy fluid begins to form near the centre of rotation while
the potential energy reaches a local minimum and the kinetic
energy reaches a local maximum. As the new pulse moves
radially outward, the potential energy increases to a local max-
imum then decreases to a local minimum, when a new pulse
takes form near the centre of rotation.

The quasi-geostrophic equilibrium state is reached after
the system has rotated through approximately two to three
revolutions. At this transient state of motion, the rate of energy
dissipation in the system reaches a local minimum and the
potential energy and kinetic energy in the system are main-
tained at constant levels. The fraction of initial potential energy
that is retained in the system, at the quasi-geostrophic equilib-
rium state, increases as the ratio of Coriolis to inertia forces
increases.

After the quasi-geostrophic equilibrium state, depending
on the ratio of Coriolis to inertia forces, different modes of
unstable currents, i.e., vortex-wandering and vortex-splitting,
can be observed. When vortex-wandering occurs, i.e., at
C = 0.5 in this study, the currents move around the centre of
rotation in the cyclonic direction without breaking up into mul-
tiple vortices. When vortex-splitting occurs, i.e., at 0.75 ≤ C
≤ 2.0 in this study, a number of bulges develop along the
circumference of the currents and eventually grow to an ampli-
tude such that they become cutoff distinct circulations. A strik-
ing feature of the unstable currents is the persistent upwelling
and downwelling motions for both vortex-wandering and
vortex-splitting motions. Although previous numerical inves-
tigation on the unstable “surface vortex” performed by Ref. 42
identified an entrainment process resulting in dipole-like pairs
as in the experiments by Ref. 41, such persistent upwelling
and downwelling motions identified here were not reported
in previous studies. When vortex-splitting occurs, the kinetic
energy in the system increases significantly at the expense of
decreasing potential energy. Such an observation confirms that
in this study the potential energy is the source for the kinetic
energy of non-axisymmetric disturbances via baroclinic
instability.

As reasonably expected, the motion of the unstable cur-
rents depends not only on the ratio of Coriolis to inertia forces
but also on the Reynolds number. As we showed, for the unsta-
ble currents at C = 1.0, vortex-splitting occurs for the higher
Reynolds number, i.e., Re = 2000, 4000, and 6000, considered
in this study. On the other hand, for the unstable currents at
C = 1.0, the non-axisymmetric bulges manifest themselves
but do not become cutoff distinct circulations for the lower
Reynolds numbers, i.e., Re = 500 and 1000, considered in this
study. Interestingly, the number of bulges, which is a function
of the ratio of Coriolis to inertia forces, is seen to be indepen-
dent of the Reynolds number for the range of Reynolds number
considered in this study.

The three-dimensional high-resolution simulations pre-
sented in this study complement the existing shallow-water

formulation (please see, for example, Refs. 2 and 53). With
the use of three-dimensional high-resolution Navier-Stokes
simulations, we are now able to provide more detailed
flow information that could not be readily obtainable in the
shallow-water formulation, e.g., vortex-wandering, vortex-
splitting, upwelling and downwelling motions. Furthermore,
the simulations provide energy budget analysis which could
not be easily attained in the laboratory. Future extensions
of the present study may include the partial-depth release
cylindrical gravity currents, influence of a stratified ambi-
ent54,55 and non-Boussinesq cases.27 In these topics, the
three-dimensional high-resolution simulations of the type
reported here are necessary in further corroboration and
progress.
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14C. Härtel, E. Meiburg, and F. Necker, “Analysis and direct numerical sim-
ulation of the flow at a gravity-current head. Part 1. Flow topology and
front speed for slip and no-slip boundaries,” J. Fluid Mech. 418, 189–212
(2000).

15M. Cantero, J. Lee, S. Balachandar, and M. Garcia, “On the front velocity
of gravity currents,” J. Fluid Mech. 586, 1–39 (2007).

16M. La Rocca, C. Adduce, V. Lombardi, G. Sciortino, and R. Hinkermann,
“Development of a lattice Boltzmann method for two-layered shallow-water
flow,” Int. J. Numer. Methods Fluids 70, 1048–1072 (2012).

https://doi.org/10.1017/s0022112080000894
https://doi.org/10.1017/s0022112080000894
https://doi.org/10.1017/s0022112082001797
https://doi.org/10.1017/s0022112082001797
https://doi.org/10.1017/s002211200400165x
https://doi.org/10.1017/s0022112005004933
https://doi.org/10.1063/1.3002381
https://doi.org/10.1061/(asce)hy.1943-7900.0000484
https://doi.org/10.1017/jfm.2013.372
https://doi.org/10.1017/jfm.2014.5
https://doi.org/10.1063/1.4905305
https://doi.org/10.1080/00221686.2016.1174961
https://doi.org/10.1063/1.4948760
https://doi.org/10.1017/s0022112000001221
https://doi.org/10.1017/s0022112007005769
https://doi.org/10.1002/fld.2742


026601-14 A. Dai and C.-S. Wu Phys. Fluids 30, 026601 (2018)

17M. La Rocca, C. Adduce, G. Sciortino, P. A. Bateman, and M. A. Boniforti,
“A two-layer shallow water model for 3D gravity currents,” J. Hydraul. Res.
50, 208–217 (2012).

18A. Dai, “High-resolution simulations of downslope gravity currents in the
acceleration phase,” Phys. Fluids 27, 076602 (2015).

19A. Dai and Y.-L. Huang, “High-resolution simulations of non-Boussinesq
downslope gravity currents in the acceleration phase,” Phys. Fluids 28,
026602 (2016).

20R. T. Bonnecaze, M. A. Hallworth, H. E. Huppert, and J. R. Lister, “Axisym-
metric particle-driven gravity currents,” J. Fluid Mech. 294, 93–121
(1995).

21M. A. Hallworth, H. E. Huppert, J. Phillips, and S. Sparks, “Entrainment
into two-dimensional and axisymmetric turbulent gravity currents,” J. Fluid
Mech. 308, 289–311 (1996).

22M. Ungarish and T. Zemach, “On the slumping of high Reynolds number
gravity currents in two-dimensional and axisymmetric configurations,” Eur.
J. Mech.-B/Fluids 24, 71–90 (2005).

23M. Patterson, J. Simpson, S. Dalziel, and G. Van Heijst, “Vortical motion
in the head of an axisymmetric gravity current,” Phys. Fluids 18, 0046601
(2006).

24M. Cantero, S. Balachandar, and M. Garcia, “High-resolution simulations
of cylindrical density currents,” J. Fluid Mech. 590, 437–469 (2007).

25M. Ungarish, “Axisymmetric gravity currents at high Reynolds number–on
the quality of shallow-water modeling of experimental observations,” Phys.
Fluids 19, 036602 (2007).

26M. Ungarish and H. E. Huppert, “Energy balances for axisymmetric gravity
currents in homogeneous and linearly stratified ambients,” J. Fluid Mech.
616, 303–326 (2008).

27M. Ungarish, “The propagation of high-Reynolds-number non-Boussinesq
gravity currents in axisymmetric geometry,” J. Fluid Mech. 643, 267–277
(2010).

28A. Dai and C.-S. Wu, “High-resolution simulations of cylindrical gravity
currents in a rotating system,” J. Fluid Mech. 806, 71–101 (2016).

29R. W. Griffiths, “Gravity currents in rotating systems,” Annu. Rev. Fluid
Mech. 18, 59–89 (1986).

30R. C. Kloosterziel and G. J. F. Van Heijst, “An experimental study of unstable
barotropic vortices in a rotating fluid,” J. Fluid Mech. 223, 1–24 (1991).

31A. Mahalov, J. R. Pacheco, S. I. Voropayev, H. J. S. Fernando, and J. C. R.
Hunt, “Effects of rotation on fronts of density currents,” Phys. Lett. A 270,
149–156 (2000).

32J. R. Pacheco and A. Pacheco-Vega, “Analysis of thin film flows using a
flux vector splitting,” J. Fluids Eng. 125, 365–374 (2003).

33J. C. R. Hunt, J. R. Pacheco, A. Mahalov, and H. J. S. Fernando, “Effects
of rotation and sloping terrain on the fronts of density currents,” J. Fluid
Mech. 537, 285–315 (2005).

34P. M. Saunders, “The instability of a baroclinic vortex,” J. Phys. Oceanogr.
3, 61–65 (1973).

35G. T. Csanady, “The birth and death of a warm core ring,” J. Geophys. Res.
84, 777–780, https://doi.org/10.1029/jc084ic02p00777 (1979).

36G. R. Flierl, “A simple model for the structure of warm and cold core rings,”
J. Geophys. Res. 84, 781–785, https://doi.org/10.1029/jc084ic02p00781
(1979).

37P. D. Killworth, “The time-dependent collapse of a rotating fluid cylinder,”
J. Phys. Oceanogr. 22, 390–397 (1992).

38M. Ungarish and H. E. Huppert, “The effects of rotation on axisymmetric
gravity currents,” J. Fluid Mech. 362, 17–51 (1998).

39M. Ungarish and H. E. Huppert, “Simple models of Coriolis-influenced
axisymmetric particle-driven gravity currents,” Int. J. Multiphase Flow 25,
715–737 (1999).

40M. A. Hallworth, H. E. Huppert, and M. Ungarish, “Axisymmetric gravity
currents in a rotating system: Experimental and numerical investigations,”
J. Fluid Mech. 447, 1–29 (2001).

41R. W. Griffiths and P. F. Linden, “The stability of vortices in a rotating,
stratified fluid,” J. Fluid Mech. 105, 283–316 (1981).

42R. Verzicco, F. Lalli, and E. Campana, “Dynamics of baroclinic vortices
in a rotating, stratified fluid: A numerical study,” Phys. Fluids 9, 419–432
(1997).
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