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ABSTRACT

Gravity currents produced from a full-depth lock release propagating at the base of a linearly stratified ambient are investigated by means of
newly conducted three-dimensional high-resolution simulations in conjunction with corresponding two-dimensional simulations and labo-
ratory experiments. A passive tracer is implemented in the simulations to quantitatively measure the energies associated with the current and
the ambient. The density of heavy fluid within the lock is ~qC , the density in the ambient of depth ~H varies linearly from ~qb at the bottom to
~q0 at the top, and the ambient has an intrinsic frequency ~N . Attention is focused on the initial slumping stage, during which the gravity cur-
rents propagate at a constant velocity ~V and the internal Froude number is defined as Fr ¼ ~V=~N ~H . The dynamics of the subcritical gravity
currents, i.e., Fr < 1=p, and the supercritical gravity currents, i.e., Fr > 1=p, are qualitatively different and are examined with the help of
three-dimensional and two-dimensional high-resolution simulations. For the subcritical gravity currents, the flow is dominated by the inter-
nal wave, the Kelvin–Helmholtz vortices are inhibited, and the two-dimensional simulation agrees well with and serves as a good surrogate
model for the three-dimensional simulation in the slumping stage. For the supercritical gravity currents, the Kelvin–Helmholtz vortices are
pronounced and prone to breakup into three-dimensional structures in the slumping stage. On the one hand, for the supercritical gravity
currents, the kinetic energy associated with the current and the potential energy associated with the ambient are accurately captured by the
two-dimensional simulation. On the other hand, the transition distance for the slumping stage and dissipation rate in the system are under-
predicted while the kinetic energy associated with the ambient and the potential energy associated with the current are overpredicted by the
two-dimensional simulation for the supercritical gravity currents. Therefore, information derived from the two-dimensional simulation for
the supercritical gravity currents must be treated with care. The high-resolution simulations in this study also complement the existing
shallow-water formulation, which has been reported to agree well with the two-dimensional simulations with good physical assumptions and
simple mathematical models.

Published under an exclusive license by AIP Publishing. https://doi.org/10.1063/5.0051567

I. INTRODUCTION

Gravity currents, also known as density currents, are flows driven
by a density difference and occur in many natural and man-made
environments. The readers are referred to Refs. 1 and 2 for a compre-
hensive introduction to this topic and review of examples.

In the literature, a large number of laboratory experiments
and numerical simulations have been focused on the lock-
exchange problem (see, for example, Refs. 3–22). In the lock-
exchange problem, the heavy fluid is typically separated from a
non-stratified ambient by a removable barrier in a horizontal
channel with a rectangular cross section. When the barrier is with-
drawn, the fluids of different densities are set into motion. This
type of experiment has long served as a paradigm configuration for
studying the propagation of gravity currents.

It is well known that, after a brief acceleration phase, the gravity
current produced from a full-depth lock release propagates into a non-
stratified ambient at a nearly constant front velocity, i.e.,

~V ¼ k
ffiffiffiffiffiffiffiffiffi
~g 00 ~H

q
; (1)

in the slumping stage. Here, the heavy fluid has density ~qC , the non-
stratified ambient fluid has density ~q0, the reduced gravity is ~g 00
¼ ~gð~qC � ~q0Þ=~q0; ~H is the depth of heavy fluid and ambient fluid and
Ref. 23 reported that k � 0:45 for the full-depth lock-exchange flows.

The distance traveled by the gravity current during the slumping
stage is also of interest in the literature. While the gravity current prop-
agates forward in the slumping stage, a wave on the edge of the current
propagates backward and reflects from the wall of the channel. Once
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the reflected wave catches up with the current front, the slumping
stage ends and the gravity current begins to decelerate. Reference 23
reported that, when the gravity current begins to decelerate, the cur-
rent has traveled a distance ~Xtr � 9~L0 measured from the lock gate to
the front of the current, where ~L0 is the length of heavy fluid in the
lock. For gravity currents at sufficiently large Reynolds numbers, the
inertial phase follows the slumping stage and the gravity currents

decelerate in time following ~V � ~t�1=3.24

When the ambient is stratified, the dynamics between the gravity
currents and the ambient may be different. Because the stratified
ambient supports internal waves, which are excited by the propagation
of gravity currents, the internal waves can both react to and interact
with the gravity currents. Furthermore, the relative strengths of the
current and the stratification in the ambient determine the layer along
which the gravity current propagates. For example, when the density
of heavy fluid matches the density at some intermediate level in the
ambient, intrusive gravity currents are produced as considered by
Refs. 25–32.

When the density of heavy fluid is greater than, or equal to, the
density at the bottom of the stratified ambient, the gravity currents
propagate along the lower boundary of the channel.33–36 Reference 33
considered the propagation of a gravity current into a linearly stratified
ambient using laboratory experiments and two-dimensional numerical
simulations. Reference 37 extended Benjamin’s classical analysis to
describe the “steady-state” front velocity of a gravity current propagat-
ing into a linearly stratified ambient as a function of the stratification
and agreement was found with the numerical simulations conducted
by Ref. 38. Reference 36 extended the case for gravity currents propa-
gating with constant speed into a stratified ambient with a general
density profile. Solution curves in Ref. 36 have an energy-conserving
upper bound, i.e., the conjugate state, which approaches Benjamin’s
energy-conserving solution and a lower bound which occurs when the
front speed becomes critical with respect to the linear long waves gen-
erated in the ambient. In this study, our interest is in the gravity cur-
rents propagating into a linearly stratified ambient, and we summarize
the conclusions in Ref. 33 as a basis of our understanding of the prob-
lem and from which we shall expand our investigation in a wider
range of the strength of stratification in the ambient using high-
resolution simulations and laboratory experiments. For a linearly strat-
ified ambient, the following dimensionless stratification parameter,

R ¼ ~qC � ~q0

~qb � ~q0
; (2)

is introduced to give a measure of the relative strengths of the current
and the stratification, where the density of heavy fluid is ~qC , the den-
sity at the bottom of the ambient is ~qb, and the density at the top of
the ambient is ~q0. For a gravity current propagating at the base of a
linearly stratified ambient, it is required that ~qC � ~qb, i.e., R � 1. The
“classic” case with heavy fluid propagating into a homogeneous ambi-
ent corresponds to the limit ~qb ! ~q0, i.e., R!1. Equivalently, the
relative strengths of the current and the stratification can also be
defined as

S ¼ ~qb � ~q0

~qC � ~q0
; (3)

which is used in Refs. 36, 39, and 40. The parameter S is related to R
via S ¼ 1=R and maps R 2 ½1;1� to S 2 ½0; 1�. The “classic” case

with heavy fluid propagating into a homogeneous ambient corre-
sponds to S¼ 0. In a linearly stratified ambient of finite depth ~H , the
squared intrinsic frequency is given by ~N

2 ¼ ~g ð~qb � ~q0Þ=~q0
~H and

the propagating speed of the linear, mode-one, long wave is ~N ~H=p.
The front velocity of current relative to that of the internal wave can
be measured using the internal Froude number,

Fr ¼
~V

~N ~H
; (4)

which was found to be a logarithmic function of R. In the limit of large
R, i.e., ~qb ! ~q0, the stratification is weak relative to the current and
the current is expected to behave like one propagating into a fluid of
density ð~qb þ ~q0Þ=2. Using the result of (1)23 and after some algebra,
the internal Froude number, in the limit of large R, approaches asymp-
totically to

FrLR ¼ k

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
R 1� 1

2R

� �s
� kR1=2; (5)

where k � 0:45 for the gravity currents produced from a full-depth
lock release. For the subcritical gravity currents, i.e., Fr < 1=p when
the internal wave travels faster than the current, the fast moving inter-
nal wave results in an oscillation of the front velocity of the current
and the transition distance, ~Xtr , traveled by the slumping stage,
increases with the internal Froude number. For the supercritical grav-
ity currents, i.e., Fr > 1=p when the current travels faster than the
internal wave, the front velocity decay was monotonic and the transi-
tion distance ~Xtr was found to be about 16 initial heights of heavy fluid
irrespective of the stratification parameter or, equivalently, the internal
Froude number. We should note that the above conclusions in Ref. 33
were based on the experiments in the stratification parameter range
1 < R � 3 (1=3 � S < 1). In this study, we performed experiments
and simulations over 1 < R � 10 (1=10 � S < 1), and we will show
that the transition distance for the supercritical gravity currents is sen-
sitively dependent on the stratification parameter for sufficiently
strong stratification in the ambient R� 3 (S� 1=3). For weak stratifi-
cation in the ambient 3�R � 10 (1=10 � S� 1=3), the transition
distance is weakly dependent on the stratification parameter. It was
reported by Ref. 33 that the internal Froude number in the slumping
stage was a logarithmic function of the stratification parameter and
this logarithmic relationship matches FLR in the limit of large R. Later,
we will also show that the internal Froude number is a logarithmic
function of the stratification parameter only in the range 1 < R� 3
(1=3� S < 1) and the logarithmic relationship and FLR diverge for
large R in the range 3�R � 10 (1=10 � S� 1=3) and the prediction
based on the shallow-water model appropriately describes the internal
Froude number over the whole range 1 < R � 10 (1=10 � S < 1) in
this study. Reference 39 investigated the problem set-forth in Ref. 33
with the shallow-water model and two-dimensional numerical simula-
tions, using a different numerical technique. The shallow-water model,
supported by two-dimensional simulations, captures well the effects of
stratification when the gravity current propagates at a constant speed
along the lower boundary. Reference 40 focused on the exchange of
energy for a gravity current propagating along the lower boundary
into a linearly stratified ambient, also with the shallow-water model
and two-dimensional simulations. Good agreement on the energy of
the current between the shallow-water model and the two-
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dimensional simulations was found. The stratification in the ambient
was found to enhance the accumulation of potential energy in the
ambient and to reduce the energy decay in the system. It is also worth
noting that for analytical progress a one-layer shallow-water model
was developed. The major deficiency of the one-layer shallow-water
model is that the motion in the ambient is omitted. A reliable two-
layer shallow-water model for the problem is still lacking.

The purpose of the present investigation is to deepen our under-
standing of the gravity currents propagating at the base of a linearly
stratified ambient by means of newly conducted three-dimensional
high-resolution simulations of the Navier–Stokes equations with the
Boussinesq approximation in conjunction with corresponding two-
dimensional simulations and laboratory experiments. Passive tracer is
implemented in the simulations to quantitatively measure the energies
associated with the current and the ambient. Laboratory experiments
were also conducted for comparison. In light of the results from three-
dimensional high-resolution simulations and laboratory experiments,
we may understand how well two-dimensional simulations perform,
for both the subcritical and supercritical gravity currents and for both
the energies associated with the current and the ambient. With the
simulation and experimental results, previous conclusions are carefully
revised and the information based on the two-dimensional simulations
for the subcritical and supercritical gravity currents are evaluated. In
Sec. II, we describe the formulation of the problem and the implemen-
tation of numerical methods. In Sec. III, we describe the experimental
setup. The qualitative and quantitative results are presented in Sec. IV.
Finally, conclusions are drawn in Sec. V.

II. FORMULATION

Figure 1 gives a sketch of the initial configuration for the gravity
currents propagating into a linearly stratified ambient. The gravity cur-
rents are produced from a full-depth lock release. The height of the
lock region is ~H , which is the same as the ambient region, and the
length of the lock region is ~L0. Outside the lock region is the ambient,
of which the density varies linearly from ~qb at the bottom to ~q0 at the
top. The gravitational acceleration is in the antiparallel direction of x3.
Here, we adopt the Boussinesq approximation, in that the density dif-
ference is sufficiently small, i.e., ð~qC � ~q0Þ � ~q0, so that the influence
of density variations is retained only in the buoyancy term but
neglected in the inertia and diffusion terms.

In order to highlight the heavy fluid originally contained within
the lock, here we introduce a passive tracer, namely C, for the heavy
fluid originally contained within the lock region and the passive tracer
follows the mass transport equation as the density field. The notion of
introducing the passive tracer in the region behind the lock is identical
to adding dye to the heavy fluid in the experiments. The governing
equations, including the continuity, momentum, density, and tracer
transport,40 take the following tensor form:

@uk
@xk
¼ 0; (6)

@ui
@t
þ uk

@ui
@xk
¼ ðq� qaÞe

g
i �

@p
@xi
þ 1
Re

@2ui
@xk@xk

; (7)

@q
@t
þ uk

@q
@xk
¼ 1

ReSc
@2q

@xk@xk
; (8)

@C
@t
þ uk

@C
@xk
¼ 1

ReSc
@2C
@xk@xk

: (9)

Here, ui denotes the velocity, q the density to be defined by (11),
qa the density field in the linearly stratified ambient defined by (13), egi
the unit vector in the direction of gravity, p the pressure including the
hydrostatic part due to stratification in the ambient, and C represents
the concentration of passive tracer, respectively. In tensor notation of
(6)–(9), the unrepeated index i is known as a free index and may be
any one of i¼ 1, 2, 3. The repeated index k is known as a dummy
index which represents a summation over k¼ 1, 2, 3. Here, the varia-
bles without tilde are dimensionless quantities. The set of equations
(6)–(9) is made dimensionless by the lock height, ~H , as the length scale
and the buoyancy velocity,

~ub ¼
ffiffiffiffiffiffiffiffiffi
~g 00 ~H

q
with ~g 00 ¼ ~g

~qC � ~q0

~q0
; (10)

as the velocity scale. Here, ~qC is the density of heavy fluid and ~q0 is
the density at the top of the ambient. The dimensionless density is
given by

q ¼ ~q � ~q0

~qC � ~q0
: (11)

In the ambient, the dimensionless density at the bottom is
qb ¼ ð~qb � ~q0Þ=ð~qC � ~q0Þ ¼ 1=R, where ~qb is the density at the bot-
tom of the ambient.

Other relevant dimensionless parameters are the Reynolds num-
ber Re and the Schmidt number Sc, defined by

Re ¼ ~ub ~H
~�

and Sc ¼ ~�

~j
; (12)

respectively. It is assumed that the heavy fluid and ambient fluid have
identical kinematic viscosity ~� and diffusion coefficient of density field
~j. For saline experiments, Sc � 700; however, it has been reported by
researchers (e.g., Refs. 41–43) that the influence of Schmidt number is
weak as long as Sc � Oð1Þ or larger and setting the Schmidt number
to unity is a common practice in the numerical simulations for gravity
currents. Therefore, we use Sc¼ 1 in all simulations in the study.

The governing equations in the velocity-pressure formulation are
solved in the three-dimensional flow domain Lx1 	 Lx2 	 Lx3 ¼ 24
	1:5	 1, where the lock length is L0 ¼ 4=3 and Lx1 ¼ 24 is chosen

FIG. 1. Sketch of the initial condition for a gravity current produced by a full-depth
lock release propagating into a linearly stratified ambient. The heavy fluid has den-
sity ~qC, height ~H , and length ~L0. Outside the lock is the ambient of which the
density at the bottom is ~qb and the density at the top is ~q0. The streamwise and
wall-normal directions are represented by x1 and x3, respectively, while the span-
wise direction x2 is pointing into the paper. The height of the ambient is chosen the
same as the height of the heavy fluid. Removal of the lock gate sets the fluids into
motion.

Physics of Fluids ARTICLE scitation.org/journal/phf

Phys. Fluids 33, 066601 (2021); doi: 10.1063/5.0051567 33, 066601-3

Published under an exclusive license by AIP Publishing

https://scitation.org/journal/phf


to allow unhindered development of gravity currents and internal
waves in the streamwise direction. The length in the problem is non-
dimensionalized by ~H . The governing equations are solved using the
time-splitting method,44 in which a provisional velocity, which does
not satisfy the continuity condition, is calculated in the first step, and
the pressure, which is used to correct the provisional velocity in such a
way that the final velocity and the pressure satisfy the complete gov-
erning equations, is calculated in the second step. Fourier expansion
with periodic boundary condition is employed in the streamwise and
spanwise directions, i.e., x1 and x2. Chebyshev expansion with
Gauss–Lobatto quadrature points is employed in the wall-normal
direction, i.e., x3. At the top and bottom walls, we employ no-slip con-
dition for the velocity field, no-flux condition for the density field, and
no wall-normal gradient for the pressure field. Even a nominally free
surface can act as a solid surface because the contained impurities in
the fluid can cause the creation of a film on the surface.45 The influ-
ence of a free surface was recently addressed by Ref. 46. The influence
of the periodic boundary condition in the streamwise direction will
not be discussed here because previous investigations have shown that
the influence of boundary becomes important only when the gravity
currents reach within one depth scale of the boundary.41 Neither shall
we discuss the influence of the no-slip boundary condition, since
Ref. 33 indicated that computations with a slip boundary condition are
not in good agreement with the experiments and previous computa-
tional investigations also adopt the no-slip boundary condition.33,39,40

We adopt the low-storage third-order Runge–Kutta scheme47 for
time advancement. The convection and buoyancy terms are treated
explicitly, and the diffusion terms are treated implicitly with
Crank–Nicolson scheme. For the convection term, divergence and
convective forms are alternately used to reduce the aliasing error.48

The pressure field satisfies the Poisson’s equation and is solved in the
second step (projection step) in the time-splitting method. The de-
aliased pseudospectral code has been employed in Refs. 24 and 49–51
for lock-exchange flows. The initial velocity field was set with a quies-
cent condition in all simulations. The initial density field was pre-
scribed unity, i.e., qC ¼ 1, in the lock region and

qaðx3Þ ¼
1
R

1� x3ð Þ; (13)

in the ambient with an error-function type transition in the interface
region.52 The initial density field in the ambient varies linearly from
qa ¼ R�1 at the bottom (x3 ¼ 0) to qa ¼ 0 at the top (x3 ¼ 1). The
specification of linear stratification for the initial density field in the
ambient was straightforward and did not create additional numerical
complications. The initial concentration for the passive tracer C was
set as unity in the lock region and zero in the ambient, also with an
error-function transition. Here, we are concerned with the gravity cur-
rents at large Reynolds numbers as in Refs. 33, 39, and 40. Based on
the published reports that the influence of Reynolds number on the
dynamics of gravity currents diminishes as Re increases and the
influence of Reynolds number can be considered weak for Re
� 4000,49,51,53 the simulations in this study were fixed at Re¼ 5000 for
all cases considered. To be consistent with the resolution requirement

that the grid spacing must be of the order of OðReScÞ�1=2,41,53 we
employed the grid Nx1 	 Nx2 	 Nx3 ¼ 1320	 96	 140 in all three-
dimensional simulations. For two-dimensional simulations in the
domain Lx1 	 Lx3 ¼ 24	 1, spanwise variations were prohibited and

the grid Nx1 	 Nx3 ¼ 1320	 140 was used. The time step was chosen
such that the Courant number remained less than 0.5.

III. EXPERIMENTS

In order to compare with our numerical simulations and with
the published results, we also conducted experiments on gravity cur-
rents propagating into a linearly stratified ambient in a Perspex chan-
nel. The Perspex channel was manufactured with a rectangular cross-
section 0.2 m wide, 0.60 m deep, and 2.5 m long with transparent side-
walls. A sketch of the experimental setup is shown in Fig. 1. During
the experiments, the excess density of the fluid was created using
sodium chloride. The linear stratification in the ambient was created
using the double-bucket method.54 In the double-bucket method, two
identical containers are joined at the bottom, while each one holds half
of the volume of ambient fluid. One container is filled with fluid of
density at the top of the ambient and the other container, from which
the pump is able to draw water steadily, is filled with fluid of density at
the bottom of the ambient. Using the double-bucket method, the den-
sity of fluid in the container being pumped decreases linearly in time
and creates the desired linearly stratified ambient. The depth of the
heavy fluid and the depth of the ambient fluid were both maintained
at ~H ¼ 9 cm in all experiments and the lock gate was placed at a dis-
tance ~L0 ¼ 12 cm from the left wall. The top fluid boundary was in
contact with two sheets of Perspex, which were separated by a thin gap
to allow the withdrawal of the lock gate.

A uniform LED light board and a light-diffusing screen were
placed against the back wall of the channel. A Canon 700D camera
(1920	 1080 pixel resolution at 24 frames per second) was positioned
10 m away from the front wall. The heavy fluid behind the lock was
colored with 10ml of blue dye per 1 L of solution of sodium chloride,
and thin, constant-density blue dye layers were introduced at selected
intermediate levels in the ambient to help visualize the internal wave
field. The recorded images were exported to a PC for post-processing.

Densities of the ambient and heavy fluids were measured using a
density meter with an accuracy of 10�3 g cm�3. While the stratifica-
tion parameter was varied systematically over the range
1:07 � R � 10, the density of the heavy fluid was maintained at ~qC ¼
1:072 6 0:042 g cm�3 and the density at the top of the ambient was
maintained at ~q0 ¼ 1:0116 0:042 g cm�3 in the experiments. The
reduced gravity, as defined by (10), was approximately
~g 00 ¼ 68:05 cm s�2. The kinematic viscosity of the sodium chloride
solution was taken as � ¼ 1:1	 10�2cm2 s�1 and the Reynolds num-
ber in the experiments, as defined by (12), was approximately 20 000.
Previously in Ref. 33, the stratification parameter in the experiments
was in the range 1:075 � R � 3 (1=3 � S � 0:93). In this study, we
have conducted the full-depth lock-exchange experiments in a linearly
stratified ambient at R¼ 1.07, 1.61, 1.82, 2, 2.5, 3.33, 4, 5, 5.88, 7.14, 8,
and 10 or equivalently S¼ 0.93, 0.62, 0.55, 0.50, 0.40, 0.30, 0.25, 0.2,
0.17, 0.14, 0.13, and 0.10. For each experimental setup, at least three
repeated runs were performed to ensure consistent observations. The
parameters in the experiments and simulations are listed in Table I.

IV. RESULTS
A. Propagation of subcritical gravity currents, Fr < 1=p

We shall begin with the propagation of a subcritical gravity cur-
rent. For convenience in comparing the three-dimensional simulations
with the two-dimensional ones, we use the average in the spanwise
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direction for dimensionless density qðx1; x2; x3Þ and the concentration
of the passive tracer Cðx1; x2; x3Þ in three-dimensional simulations.
The average of a variable f ðx1; x2; x3Þ in the spanwise direction is
defined as

�f x1; x3ð Þ ¼
1
Lx2

ðLx2
0

f x1; x2; x3ð Þdx2; (14)

where the variable f can be the dimensionless density q and the con-
centration of the passive tracer C and Lx2 ¼ 1:5 is chosen in the three-
dimensional simulations.

For subcritical gravity currents, we conducted two-dimensional
simulations for full-depth lock-exchange in a linearly stratified ambi-
ent at R¼ 1.02, 1.07, and 1.12 and three-dimensional simulations at
R¼ 1.07. Figure 2 shows a time sequence of images from an

experiment of a subcritical gravity current propagating into a linearly
stratified ambient at R¼ 1.07, where the black lines in the ambient
represent the isopycnals. This case is a typical example of gravity cur-
rents propagating at a speed less than that of the linear, mode-one
internal wave. As the gravity current moves forward, a second wave
begins to form behind the first wave, as shown in Fig. 2 at t¼ 33.27.
The current interacts with the second wave and, as a result, a second
elevation of the dyed fluid appears following the current front at
t¼ 39.93. Since the internal wave moves faster than the gravity cur-
rent, the wave trough following the first wave crest catches up with the
current front at t¼ 50.57 and eventually stops and outruns the current
front at t¼ 53.24, 58.56.

Figure 3 shows the passive tracer for the gravity current and the
dimensionless density in the ambient of a subcritical gravity current

TABLE I. The parameters in the experiments and simulations, including the dimen-
sionless stratification parameter R, dimensionless intrinsic frequency N ¼ ~N ~H~u�1b ,
internal Froude number Fr, dimensionless transition distance Xtr, and transition time
multiplied by the intrinsic frequency NTtr .

Exp./Sim. R N Fr Xtr NTtr

Exp. 1.07 0.967 0.265 11.28 43.79
Exp. 1.61 0.788 0.434 15.75 40.94
Exp. 1.82 0.741 0.481 14.90 35.50
Exp. 2.00 0.707 0.533 13.79 28.37
Exp. 2.50 0.632 0.599 13.61 24.53
Exp. 3.33 0.548 0.735 13.45 19.89
Exp. 4.00 0.500 0.800 13.01 17.75
Exp. 5.00 0.447 0.944 12.99 14.76
Exp. 5.88 0.412 1.035 12.65 14.76
Exp. 7.14 0.374 1.143 12.31 11.43
Exp. 8.00 0.354 1.262 12.26 10.51
Exp. 10.00 0.316 1.449 12.13 9.40
Sim. (2D) 1.02 0.990 0.260 10.31 40.54
Sim. (2D) 1.07 0.967 0.293 11.51 43.34
Sim. (2D) 1.12 0.945 0.307 12.44 44.37
Sim. (2D) 1.20 0.913 0.314 14.94 45.70
Sim. (2D) 1.30 0.877 0.339 14.13 40.00
Sim. (2D) 1.40 0.845 0.362 13.75 36.69
Sim. (2D) 1.50 0.816 0.386 13.61 34.35
Sim. (2D) 1.60 0.790 0.467 13.49 32.37
Sim. (2D) 2.00 0.707 0.545 9.95 21.70
Sim. (2D) 3.00 0.577 0.719 10.18 16.94
Sim. (2D) 4.00 0.500 0.852 9.73 14.07
Sim. (2D) 5.00 0.447 0.997 9.98 12.30
Sim. (2D) 7.00 0.378 1.186 9.69 9.84
Sim. (2D) 10.00 0.316 1.455 9.60 8.03
Sim. (3D) 1.07 0.967 0.301 11.28 42.38
Sim. (3D) 1.60 0.790 0.467 15.75 41.03
Sim. (3D) 2.00 0.707 0.545 13.79 30.55
Sim. (3D) 5.00 0.447 0.997 12.99 15.18
Sim. (3D) 10.00 0.316 1.455 12.31 10.06

FIG. 2. Sequence of images showing a subcritical gravity current in the experiment.
In this case, the stratification parameter is R¼ 1.07 and the internal Froude number
is Fr¼ 0.27. Distances in the vertical and horizontal directions are normalized by
the depth of flow ~H, and the scale is exaggerated in the vertical direction. The black
lines in the ambient represent the isopycnals. Dimensionless time instances are
chosen at t ¼ 6:65, 13.31, 19.96, 26.62, 33.27, 39.93, 46.58, 50.57, 51.90, 53.24,
and 58.56.
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with R¼ 1.07 based on two-dimensional (left column) and three-
dimensional (right column) simulations. Here, the spanwise-averaged
concentration of the passive tracer �C and dimensionless density �q are
shown for the three-dimensional simulation. It is observed that both
the two-dimensional and three-dimensional simulations yield

consistent results and capture the interactions between the internal
wave and current described above. We should note that under the
influence of the internal wave, the body of the subcritical gravity cur-
rent maintains a smooth, curved shape without strong mixing with the
ambient fluid, as shown by both two-dimensional and three-

FIG. 3. Sequences of images of a subcriti-
cal gravity current in the two-dimensional
simulation (left column) and three-
dimensional simulation (right column). In
this case, the stratification parameter is
R¼ 1.07 and the internal Froude number
is Fr¼ 0.30. The black lines in the ambient
represent the isopycnals. Time instances
are chosen at (top-bottom) t¼ 2.12, 4.24,
6.36, 8.49, 10.61, 16.97, 22.63, 28.28,
33.94, 39.60, 45.25, 50.91, and 56.57
dimensionless units for both the two-
dimensional and three-dimensional
simulations.
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dimensional simulations in Fig. 3 at t¼ 16.97, 22.63, 28.28, and 33.94.
While the lobes and clefts must be missing in two-dimensional simula-
tion, they do appear in three-dimensional simulation during
15 < t < 40. Since the average in the spanwise direction cannot dis-
play the three-dimensional structure of the lobes and clefts, here we
show a three-dimensional view of the isosurface of the passive tracer
concentration at t¼ 22.63 in Fig. 4. Otherwise, there is only a slight
difference between the two-dimensional and three-dimensional simu-
lations in the passive tracer field at t¼ 39.60 and 45.25 when the inter-
nal wave trough following the first wave crest catches up with the
current front. We will show later that such a slight difference has negli-
gible influence on the energy balances.

Figure 5 shows the front position vs time for the subcritical grav-
ity current at R¼ 1.07 as described above. After released from the
lock, the subcritical gravity current propagates forward approximately
at a constant speed V � 0:29 until t � 50, when the wave trough fol-
lowing the first wave crest passes through the current front. We should
note that the two-dimensional and three-dimensional simulations
agree nicely with the experimental results for the subcritical gravity
current. During the slumping stage of the subcritical gravity current at
R¼ 1.07, for which the internal wave moves faster than the current,
the internal Froude number Fr � 0:30 is less than 1=p. In the experi-
ments and simulations, the internal Froude number is calculated based
on (4), namely, the ratio of the gravity current speed in the slumping
phase (V) to the internal wave speed (NH). Based on Fig. 5, we may
further define the transition distance Xtr and time Ttr traveled by the
slumping stage as the front velocity, namely the local slope of x vs t,
falls to 80% of the slumping velocity. As long as this criterion is consis-
tently applied in selecting the transition distance and time, it is possible
to quantitatively measure the dependence of transition distance and
time on other parameters in the slumping stage, e.g., the internal
Froude number. For the subcritical gravity currents, the internal
Froude number and the transition distance and time are captured by
the two-dimensional simulation, which agrees well with the three-
dimensional simulation and the experiment.

B. Propagation of supercritical gravity currents, Fr > 1
p

For a supercritical gravity current, the current moves faster than
the internal wave. For supercritical gravity currents, we conducted

two-dimensional simulations for full-depth lock-exchange in a linearly
stratified ambient at R¼ 1.6, 2, 3, 4, 5, 7, and 10 and three-
dimensional simulations at R¼ 1.6, 2, 5, and 10. Figure 6 shows a time
sequence of images from an experiment of a supercritical gravity cur-
rent propagating into a linearly stratified ambient at R¼ 2, where the
black lines in the ambient represent the isopycnals. This case is a typi-
cal example of supercritical gravity currents. As the gravity current
moves forward, the head of the current and the wave crest are locked
together, and there is no strong evidence for a second wave following
the first wave during the slumping stage.

Figure 7 shows the passive tracer and the dimensionless density
in the ambient of a supercritical gravity current at R¼ 2 based on two-
dimensional (left column) and three-dimensional (right column) sim-
ulations, where the spanwise-averaged concentration of the passive
tracer �C and dimensionless density �q are shown for the three-
dimensional simulation. It is observed that both the two-dimensional
and three-dimensional simulations yield consistent results up to
t � 18:38, as shown in Fig. 7. The Kelvin–Helmholtz vortices are per-
sistent during the slumping stage in the two-dimensional simulation,
as shown in Fig. 7 (left column), while these vortices are also pro-
nounced in the three-dimensional simulation but are allowed to
breakup into three-dimensional structures, as shown in Fig. 7 (right
column). We note that the three-dimensional simulation shows con-
sistent behaviors as in the experiment, as shown in Fig. 6. It is also
worth noting that in the three-dimensional simulation, the supercriti-
cal gravity current moves faster than the counterpart in the two-
dimensional simulation, as shown in Fig. 7 at t¼ 39.60, 45.25, and
50.91.

Figure 8 shows the front position vs time for the supercritical
gravity current at R¼ 2 as described above. During the slumping stage,
the supercritical gravity current propagates forward approximately at a
constant speed V � 0:38 and the internal Froude number Fr � 0:54
is greater than 1=p. We note that the experiment, two-dimensional
and three-dimensional simulations all give consistent results on the

FIG. 4. Three-dimensional view of the lobes and clefts for the subcritical gravity
current at R¼ 1.07 and the internal Froude number is Fr¼ 0.30. The gravity cur-
rent front is visualized by an isosurface of the passive tracer concentration
C¼ 0.25. Time instance is chosen at t¼ 22.63 dimensionless units.

FIG. 5. The front position, x � L0, vs time, t, for a subcritical gravity current. The
front position and time are non-dimensionalized by ~H and ~H~u�1b , respectively. In
this case, the stratification parameter is R¼ 1.07 and the internal Froude number is
Fr¼ 0.30. Symbol: �, present experiment. The solid line represents the three-
dimensional simulation, and the dashed line represents the two-dimensional simula-
tion in this study.
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front speed of the supercritical gravity current. However, the slumping
stage for the supercritical gravity current lasts significantly farther in
the experiment and three-dimensional simulation than in the two-
dimensional simulation.

Previously, it was reported by Ref. 33 that the internal Froude
number is a logarithmic function of the stratification parameter, i.e.,
Fr ¼ 0:266þ 0:912 logðRÞ for the full-depth release case, and the log-
arithmic relationship matches FLR, as defined by (5), in the limit of
large R, cf. Fig. 11 in Refs. 33–39 pointed out that the logarithmic rela-
tionship is a good approximation for the prediction based on the
shallow-water model but speculated that the logarithmic relationship
might fail outside 1 � R � 10=3 (0:3 � S � 1). Figure 9 shows the
internal Froude number vs the stratification parameter on a semi-
logarithmic plot in the range 1 < R � 10 in this study. As expected, in
the range 1 < R� 3, the internal Froude number follows the

logarithmic relationship proposed by Ref. 33 for the full-depth release
case. However, in the range 3�R � 10, the internal Froude number
apparently follows the asymptote FrLR, given in Eq. (5), in the limit of
large R rather than the logarithmic relationship. As the stratification in
the ambient becomes relatively weak, indeed, it is expected that the
internal Froude number approaches the asymptote FrLR in the limit of
large R, but here we confirm the speculation that the logarithmic rela-
tionship fails outside the range 1 < R� 3 and the previous perception
that the logarithmic relationship matches the asymptote FrLR in the
limit of large R has to be revised. Figure 9 also shows that the predic-
tion based on the shallow-water model2,39 appropriately describes the
internal Froude number based on our simulations and experiments
over the whole range 1 < R � 10 in this study.

Figure 10 shows the transition distance (Xtr) as a function of the
internal Froude number. Here, the transition distance is non-
dimensionalized by the depth of the heavy fluid, ~H . Figure 11 shows
the transition time (Ttr) multiplied by the intrinsic frequency (N) into
a group, NTtr , as a function of the internal Froude number. Here, the
transition time is multiplied by the intrinsic frequency, i.e., NTtr , to be
consistent and compared with Ref. 33. Since the depth of heavy fluid is
fixed in our problem setup, Xtr and NTtr can be functions of the inde-
pendent variable R and the dependent variable Fr. As we have shown,
Fr is a one-to-one function of R and we may choose to plot Xtr and
NTtr vs Fr to make a comparison with Ref. 33. In order to show the
experimental data trend, the results based on the partial-depth lock
release reported by Ref. 33 are also included for reference.

It is clear based on Figs. 10 and 11 that the dynamics between the
subcritical gravity currents, i.e., Fr < 1=p, and the supercritical gravity
currents, i.e., Fr > 1=p, are qualitatively different. For the subcritical
gravity currents, the internal wave dominates the propagation of grav-
ity currents and the termination of the slumping stage is caused by the
wave trough following the first wave crest overrunning the current
front. For the subcritical gravity currents, both Xtr and NTtr increase
as Fr increases, because the difference between the internal wave and
the current speeds decreases as Fr increases toward 1=p. For the super-
critical gravity currents, the current front and the primary wave are
locked together and the primary wave removes energy from the cur-
rent. We note, in particular, for the supercritical gravity currents both
Xtr and NTtr decrease as the internal Froude number (or equivalently
the stratification parameter) increases. A possible physical explanation
is that, as the internal Froude number (or the stratification parameter)
increases, the internal wave in the ambient becomes slower such that
the speed difference between the gravity current and the internal wave
increases. The gravity current in this situation is less likely to be held
by the internal wave for extended distance and time in the slumping
phase. While it was concluded by Ref. 33 that the transition distance
was constant (16 initial heights of heavy fluid) for all the supercritical
gravity currents, here we show that the transition distance is sensitively
dependent on the internal Froude number for the supercritical gravity
currents in the range R� 3 (S� 1=3) or Fr � 0:72. For weaker stratifi-
cation in the ambient in the range 3�R � 10 (1=10 � S� 1=3) or
0:72� Fr � 1:45, the transition distance is weakly dependent on the
internal Froude number. Such an observation suggests that stronger
stratification in the ambient tends to hold the supercritical gravity cur-
rents in the slumping stage for a longer distance. In the limit of large
R, i.e., S! 0, the problem under investigation approaches the classic
lock-exchange experiment with a homogeneous heavy fluid

FIG. 6. Sequence of images showing a supercritical gravity current in the experi-
ment. In this case, the stratification parameter is R¼ 2 and the internal Froude
number is Fr¼ 0.53. Distances in the vertical and horizontal directions are normal-
ized by the depth of flow ~H, and the scale is exaggerated in the vertical direction.
The black lines in the ambient represent the isopycnals. Dimensionless time instan-
ces are chosen at t ¼ 1:65, 7.43, 13.21, 18.98, 24.76, 30.54, 36.32, 42.09, 47.87,
53.64, and 59.43.
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propagating into a homogeneous ambient. Our experiment shows that
when R¼ 10 (S¼ 1/10) or Fr¼ 1.45, the transition distance is
Xtr¼ 12.13, which is consistent with Ref. 23 which indicated that in
the classic full-depth lock-exchange experiment Xtr � 9L0 ¼ 12,
where L0 ¼ 4=3 in our experimental and computational setup. Figure

10 also reveals the fact that, for the supercritical gravity currents, the
transition distance is underpredicted by the two-dimensional simula-
tions in light of the results from laboratory experiments and three-
dimensional simulations. We should keep in mind that, as remarked
by Ref. 39, the available one-layer shallow-water model significantly

FIG. 7. Sequences of images of a super-
critical gravity current in the two-
dimensional simulation (left column) and
three-dimensional simulation (right column).
In this case, the stratification parameter is
R¼ 2 and the internal Froude number is
Fr¼ 0.54. The black lines in the ambient
represent the isopycnals. Time instances
are chosen at (top-bottom) t¼ 2.12, 4.24,
6.36, 8.49, 10.61, 14.14, 18.38, 22.63,
28.28, 33.94, 39.60, 45.25, and 50.91
dimensionless units for both the two-
dimensional and three-dimensional
simulations.
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underpredicts the transition distance for the gravity currents in a
homogeneous and in a linearly stratified ambient and cannot predict
well the transition distance for the full-depth lock release.

C. Energy budgets

From the point of view of energy budgets, the propagation of
gravity currents into a linearly stratified ambient is a process in which
the potential energy, subject to the action of stratification, is converted
into kinetic energy and subsequently into dissipation by viscous fric-
tion. Such an energy conversion is similar to the process observed for
gravity currents propagating into a homogeneous environment.49–51

However, the stratification in the ambient not only creates a greater
buoyancy force that hinders the propagation of gravity currents but
also supports internal waves that can receive energy from the gravity
currents and transport it away. It is our understanding that informa-
tion on the energy budgets can be difficult to attain in the experiments
and the previously published report on the energy budgets in the prob-
lem was based on the shallow-water model and two-dimensional sim-
ulations. A particular contribution in this study is that we will provide

FIG. 8. The front position, x � L0, vs time, t, for a supercritical gravity current. The
front position and time are non-dimensionalized by ~H and ~H~u�1b , respectively. In
this case, the stratification parameter is R¼ 2 and the internal Froude number is
Fr¼ 0.54. Symbol: �, present experiment. The solid line represents the three-
dimensional simulation and the dashed line represents the two-dimensional simula-
tion in this study.

FIG. 9. Internal Froude number, Fr, vs the stratification parameter, R ¼ 1=S, for
the experiments and numerical simulations. Symbols: �, experiments in Ref. 33; �,
two-dimensional simulations in Ref. 33; �, present experiments; �, three-
dimensional simulations in this study; �, two-dimensional simulations in this study.
The dash-dotted line (�:�) represents the logarithmic function
Fr ¼ 0:266þ 0:912 logðRÞ. The dashed line (- -) represents the asymptote
FrLR ¼ kR1=2 in the limit of large R, where k � 0:45 for the full-depth release
case. The solid line represents the prediction based on the shallow-water model.39

FIG. 10. The dimensionless transition distance, Xtr, vs the internal Froude number,
Fr, for the experiments and numerical simulations. The transition distance is non-
dimensionalized by ~H. Symbols: �, experiments in Ref. 33 for the full-depth
release; �, experiments in Ref. 33 for the partial-depth release (non-dimensional-
ized by ~h0, the depth of heavy fluid); �, present experiments; �, three-
dimensional simulations in this study; �, two-dimensional simulations in this study.
Here, the vertical dashed line is Fr ¼ 1=p and the solid lines are added as a visual
guide to show the data trend. The dash dotted line (�:�) represents the prediction
of Ref. 33 for the supercritical gravity currents and the dash double dotted line
(�::�) represents the prediction of Ref. 2 for the subcritical gravity currents.

FIG. 11. The transition time multiplied by the intrinsic frequency, NTtr , vs the inter-
nal Froude number, Fr, for the experiments and numerical simulations. Symbols: �,
experiments in Ref. 33 for the full-depth release; �, experiments in Ref. 33 for the
partial-depth release; �, present experiments; �, three-dimensional simulations in
this study; �, two-dimensional simulations in this study. Here, the vertical dashed
line is Fr ¼ 1=p and the solid lines are added as a visual guide to show the data
trend.
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and compare the energy budgets based on the two-dimensional and
three-dimensional simulations for the subcritical and supercritical
gravity currents propagating into a linearly stratified ambient. We will
also show that the two-dimensional simulation serves as a good surro-
gate model for the three-dimensional simulation for the subcritical
gravity currents but may not do so for the supercritical gravity
currents.

The equation for the time derivative of the kinetic energy is
obtained by multiplying the momentum equation (7) by ui, i.e.,

D
Dt

1
2
uiui

� �
¼ � @

@xi
puið Þ þ

2
Re

@

@xj
sijuið Þ

� 2
Re

sijsij � ðq� qaÞu3; (15)

where D/Dt denotes the material derivative, sij denotes the strain rate
tensor, sij ¼ 1

2 ðui;j þ uj;iÞ, and u3 denotes the velocity component in
x3 direction.

40,49–51,53 Integration of (15) over the entire flow domain
v leads to the evolution equation of the total kinetic energy K, after
rearrangement,

dK
dt
þ
ð
v

ðq� qaÞu3dV þ
2
Re

ð
v

sijsijdV ¼ 0; where

KðtÞ ¼
ð
v

1
2
uiuidV ;

(16)

and the divergence terms on the right-hand side of (15) vanish upon
integration. Here, we define the potential energy in the system, after
subtracting the background stratification in the ambient, as

PðtÞ ¼
ð
v

q� qað Þx3dV : (17)

The vertical buoyancy flux U, which is the second term on the left-
hand side of (16), is related to the potential energy in the system via

U ¼
ð
v

q� qað Þu3dV ¼
dðP � IÞ

dt
; (18)

where

IðtÞ ¼
ðt
0
WðsÞds; W ¼

ð
v

Dðq� qaÞ
Dt

x3dV ; (19)

represent the conversion from internal energy to potential energy
and its time rate of change due to irreversible diffusion of den-
sity.51,55 When there is no diffusion of density, the potential energy
in the system can increase or decrease only via vertical buoyancy
flux. When the diffusion of density is at work, the potential energy
in the system increases as time progresses, i.e., W > 0, even without
the vertical buoyancy flux. The diffusion of density provides an
alternative route for potential energy increase in the system but our
results show that the internal energy caused by diffusion of density
tends to mask the potential energy change due to vertical buoyancy
flux. The third term on the left-hand side of (16) represents the dis-
sipation rate, and we use W to denote the time integral of dissipa-
tion rate, i.e.,

WðtÞ ¼
ðt
0
�ðsÞds; � ¼ 2

Re

ð
v

sijsijdV : (20)

Using (18) and (20), Eq. (16) is a statement of energy balance, i.e., that
K þ ðP � IÞ þW is a constant during the propagation of gravity cur-
rents and internal waves.

With the help of the concentration of the passive tracer, we may
quantitatively measure the energies associated with the current and
the ambient. Here, we use the passive tracer to decompose the energies
into two parts, i.e., one associated with the gravity currents (denoted
by subscript C) and the other associated with the ambient (denoted by
subscript A), while the energies without subscript C or A represent
those in the whole system. For example, the kinetic energy K in the
system can be decomposed into

KC ¼
ð
v

1
2
CuiuidV and

KA ¼
ð
v

1
2

1� Cð ÞuiuidV ;
(21)

respectively. The potential energy P in the system can be decomposed
into

PC ¼
ð
v

C qC � qað Þx3dV and

PA ¼
ð
v

1� Cð Þ q
a � qa

� �
x3dV ;

(22)

based on the assumption that the density field is related to the concen-
tration of the passive tracer via q ¼ CqC þ ð1� CÞq
a, where the
dimensionless density of the initial heavy fluid is taken as qC ¼ 1 and
q
a is the density contribution from the ambient fluid under the influ-
ence of internal waves. Other quantities such as the vertical buoyancy
flux, dissipation rate and irreversible conversion of internal energy can
be decomposed similarly into one associated with the current and the
other associated with the ambient.

The energy budgets are normalized with the initial potential
energy in the system, i.e., P(0), and the superscript “n”
denotes normalized contributions. The overall energy in the sys-
tem Kn þ ðPn � InÞ þWn during the simulations is observed to be
conserved to a very high degree of accuracy. Because the irrevers-
ible diffusion of density masks the potential energy change due to
vertical buoyancy flux, here we show the potential energy with
internal energy subtracted as ðPn � InÞ. Figure 12 shows the energy
budget for the subcritical gravity current propagating into a line-
arly stratified ambient at R¼ 1.07 (S � 0:93). For the subcritical
case, the potential energy decays monotonically while the kinetic
energy increases initially, with a maximum of Kn � 0:22 at
t � 4:74, and decreases afterward. The kinetic energy reaches its
maximum before the end of the slumping stage, which occurs at
Ttr � 40 (44) based on the three-dimensional (two-dimensional)
simulations for the subcritical gravity current at R¼ 1.07
(S � 0:93). More importantly, the energy budgets based on the
two-dimensional and three-dimensional simulations agree nicely
for the subcritical case throughout the slumping stage. Consistent
with the shallow-water model reported by Ref. 40, it is interesting
to note that the interaction between the internal wave and gravity
current at t � 50 leaves no detectable footprints in the energy
exchange as shown in Fig. 12. Figure 13 shows the energy compo-
nents associated with the current and the ambient. It may be con-
cluded that the two-dimensional and three-dimensional
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simulations agree well in almost all energy components for the
subcritical case except for the dissipation rate associated with the
current at 15 < t < 40. Three-dimensional simulation shows that
lobes and clefts, which must be missing in the two-dimensional

simulation, take shape during 15 < t < 40 and therefore the dissi-
pation rate in the three-dimensional simulation differs from that
in the two-dimensional simulation. Nevertheless, the lobes and
clefts are inhibited by the internal wave for the subcritical case and
the difference in the dissipation rate between the two-dimensional
and three-dimensional simulations diminishes when the wave
trough catches up with the front, as shown in Fig. 13(c). The verti-
cal buoyancy flux associated with the ambient, Un

A, is positive for
0 � t � 20, during which the stratified ambient accumulates
potential energy in the ambient. For t � 20; Un

A is negative but
close to zero which indicates that the potential energy in the ambi-
ent slightly decreases, as shown in Figs. 13(b) and 13(d). The verti-
cal buoyancy flux associated with the current, Un

C , is negative
throughout the propagation, which indicates that the potential
energy in the current monotonically decreases during the slumping
stage, as also shown in Figs. 13(b) and 13(d).

Figure 14 shows the energy budget for the supercritical gravity
current propagating into a linearly stratified ambient at R¼ 2
(S¼ 0.5). For the supercritical case at R¼ 2 (S¼ 0.5), the potential
energy also decays monotonically while the kinetic energy reaches its
maximum of Kn � 0:34 at t � 4:45 before the end of the slumping
stage at Ttr � 43 (31) based on the three-dimensional (two-dimen-
sional) simulations. We note that the two-dimensional and three-
dimensional simulations show similar behaviors but the agreement

FIG. 13. Energy components in the system for a subcritical gravity current at R¼ 1.07 (S � 0:93). Panel (a) shows Kn (�, 3D; �, 2D), Kn
C (�, 3D; �, 2D), Kn

A (þ, 3D; 	,
2D); panel (b) shows ðPn � InÞ (�, 3D; �, 2D), ðPn

C � InCÞ (�, 3D; �, 2D), ðPn
A � InAÞ (þ, 3D; 	, 2D); panel (c) shows �n ¼ dWn=dt (�, 3D; 	, 2D), �nC ¼ dWn

C=dt (�, 3D;
�, 2D), �nA ¼ dWn

A=dt (þ, 3D; 	, 2D); panel (d) shows Un ¼ dðPn � InÞ=dt (
, 3D; �, 2D), Un
C ¼ dðPn

C � InCÞ=dt (�, 3D; �, 2D), Un
A ¼ dðPn

A � InAÞ=dt (þ, 3D; 	, 2D).
Dashed line represents the transition time based on the 3D simulation.

FIG. 12. Energy budget in the system for a subcritical gravity current at R¼ 1.07
(S � 0:93). Symbols: 
, total mechanical energy Kn þ ðPn � InÞ (3D); �, total
mechanical energy (2D); �, potential energy ðPn � InÞ (3D); �, potential energy
(2D); �, kinetic energy Kn (3D); �, kinetic energy (2D); �, dissipated energy Wn

(3D); 	, dissipated energy (2D). Dashed line represents the transition time based
on the 3D simulation.
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between them for the supercritical case is not as good as for the sub-
critical case. Please note that for the supercritical case, we choose the
energy budget at R¼ 2 (S¼ 0.5) for illustrative purposes. In fact, the

discrepancy between the two-dimensional and three-dimensional sim-
ulations increases dramatically as the stratification parameter R (S)
increases (decreases) for the supercritical gravity currents.

Specifically, in light of the results from the three-dimensional sim-
ulation, the potential energy and kinetic energy in the system appear to
be overestimated while the dissipated energy is underestimated by the
two-dimensional simulation. As also shown in Fig. 15(c), there are two
unusual peaks in the dissipation rate, during 5 < t < 17 and
17 < t < 30, in the three-dimensional simulation while the two-
dimensional simulation tends to underpredict the dissipation rate in
the current and in the ambient without apparent peaks. Based on the
three-dimensional simulation results, we observe that the lobes and
clefts take shape during 5 < t < 17 and the Kelvin–Helmholtz vortices
breakup into three-dimensional structures during 17 < t < 30. Such
an observation explains the difference between the two-dimensional
and three-dimensional simulations for the supercritical case but then
gives rise to the following question: is the two-dimensional simulation,
to which the shallow-water model agrees, able to accurately capture the
energy associated with the current and the energy associated with the
ambient for the supercritical gravity currents? Interestingly, as shown
in Figs. 15(a) and 15(b), the two-dimensional and three-dimensional
simulations agree on the kinetic energy associated with the current and
the potential energy associated with the ambient. However, the kinetic
energy associated with the ambient and the potential energy associated

FIG. 14. Energy budget in the system for a supercritical gravity current at R¼ 2
(S¼ 0.5). Symbols: 
, total mechanical energy Kn þ ðPn � InÞ (3D); �, total
mechanical energy (2D); �, potential energy ðPn � InÞ (3D); �, potential energy
(2D); �, kinetic energy Kn (3D); �, kinetic energy (2D); �, dissipated energy Wn

(3D); 	, dissipated energy (2D). Dashed line represents the transition time based
on the 3D simulation.

FIG. 15. Energy components in the system for a supercritical gravity current at R¼ 2 (S¼ 0.5). Panel (a) shows Kn (�, 3D; �, 2D), Kn
C (�, 3D; �, 2D), Kn

A (þ, 3D; 	, 2D);
panel (b) shows ðPn � InÞ (�, 3D; �, 2D), ðPn

C � InCÞ (�, 3D; �, 2D), ðPn
A � InAÞ (þ, 3D; 	, 2D); panel (c) shows �n ¼ dWn=dt (�, 3D; 	, 2D), �nC ¼ dWn

C=dt (�, 3D; �,
2D), �nA ¼ dWn

A=dt (þ, 3D; 	, 2D); panel (d) shows Un ¼ dðPn � InÞ=dt (
, 3D; �, 2D), Un
C ¼ dðPn

C � InCÞ=dt (�, 3D; �, 2D), Un
A ¼ dðPn

A � InAÞ=dt (þ, 3D; 	, 2D).
Dashed line represents the transition time based on the 3D simulation.
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with the current are overpredicted by the two-dimensional simulation
for the supercritical gravity currents.

Since the dissipation rate in the three-dimensional simulation is
higher in the system, including both the current and the ambient, one
might ask why the kinetic energy associated with the current can be
accurately predicted by the two-dimensional simulation for the super-
critical case. Our interpretation is as follows. In the two-dimensional
simulation, the Kelvin–Helmholtz vortices, which are preserved as
shown in Fig. 7, can withhold the potential energy associated with the
current and even create positive buoyancy flux associated with the cur-
rent at times, as shown in Fig. 15(d). However, in the three-
dimensional simulation, the Kelvin–Helmholtz vortices are allowed to
breakup and more potential energy associated with the current is
released as compensation for the higher dissipation rate. As such,
despite the fact that the potential energy associated with the current is
overpredicted, the kinetic energy associated with the current is accu-
rately captured by the two-dimensional simulation.

From the energy analysis, we confirm that the stratification in the
ambient hinders the decay of the total mechanical energy and enhan-
ces the accumulation of potential energy associated with the ambient,
as reported previously by Ref. 40. We also show that the stratification
in the ambient hinders the decay of potential energy associated with
the current and the attainment of kinetic energy in the system. For the
subcritical case, the flow is dominated by the internal wave and the
two-dimensional simulation accurately captures the kinetic energies
and potential energies associated with the current and the ambient.
For the supercritical case, the Kelvin–Helmholtz vortices are pro-
nounced in the slumping stage. Although the kinetic energy associated
with the current and the potential energy associated with the ambient
can be accurately captured, the kinetic energy associated with the
ambient and the potential energy associated with the current are over-
predicted by the two-dimensional simulation and such a discrepancy
increases dramatically as R increases.

D. Partial-depth lock-exchange in a linearly stratified
ambient

Limited by our computational resources, currently we are unable
to conduct three-dimensional high-resolution simulations for the
gravity currents produced from a partial-depth lock-exchange, e.g.,
~H=~h0 ¼ 2, in a linearly stratified ambient at sufficiently large

Reynolds numbers, e.g., Reh0 ¼
ffiffiffiffiffiffiffiffiffiffi
~g 00~h0

q
~h0=~� ¼ 5000. Here, ~H is the

depth of ambient fluid, ~h0 is the depth of heavy fluid and the Reynolds
number Reh0 is based on the depth of heavy fluid. In full-depth lock-

exchange, ~H=~h0 ¼ 1. However, it is possible to conduct two-
dimensional simulations for the gravity currents produced from a
partial-depth lock-exchange in a linearly stratified ambient for suffi-
ciently large Reynolds numbers. Here, we use two cases to demonstrate
that the observations for the subcritical and supercritical cases based
on full-depth lock-exchange are still relevant in the partial-depth lock-
exchange in a linearly stratified ambient. For both the subcritical
(R¼ 1.105) and the supercritical (R¼ 2) cases in this section, we
choose ~H=~h0 ¼ 2; ~L0=~h0 ¼ 8=3 and the Reynolds number based on
the depth of heavy fluid as Reh0 ¼ 5000. When non-dimensionalized

by the depth of heavy fluid, ~h0, the two-dimensional simulations were
performed in the domain Lx1 	 Lx3 ¼ 48	 2 and we employed the
grid Nx1 	 Nx3 ¼ 2816	 280 in the simulations.

Figure 16 shows the passive tracer and the dimensionless density
in the ambient of a subcritical gravity current at R¼ 1.105 (left col-
umn) and a supercritical gravity current at R¼ 2 (right column) in
two-dimensional simulations. It is remarkable that, even with a
partial-depth lock release, the Kelvin–Helmholtz vortices are inhibited
by the internal waves in the subcritical gravity current and are pro-
nounced in the supercritical gravity current. Our experiments also
show consistent trends for the subcritical gravity current at R¼ 1.105
(left column) and supercritical gravity current at R¼ 2 (right column)

FIG. 16. Sequences of images of a subcritical gravity current (R¼ 1.105) in the two-dimensional simulation (left column) and a supercritical gravity current (R¼ 2) in the two-
dimensional simulation (right column). In these two cases, both the subcritical and supercritical gravity currents are produced from a partial-depth lock release, ~H=~h0
¼ 2; ~L0=~h0 ¼ 8=3 and the Reynolds number based on the depth of heavy fluid is Reh0 ¼ 5000. Distances in the vertical and horizontal directions are normalized by the
depth of heavy fluid ~h0. The black lines in the ambient represent the isopycnals. Time instances are chosen at t¼ 0, 8, 16, and 24 dimensionless units (where time unit is
~h
1=2
0 =~g 01=20 ) for both the subcritical and supercritical cases.
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in Fig. 17. Based on our two-dimensional and three-dimensional simu-
lations of subcritical and supercritical gravity currents from a full-
depth lock release, it is anticipated that, for the partial-depth lock
release, the two-dimensional simulation serves as a good surrogate
model for the three-dimensional simulation for the subcritical gravity
current while, due to the persistence of Kelvin–Helmholtz vortices in
the supercritical gravity current, information derived from the two-
dimensional simulation must be treated with care for the supercritical
case.

V. CONCLUSIONS

Gravity currents, produced from a full-depth lock-exchange
setup, propagating at the base of a linearly stratified ambient are
reported. Our attention is focused on the slumping stage of propaga-
tion. Two-dimensional and three-dimensional high-resolution simula-
tions along with laboratory experiments are conducted to reproduce
the quantitative measures of the gravity currents in the slumping stage,
including the internal Froude number, transition distance and time,
and to provide a detailed energy analysis for the propagation of gravity
currents in a linearly stratified ambient.

During the slumping stage, the dynamical pictures between
the subcritical case and the supercritical case are qualitatively dif-
ferent. For the subcritical case, the flow is dominated by the inter-
nal wave, the Kelvin–Helmholtz vortices are inhibited by the
internal wave, and the gravity currents maintain a smooth shape
without strong mixing with the ambient fluid. As such, the two-
dimensional and three-dimensional simulations agree nicely. For
the supercritical case, the current front and the internal wave are
locked together and the Kelvin–Helmholtz vortices are pro-
nounced in the slumping stage. The Kelvin–Helmholtz vortices are
prone to breakup in the slumping stage and the discrepancy
between the two-dimensional and three-dimensional simulations
for the supercritical gravity currents increases dramatically as the
stratification parameter R increases.

Previously, it was understood that the internal Froude number is
a logarithmic function of the stratification parameter R. In this study,
we have confirmed that the logarithmic relationship is valid only in
the range 1 < R� 3 but may fail outside this range. In the limit of
large R, the logarithmic relationship diverges from the asymptote FrLR,
given in Eq. (5). We have also shown that the shallow-water model
can appropriately describe the internal Froude number throughout the
whole range 1 < R � 10 in this study. Previously, the transition dis-
tance was understood to be independent of the internal Froude num-
ber for the supercritical gravity currents. Our simulation and
experimental results indicate that, for the supercritical gravity currents,
the transition distance Xtr is sensitively dependent on the internal
Froude number for the stratification in the ambient in the range R� 3
(S� 1=3) or Fr � 0:72. For weaker stratification in the ambient in the
range 3�R � 10 (1=10 � S� 1=3) or 0:72� Fr � 1:45, the transi-
tion distance is weakly dependent on the internal Froude number.

Energy analysis indicates that, for gravity currents propagating
into a linearly stratified ambient, the potential energy (with internal
energy subtracted) is converted into kinetic energy and then into dissi-
pation but the stratified ambient supports internal waves that can
receive energy from the gravity currents. Overall, the stratification in
the ambient hinders the decay of the total mechanical energy during
the propagation of gravity currents. Specifically, the stratification in the
ambient can hinder the release of potential energy associated with the
current and the attainment of kinetic energy in the system. For the sub-
critical case, the two-dimensional and three-dimensional simulations
agree nicely in almost all energy components except for the dissipation
rate during the time that lobes and clefts take shape. For the supercriti-
cal case, the two-dimensional simulation tends to underpredict the dis-
sipation rate in the system during the times that lobes and clefts take
shape and the Kelvin–Helmholtz vortices breakup into three-
dimensional structures. For the supercritical case, although the kinetic
energy associated with the current and the potential energy associated
with the ambient can be accurately captured, the kinetic energy

FIG. 17. Sequences of images of a subcritical gravity current (R¼ 1.105) in the experiment (left column) and a supercritical gravity current (R¼ 2) in the experiment (right col-
umn). In these two cases, both the subcritical and supercritical gravity currents are produced from a partial-depth lock release, ~H=~h0 ¼ 2; ~L0=~h0 ¼ 8=3 and the Reynolds
number based on the depth of heavy fluid is Reh0 ¼ 5000. Distances in the vertical and horizontal directions are normalized by the depth of heavy fluid ~h0. The black lines in
the ambient represent the isopycnals. For the subcritical case (supercritical case), time instances are chosen at t¼ 0.00 (0.00), 7.75 (7.21), 15.55 (16.24), and 24.62 (23.46)

dimensionless units (where time unit is ~h
1=2
0 =~g 01=20 ).
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associated with the ambient and the potential energy associated with
the current are overpredicted by the two-dimensional simulation and
such a discrepancy increases dramatically as the stratification parame-
ter R increases. Information derived from the two-dimensional simula-
tion for the supercritical gravity currents must be treated with care.

The high-resolution simulations reported in this study comple-
ment the existing shallow-water formulation and two-dimensional
simulations.39,40 With good physical assumptions and simple mathe-
matical models, the shallow-water formulation has been reported to
agree well with the two-dimensional simulations and both the
shallow-water formulation and the two-dimensional simulations accu-
rately predict the kinetic energy of the current. The present study is for
a full-depth lock-exchange configuration with a rectangular cross sec-
tion. Future extensions may include the partial-depth release case and
an axisymmetric configuration.
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APPENDIX: OTHER FORMS OF THE BUOYANCY
FLUX

In the appendix, we show the connection between the buoy-
ancy flux (18) in our formulation and the informative form defined
in Refs. 40 and 2.

In order to manipulate the buoyancy flux into an informative
form, Ref. 40 introduces the vertical displacement ~g of a particle of
density ~q
a in the ambient fluid, from its initial position in the linear
density profile. We note that a particle of density ~q
a has its initial
position in the linear density profile as

~qb � ~q
a
~qb � ~q0

~H ;

such that a particle of density ~qb has its initial position at ~x3 ¼ 0
and a particle of density ~q0 has its initial position at ~x3 ¼ ~H . The
vertical displacement is defined as

~g ¼ ~x3 �
~qb � ~q
a
~qb � ~q0

~H ;

where ~x3 is the current position of the particle and ~q
a represents
the density in the ambient under the influence of internal waves.
After some algebra and non-dimensionalized by ~H , the dimension-
less vertical displacement is

g ¼ x3 � 1þ ~q
a � ~q0

~qC � ~q0

~qC � ~q0

~qb � ~q0
¼ x3 � 1þ q
aR;

where q
a ¼ ð~q
a � ~q0Þ=ð~qC � ~q0Þ is the dimensionless density of
the ambient under the influence of internal waves. Prior to the
release of gravity currents and excitation of internal waves,

q
a ¼ qa in the ambient. Therefore, according to (13), the vertical
displacement is g¼ 0 prior to the release of gravity currents and
excitation of internal waves. Alternatively, we may rewrite the
dimensionless density of the ambient in terms of the vertical dis-
placement as

q
a ¼
g
R
þ 1� x3

R
¼ g

R
þ qa:

With the help of the concentration of the passive tracer, we
may quantitatively decompose the energies into two parts, i.e., one
associated with the gravity currents (denoted by subscript C) and
the other associated with the ambient (denoted by subscript A), by
the assumption that the density field is related to the concentration
of the passive tracer via

q ¼ CqC þ ð1� CÞq
a;

where the dimensionless density of the initial heavy fluid is taken as
qC ¼ 1 and q
a is the density contribution from the ambient fluid
under the influence of internal waves. The buoyancy flux, defined in
(18), can be rewritten as

U ¼
ð
v

C qc � qað Þ þ 1� Cð Þ q
a � qa

� �h i
u3dV

¼
ð
v

C 1� 1� x3
R

� �
u3dV þ

ð
v

1� Cð Þ g
R
u3dV ;

where the first term on the right-hand side represents UC and the
second term represents UA. For a non-diffusive simplified system as
considered in Ref. 40 the concentration is either 1 or 0 and the
domain V is a union of Xc (where C¼ 1) and Xa (where C¼ 0). For
the ambient fluid region Xa where C¼ 0, the buoyancy flux associ-
ated with the ambient becomes

UA ¼
ð

Xa

g
R
u3dV ¼

1
R
D
Dt

ð
Xa

1
2
g2dV

� �
;

which is consistent with the informative form provided by Refs. 40
and 2.
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