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Gravity currents generated from an instantaneous buoyancy source of density
contrast in the density ratio range of 0.3 ≤ γ ≤ 0.998 propagating downslope in the
slope angle range of 0◦ ≤ θ < 90◦ have been investigated in the acceleration phase
by means of high-resolution two-dimensional simulations of the incompressible
variable-density Navier-Stokes equations. For all density contrasts considered in
this study, front velocity history shows that, after the heavy fluid is released from
rest, the gravity currents go through the acceleration phase, reaching a maximum
front velocity Uf ,max, followed by the deceleration phase. It is found that Uf ,max

increases as the density contrast increases and such a relationship is, for the first
time, quantitatively described by the improved thermal theory considering the non-
Boussinesq effects. Energy budgets show that, as the density contrast increases, the
heavy fluid retains more fraction of potential energy loss while the ambient fluid
receives less fraction of potential energy loss in the process of energy transfer during
the propagation of downslope gravity currents. Previously, it was reported that for
the Boussinesq case, the downslope gravity currents have a maximum of Uf ,max at
θ ≈ 40◦. It is found, as is also confirmed by the energy budgets in this study, that the
slope angle at which the downslope gravity currents have a maximum of Uf ,max may
increase beyond 40◦ as the density contrast increases. C 2016 AIP Publishing LLC.
[http://dx.doi.org/10.1063/1.4942239]

I. INTRODUCTION

Gravity currents, also known as buoyancy or density currents, are density-driven flows predom-
inantly in the horizontal direction. A number of factors that are likely to cause variations in the den-
sity of fluid include temperature differentials, dissolved materials, and suspended sediments. In the
literature, lock-exchange experiment, in which gravity currents are produced from a finite volume of
heavy fluid and propagate on a horizontal boundary, has long served as a paradigm configuration in
the study of gravity currents.1–9 To date, most experimental, theoretical, and computational studies
have addressed the Boussinesq case, in which the density difference between the heavy and light
fluids is sufficiently small such that the influence of the density difference on the dynamics of
gravity currents can be regarded as only via the driving body force associated with the acceleration
of gravity.

Although the Boussinesq case is representative of many geophysical flows, the non-Boussinesq
case, in which the density difference is significantly larger, can be important in quite a few situ-
ations, including spillage of industrial gases in a mine or into the atmosphere, fires in a tun-
nel or a room, snow avalanches, and pyroclastic flows from volcanic eruptions. In contrast, the
non-Boussinesq lock-exchange flows have received comparatively less attention.10–13 One plausible
reason is that it is difficult to realize a wide range of density contrasts with “standard” working
fluids that can be handled easily in the laboratory, e.g., salt water. Even with very expensive material
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such as sodium iodide, the density ratio, γ = ρ̃2/ρ̃1, where ρ̃1 and ρ̃2 represent the densities of the
heavy and light fluids, respectively, can only reach as low as 0.61.12

In order to investigate the non-Boussinesq lock-exchange problem with larger density contrasts
in more detail, highly resolved numerical simulations offer new possibilities, as demonstrated by
Refs. 14–17 using high-resolution two-dimensional Navier-Stokes simulations. As long as the flow
structures remain two-dimensional, the essential features of the flows are accurately captured by
the simulations documented in these reports. It has also been confirmed by other researchers18–22

that the three-dimensional vortex interactions are not important as long as the gravity currents
remain in the acceleration phase and constant front velocity phase. Therefore, high-resolution
two-dimensional Navier-Stokes simulations, as employed in this study, serve as a prevalent means
to investigate the gravity currents in the acceleration phase and in the constant front velocity phase.

Compared with lock-exchange problem, gravity currents either down23–25 or up a slope26–28 are
much less considered but are also commonly encountered in geological environments and engi-
neering applications.29–31 In some of these environments, e.g., snow avalanches and pyroclastic
flows, the downslope gravity currents are not confined by the top wall because the height of the
flow domain is essentially infinite, while in others, e.g., tunnel fires, the downslope gravity currents
may be confined by the top wall. It is found by Ref. 22 that the lock-height-to-channel-height
depth ratio, i.e., φ = h̃0L̃−1

x3
, where h̃0 and L̃x3 are the lock height and channel height in Figure 1,

respectively, has a dominant influence on the qualitative features of the downslope gravity currents.
For non-Boussinesq, full-depth (φ = 1) lock-exchange flows in sloping channels, Ref. 18 observed
the existence of a quasi-steady phase with constant front velocity. For Boussinesq downslope grav-
ity currents in deep ambient (φ → 0), instead of a quasi-steady phase, Ref. 23 showed that the
produced gravity currents go through an acceleration phase, reaching a maximum front velocity
Uf ,max, followed by a deceleration phase and the classic thermal theory was developed therein to
describe the acceleration and deceleration phases of the propagation. Of course in the laboratory,
a deep ambient environment with infinite channel height is unlikely to be reached physically. In
fact, Ref. 23 experimentally investigated the propagation of a finite volume of heavy fluid down
a slope in a channel, where the depth ratios were 0.16 and 0.13 for their two working channels.
Nevertheless, Ref. 22 showed that the partial-depth lock-exchange flows with depth ratio φ = 0.16
are sufficient to represent the deep ambient situation (φ → 0).

Similar to the lock-exchange flows, most studies in downslope gravity currents in deep ambient
have addressed the Boussinesq case. The Boussinesq version of the problem set forth in Ref. 23
has been revisited by Ref. 32 for the influence of lock length, l̃0, on the acceleration phase and by
Refs. 24 and 25 for the deceleration phase. In particular, Ref. 32 reported that the acceleration phase
is extended and the gravity currents behave more like a “starting plume” when the lock length to

FIG. 1. Sketch for the gravity current propagating on a sloping boundary. Streamwise and wall-normal directions are denoted
by x1 and x3, respectively. The domain of interest is set as L̃x1× L̃x3, where L̃x1= 10l̃0, L̃x3= h̃0φ

−1, and φ is the lock
height to channel height ratio. In this study, l̃0= 1.25h̃0 and φ = 0.16 remain unchanged following previous experimental and
computational studies.22,23,25,37 Heavy fluid initially occupies the shaded region of h̃0× l̃0 without momentum. At t = 0, the
heavy fluid is released and begins to propagate in the downslope direction, x1. The gravity current head approximately takes
the form of a semi-elliptical shape, with height H̃ and length L̃. The channel is inclined so the gravity vector ẽg makes an
angle θ with the wall-normal direction, x3.
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lock height ratio, l0 = l̃0/h̃0, increases. In the companion paper, Ref. 22 has investigated the Boussi-
nesq downslope gravity currents in the acceleration phase using high-resolution two-dimensional
Navier-Stokes simulations and it is found that a maximum of Uf ,max occurs at θ ≈ 40◦. Here our
focus is turned to the non-Boussinesq version of the problem set forth in Ref. 23. With the help of
high-resolution two-dimensional Navier-Stokes simulations, the ranges of slope angle and density
contrast investigated can be significantly increased and their influences on the dynamics of gravity
currents in the acceleration phase can be seen more clearly.

The buoyancy source considered in this study is of finite volume of heavy fluid and the gravity
currents are laterally confined as in a two-dimensional configuration. Other related studies include
Ref. 33, who investigated the gravity currents produced from a finite volume of heavy fluid propa-
gating on a laterally unconfined slope, and Refs. 34–36, who considered a buoyancy source of
constant influx of heavy fluid into homogeneous and stratified environments.

The present study is a continuation of the computational investigation of the Boussinesq down-
slope gravity currents reported in the companion paper by Ref. 22 and also an extension of the
experimental investigation of non-Boussinesq gravity currents by Ref. 37 in that gravity currents
generated from an instantaneous, finite buoyancy source on different slopes were reported, where
the density ratio was in the range of 0.85 ≤ γ ≤ 0.95 and the slope was in the range of 0◦ ≤ θ ≤ 9◦.
As in many previous laboratory studies, the range of density contrast is limited by the solubility of
sodium chloride in water at room temperature and the range of slope angle is limited by the flume
height. Here the objective is to extend the study reported in Ref. 37 and investigate the influence of
density contrast in a broader range of density ratio, i.e., 0.3 ≤ γ ≤ 0.998, and in a broader range of
slope angle, i.e., 0◦ ≤ θ < 90◦. The lock length in this study follows22,23,37 and remains unchanged
as l0 = 1.25. Since the influence of the depth ratio φ = h̃0L̃−1

x3
has been reported in the companion

paper by Ref. 22 and it has been confirmed that φ = 0.16 is sufficient to represent gravity currents
in deep ambient situation, in the simulations the depth ratio φ = 0.16 is chosen following previous
experimental and computational investigations of the downslope gravity currents in deep ambient
case. In addition, since the influence of the Reynolds number has also been investigated in Ref. 22
and it has been reported that the influence of the Reynolds number is weak for Re & 4000, we
will not reinvestigate the influence of the Reynolds number and Re = 4000 is chosen in the simu-
lations throughout. Our focus is on the acceleration phase of the propagation of gravity currents;
therefore the investigation is conducted, as in the companion paper, by means of high-resolution
two-dimensional simulations of the incompressible, variable-density Navier-Stokes equations.

II. IMPROVED THERMAL THEORY

Figure 1 shows the flow domain in this study and a schematic diagram of the gravity currents
in the theory, where gravity currents are approximated by a semi-elliptical shape with aspect ratio
k = H̃/L̃ during the propagation and H̃ and L̃ are the height and length of the semi-elliptical head,
respectively. It is worth noting that the classic thermal theory was originally developed for the
Boussinesq downslope gravity currents in deep ambient, i.e., γ ≈ 1 and φ → 0, and has been used
for many subsequent studies.38,39 Here we further extend the classic thermal theory to include the
non-Boussinesq effects, using the principles of momentum conservation, i.e.,

d ( ρ̃ + ρ̃2kv) S1H̃ L̃Ũ
dt̃

= B̃sinθ, (1)

and mass conservation, i.e.,

d
dt̃
(S1H̃ L̃) = S2(H̃ L̃)1/2α(θ)Ũ . (2)

Here the density of ambient fluid is taken as ρ̃2 and the density of heavy fluid in the lock
region is ρ̃1. Initially the heavy fluid occupies the shaded region of which the area is Ã0 = h̃0l̃0.
For non-Boussinesq gravity currents, ρ̃1 typically serves as the reference density and a commonly
used parameter characterizing the density difference is the density ratio, γ = ρ̃2/ρ̃1. The total
buoyancy is defined to be B̃ = g̃( ρ̃ − ρ̃2)S1H̃ L̃. The cross-sectional area and the circumference

 Reuse of AIP Publishing content is subject to the terms at: https://publishing.aip.org/authors/rights-and-permissions. Downloaded to  IP:

180.176.50.216 On: Tue, 23 Feb 2016 16:43:52



026602-4 A. Dai and Y.-l. Huang Phys. Fluids 28, 026602 (2016)

of the semi-elliptical head are defined as S1H̃ L̃ and S2(H̃ L̃)1/2, respectively, where S1 = π/4 and
S2 = (π/23/2)(4k2 + 1)1/2/k1/2 are the shape factors. In addition, Ũ is the velocity of the centre of
mass of the head, kv = 2k is the added mass coefficient,40 and α is the entrainment coefficient.41

Equation (2) yields self-similar solutions for H̃ and L̃ that grow linearly with distance, and the
“virtual origin” is obtained by extrapolating H̃ upstream to H̃ = 0.

Finally, when the heavy fluid is released from rest, the centre of mass velocity is given by

Ũ =

C *
,

2γ2 �X3
B − 1

�
− 12γ (1 − γ)Q (XB − 1)

3
�
γX2

B + 2 (1 − γ)Q
�2 +

-



1/2

, (3)

where

C = 2
1 − γ
γ

Qg̃ x̃0sinθ and Q =
2k Ã0

(1 + 2k)πα2
0x̃2

0

(4)

are functions of density ratio γ, the distance from the virtual origin to the gate of release x̃0, the
angle of growth α0, and XB = x̃CM/x̃0. The front location, when measured from the virtual origin,
is related to the position of the centre of mass by x̃F = (1 + α0/2k)x̃CM and likewise the front
velocity is related to the centre of mass velocity by Ũf = (1 + α0/2k)Ũ . When normalized by the

velocity scale,

(1 − γ)g̃ h̃0, the maximum dimensionless front velocity, Uf ,max, has a closed-form

solution and is novelly derived here as

Uf ,max =

(
1 +

α0

2k

) 
2Qx̃0sinθ

h̃0

*
,

2γ
�
X3
M − 1

�
− 12 (1 − γ)Q (XM − 1)

3
�
γX2

M + 2 (1 − γ)Q
�2 +

-



1/2

, (5)

where

XM = ∆ +
1
2


−4∆2 − 24Q

1 − γ
γ
+

1
∆

(
4 + 24Q

1 − γ
γ

)
, (6)

with

∆ =
1
2


1
3


13 824Q3

(
1 − γ
γ

)3

+ 27
(
4 + 24Q

1 − γ
γ

)2

1
3

− 8Q
1 − γ
γ

, (7)

which reduces to XM = 41/3 in the Boussinesq case and

Uf ,max ≈ 0.79
(
1 +

α0

2k

) (
Qx̃0sinθ

h̃0

)1/2

, (8)

as consistent with previously derived formula when γ → 1.22 An early version of the theory for
non-Boussinesq downslope gravity currents, slightly different from that presented here due to the
chosen scaling for the reference density, was formerly given in Ref. 42. In this study, we have
improved the early version of the non-Boussinesq thermal theory by finding the closed-form solu-
tion, for the first time, for maximum front velocity (5). It will be shown in Sec. IV B that novelly
derived formula (5) reasonably describes the relationship between the maximum front velocity and
the density ratio. It is worth noting that the theoretical framework, which builds on parameters
including the entrainment of ambient fluid, the angle of growth of the head, the semi-elliptical shape
of the head, and, consequently, the shape factors, may not be readily applicable to the extreme
case, γ ≪ 1, such as water and air, because mixing between the two fluids in this situation is very
limited. Nevertheless, the classic thermal theory offers a platform for improvement on which the
non-Boussinesq effects can be considered, at least for the case when the density contrast is not
extremely large.
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III. NUMERICAL FORMULATION

Figure 1 also gives a sketch of the configuration for simulations of gravity currents down
slopes. The heavy fluid of density ρ̃1 is confined in the lock region and separated from the light
fluid of density ρ̃2. In most gravity current studies, the Boussinesq approximation, i.e., the density
difference is sufficiently small such that the influence of density variations is retained only in the
buoyancy term, has been employed. However, our intention is to consider cases in which the density
contrast is larger, so the Boussinesq approximation will not be invoked. In the literature, there are a
few computational studies of non-Boussinesq gravity currents14,16,18 and in their formulation either
the dynamic or the kinematic viscosity is assumed constant. In the following, we will keep the dy-
namic viscosity µ̃ constant and the same for both fluids instead of a constant kinematic viscosity.16

In fact, these two situations are equivalent for the Boussinesq case or when the Reynolds number is
sufficiently high. Furthermore, it has been reported that these two situations are qualitatively consis-
tent even when the density difference is larger.14 Therefore, for incompressible, variable density
flows, the dimensionless Navier-Stokes equations read

∂uk

∂xk
= 0, (9)

ρ

(
∂ui

∂t
+
∂uiuk

∂xk

)
=

ρ

1 − γ
egi −

∂p
∂xi
+

1
Re

∂2ui

∂xk∂xk
, (10)

∂ρ

∂t
+
∂ρuk

∂xk
=

1
Pe

∂2ρ

∂xk∂xk
. (11)

Here ui denotes the velocity, ρ the density, γ the density ratio, egi the unit vector in the direction
of gravity, and p the pressure. The set of Equations (9)-(11) is made dimensionless by the lock
height, h̃0, as the length scale, the density of heavy fluid, ρ̃1, as the reference density, the buoyancy
velocity

ũb =


g̃′h̃0 with g̃′ = (1 − γ)g̃, (12)

as the velocity scale, and h̃0ũ−1
b

as the time scale, where γ = ρ̃2/ρ̃1. Here the dimensionless density
is defined as

ρ =
ρ̃

ρ̃1
, (13)

where γ ≤ ρ ≤ 1. By assuming a density-concentration relationship of the form ρ̃ = ρ̃2 + c( ρ̃1 −
ρ̃2), the concentration of fluid mixture c, where 0 ≤ c ≤ 1, can be expressed in terms of the dimen-
sionless density, ρ, as

c =
ρ − γ
1 − γ

. (14)

The Reynolds number Re and the Péclet number Pe arising in the dimensionless equations are
defined by

Re =
ũbh̃0

ν̃
and Pe =

ũbh̃0

κ̃
, (15)

respectively, where ν̃ is the kinematic viscosity of the heavy fluid and κ̃ is the diffusion coefficient
for both the heavy and light fluids. The Reynolds number and the Péclet number are related by the
Schmidt number

Sc =
ν̃

κ̃
, (16)

which represents the ratio of the kinematic viscosity to molecular diffusivity. It has been observed
by many researchers43–46 that the influence of Schmidt number on the dynamics of the gravity
current is weak as long as Sc ≈ O(1) or larger, so we employ Sc = 1 throughout. But it should still
be kept in mind that typically in saline experiments, Sc ≈ 700.
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The set of equations in the velocity-pressure formulation is solved in the flow domain with
resolution Nx1 × Nx3. The channel running length in the streamwise direction, Lx1, was chosen ten
times larger than the length of the lock to allow full development of the acceleration phase. The
influence of the depth ratio, φ = h̃0L̃−1

x3
, has been reported in the companion paper and has been

confirmed to be negligible for sufficiently low values of φ. Here we set φ = 0.16 in the simulations
throughout. Fourier expansion with the periodic boundary condition is employed in the streamwise
direction. To ensure a reflection condition at the left wall (x1 = 0) as in the experiments and to
prevent any upslope propagation upon the release of heavy fluid, an image is placed to the left of
the domain of interest such that the heavy fluid in the lock is fully discharged into the channel
of length Lx1.

21,22 Chebyshev expansion with Gauss-Lobatto quadrature points is employed in the
wall-normal direction. The Gauss-Lobatto quadrature points provide a straightforward implemen-
tation of boundary conditions and have high resolution near the walls. Previous computational
studies14,20 have shown that the slip boundary conditions allow the gravity currents to propagate
faster but do not change the dominant qualitative features of the flow; therefore the influence of the
boundary conditions will not be reinvestigated in this study. Here we employ no-slip and no-flux
conditions at the top and bottom walls for the velocity and density fields, respectively.

The flow field is advanced in time by the low-storage third-order Runge-Kutta scheme.47

The inertia term on the left hand side of (10), i.e., ρDui/Dt, can be separated into two parts,
namely, γDui/Dt and (ρ − γ)Dui/Dt, where the latter part is regarded as a non-Boussinesq forcing
term. The convection, buoyancy, and non-Boussinesq forcing terms are treated explicitly while the
diffusion terms are treated implicitly with Crank-Nicolson scheme. To reduce the aliasing error,
Arakawa method48 is used to evaluate the convection term alternately between divergence and
convective forms. The Boussinesq version of the de-aliased pseudospectral code has been em-
ployed for lock-exchange flows45,49 and for downslope gravity currents,20–22 to which the readers
are referred for more details of the implementation of the code. In all simulations, the velocity field
was initialized with quiescent condition everywhere. The initial density field is prescribed unity
in the heavy fluid region and zero elsewhere with a smooth error-function type transition in the
interface region.50 With increasing Re the complexity and required resolution increase. To resolve
the full flow structures of the gravity currents in the domain Lx1 × Lx3 = 10l0 × φ−1, adequate reso-
lution requires a grid size of ∆x1 ≈ (ReSc)−1/2 in the streamwise direction and a typical grid of
Nx1 × Nx3 = 672 × 420 is used for φ = 0.16, l0 = 1.25, and Re = 4000. The time step was chosen to
produce a Courant number less than 0.5.

IV. RESULTS

A. Representative Boussinesq case

For validation purposes, we first consider a representative case with a slope of 9◦ and a density
ratio γ = 0.998, at which the Boussinesq approximation is valid. This representative Boussinesq
case has also been investigated experimentally by Refs. 23 and 25 and computationally by Ref. 22.
In this situation, the results obtained by solving the present variable-density equations should agree
with our earlier results based on the Boussinesq equations.22 Figure 2 shows the concentration
and vorticity contours for Re = 4000. As time progresses, the heavy fluid collapses and the two
roll-up vortices accomplish a complete overturn in the leapfrog process, as shown in Figure 2 at
t = 1.77–7.95. Towards the end of the acceleration phase, a large roller is left behind the current
front. This observation is consistent with the experimental observation previously made by Ref. 25
and also with the computational observation for the Boussinesq downslope gravity currents made by
Ref. 22, because the present simulation at γ = 0.998 closely reproduces the Boussinesq simulation
results, cf. Figure 2(f). For the Boussinesq gravity currents, it is reported by Ref. 22 that such a
complete vortex overturn and a large roller structure are persistent for gravity currents on slope
angles greater than 6◦.
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FIG. 2. A planar gravity current propagating on a 9◦ slope at γ = 0.998 and Re= 4000. Flow evolution is visualized by
the concentration and vorticity contours at (a) t = 0.88, (b) 1.77, (c) 2.65, (d) 4.42, (e) 7.95. Here the thick solid lines
represent c = 0.5 and thin solid (dashed) lines represent positive (negative) vorticity contours. (f) shows the concentration
and vorticity contours from a corresponding Boussinesq simulation at t = 7.95. The non-Boussinesq simulation at γ = 0.998
and the Boussinesq simulation give very close results.

In order to measure the front location of gravity currents, we define the equivalent height
h(x1, t) following previous works1,14,18,45 as

h(x1, t) = 1
1 − γ

 Lx3

0
ρ(x1, x3, t)dx3 −

γ

1 − γ
. (17)

Equivalent height is essentially a compact measure of the distribution of heavy fluid along the
streamwise direction. Figure 3 shows the equivalent height evolution for the gravity currents on a
9◦ slope at two density ratios, i.e., γ = 0.998,0.4. The front location, x f , can be identified unam-
biguously as the furthest location reached by the gravity currents and the front velocity, Uf , can be
derived using the front location data, via Uf = dx f /dt. The qualitative influence of density ratio on
the propagation of gravity currents is clear in Figure 3. For a given slope angle, the equivalent height
of a gravity current decreases as the density ratio decreases. Such an observation indicates that as
the density ratio decreases, the heavy fluid tends to spread in the streamwise direction more rapidly
with less tendency to engage light ambient fluid in the propagation.

FIG. 3. Evolution of equivalent height of gravity currents on a 9◦ slope at Re= 4000 for two density ratios, i.e., γ = 0.998 (a)
and γ = 0.3 (b). The time interval between consecutive equivalent height profiles is chosen at 0.53 dimensionless units.
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FIG. 4. Front velocity versus time for gravity currents propagating on a 9◦ slope at Re= 4000 for different density ratios.
Symbols: +, γ = 0.998; △, γ = 0.9; ▽, γ = 0.8; ◦, γ = 0.7; �, γ = 0.6; �, γ = 0.4; •, experiments from Ref. 25 in which
γ ≈ 0.98 and Re≈ 9000.

Figure 4 shows the front velocity versus time for gravity currents on a 9◦ slope with different
density ratios, including the Boussinesq case (γ ≈ 1). After the heavy fluid is released, the front
velocity of the Boussinesq downslope gravity currents rapidly increases from zero with maximum
acceleration until t ≈ 1.2. In the latter part of the acceleration phase, the front velocity continues to
increase but with a reduced acceleration until a maximum front velocity is reached. The observation
is consistent with recent experiments reported by Ref. 25, as also shown in Figure 4.

B. Influence of the density contrast

As a next step, we consider γ = 0.9, again for θ = 9◦ and Re = 4000. This density ratio
is close to the limit where the Boussinesq approximation loses its validity. Figure 5(a) demon-
strates that the vortex overturn is completed at t = 7.95 and the differences between the results
of the cases γ = 0.998 and γ = 0.9 are relatively small. As the density contrast further increases,
i.e., γ = 0.8,0.7,0.6, a qualitatively new feature emerges. While the vortices along the frontal re-
gion of the current head remain strong, the complete vortex overturn in the Boussinesq case now
ceases to exist. Instead, one of the two roll-up vortices remains in the tail current, as seen between
3 < x1 < 4 in Figures 5(b)–5(d). The observation is also consistent with recent experiments that the
roller forming behind the head is smaller than the Boussinesq counterpart, as reported in Ref. 37 and
shown in Figure 6.

More different features emerge in the non-Boussinesq downslope gravity currents. As shown
in Figures 4 and 5, the non-Boussinesq downslope gravity currents propagate at higher speeds as
the density contrast increases, which is in good agreement with the experimental observations of
Ref. 37. By the notion of mass conservation and as also observed in Figure 3, the equivalent height
of the gravity currents should decrease as the density contrast increases. The angle of growth, α0,
decreases while the distance from the virtual origin to the gate, x0, increases with increasing density
contrast, as shown in Figure 7(a).

With the help of the improved thermal theory considering the non-Boussinesq effects and the
empirical relationships for x0 and α0 in Figure 7(a), the relationship between the maximum front ve-
locity and the density ratio can be reasonably described by novelly derived formula (5), as demon-
strated by the dashed line in Figure 7(b). Here the maximum front velocity derived from the simu-
lation results is in good agreement with the experimental results, even though the Reynolds number
in the experiments, ranging from Re ≈ 9000 for γ = 0.998 to Re ≈ 26 000 for γ = 0.85, is higher
than the Reynolds number in the simulations. As demonstrated by Ref. 22, the influence of the
Reynolds number on the maximum front velocity is weak for Re & 4000 and here a good agreement
between the simulation and experimental results is expected for sufficiently high Reynolds numbers.
Interestingly, as the density contrast increases, the maximum front velocity of downslope gravity
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FIG. 5. Flow patterns of gravity currents on a 9◦ slope with four different density ratios from simulations. Panels: (a) γ = 0.9,
(b) 0.8, (c) 0.7, (d) 0.6. Flow patterns are visualized by the concentration and vorticity contours. Here the thick solid lines
represent c = 0.5 and thin solid (dashed) lines represent positive (negative) vorticity contours. Reynolds number is chosen at
Re= 4000 in the simulations and time instance is chosen at t = 7.95 dimensionless units.

currents Uf ,max is related to that of the Boussinesq case Uf ,max(γ≈1) by Uf ,max ≈ Uf ,max(γ≈1)γ−1/2, as
demonstrated by the dashed line in Figure 7(b). Although this relationship Uf ,max ∼ γ−1/2 cannot be
derived merely based on theoretical arguments, it appears to be a reasonable approximation for the
range of density ratio considered in this study. For brevity, only results of gravity currents on a 9◦

slope are presented here as the results on other slope angles are qualitatively similar.

C. Mixing

It has been reported in the companion paper and also in previous studies18,22,41,51 that the
large-scale vortex overturn events and the mixing of fluids, characterized by the area of the mixed

FIG. 6. Image from the experiment 01/29/13−5 reported by Ref. 37 for the gravity current from a buoyancy source
of l̃0/h̃0= 10cm/8cm and density ratio γ ≈ 0.85 propagating on a 9◦ slope. Distances in the downslope and wall-normal
directions are normalized by the lock height, h̃0. Time instance is chosen at t ≈ 8 dimensionless units. Reynolds number in
the experiment is at Re≈ 26 000.
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FIG. 7. Influence of the density ratio, γ, on the parameters of gravity currents on a 9◦ slope at Re= 4000. Panel (a) shows the
angle of growth α0, designated by �, and the distance from the virtual origin to the gate x0, designated by �, against
the density ratio γ, where solid and dashed lines represent the interpolating functions for x0, i.e., x0≈ 3.66γ2.74, and
for α0, i.e., α0≈−1.84×10−1γ3+3.80×10−1γ2−9.78×10−2γ+2.00×10−3, respectively. Panel (b) shows the maximum
front velocity Uf ,max against the density ratio γ, where ◦ represents the computational data in this study, • represents the
experimental data,37 in which the Reynolds number in the experiments ranges from Re≈ 9000 for γ = 0.998 to Re≈ 26 000
for γ = 0.85, solid line represents the theoretical prediction based on (5) and dashed line represents the approximation
Uf ,max∼γ−1/2.

region where the concentration is in the range of 0.1 ≤ c ≤ 0.9, are influenced by the slope angle. In
the Boussinesq case, the area of the mixed region at a given instant in time increases uniformly with
increasing slope angle. It is worth noting that here in the acceleration phase, these large-scale vortex
structures are predominantly two-dimensional but are subject to three-dimensional breakdown in
the deceleration phase.19,21,45

In order to illustrate the dependence of the mixing on the density ratio, we again restrict our
attention to the gravity currents on a 9◦ slope at Re = 4000. In order to quantify the mixing,18,22 we
define the mixed region where the density is within the range of

ρ̃2 +
1

10
∆ ρ̃ < ρ̃ < ρ̃1 −

1
10
∆ ρ̃, (18)

where ∆ ρ̃ = ρ̃1 − ρ̃2. Figure 8 shows the size of mixed region versus front location and versus time
for different density ratios, where the size of mixed region is non-dimensionalized by the square

FIG. 8. The size of the mixed region versus front location x f is plotted in panel (a) and the size of mixed region versus
time is plotted in panel (b) for gravity currents on a 9◦ slope at Re= 4000 for different density ratios. Symbols: �, γ = 0.9; △,
γ = 0.7; ▽, γ = 0.5; ◦, γ = 0.3.
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of the length scale, i.e., h̃2
0. For gravity currents on a 9◦ slope at Re = 4000, the acceleration phase

spans spatially in the range of 0 ≤ x f . 5 and temporally in the range of 0 ≤ t . 7. It is observed
that in the initial part of the acceleration phase, i.e., 0 ≤ x f . 1.1 and 0 ≤ t . 1.4, mixing is not
sensitively influenced by the density ratio, while in the latter part of the acceleration phase, the
influence of the density ratio is apparent. As intuitively expected and as shown in Figure 8(a), when
the size of mixed region is plotted against the front location, the size of mixed region at a given front
location decreases uniformly as the density ratio decreases. This observation is consistent with the
observation in the equivalent height, as shown in Figure 3, and also with the notion that the overturn
events are less likely to occur when the density ratio decreases, as shown in Figure 5. When the size
of mixed region is plotted against time, as shown in Figure 8(b), the size of mixed region at a given
instant in time increases uniformly as the density ratio decreases. The observations on the size of
mixed region versus front location and versus time reflect the fact that the front velocity increases
with increasing density contrast, as illustrated in Figures 4 and 7.

D. Energy budgets

From the point of view of energy budgets, the propagation of gravity currents on an inclined
boundary is essentially a conversion process of the available potential energy into kinetic energy
and subsequently into dissipation by viscous friction. As demonstrated for the Boussinesq case in
the companion paper by Ref. 22, the potential energy loss is more efficiently converted into the
kinetic energy associated with ambient fluid, with less fraction of energy being converted into the
kinetic energy associated with heavy fluid and being dissipated as the slope angle increases. In
order to illustrate the dependence of the above picture of energy budgets on the density contrast, we
again restrict our attention to the gravity currents on a 9◦ slope with different density ratios. In the
following we will provide a computational analysis of the overall energy budget.

The equation for the time derivative of the kinetic energy is obtained by multiplying the
momentum equation (10) by ui, i.e.,

D
Dt

(
1
2
ρuiui

)
= − ∂

∂xi
(pui) + 2

Re
∂

∂x j

�
si jui

�
− 2

Re
si jsi j +

ρ

1 − γ
(sinθu − cosθw) , (19)

where D/Dt denotes the material derivative and si j = 1
2 (ui, j + u j, i) denotes the strain rate tensor.

Integration of (19) over the entire flow domain Ω leads to the evolution equation of the total kinetic
energy K , i.e.,

dK
dt
= − 2

Re


Ω

si jsi jdV +

Ω

ρ

1 − γ
(sinθu − cosθw) dV, K(t) =


Ω

1
2
ρuiuidV, (20)

where the divergence terms on the right-hand side of (19) vanish after integration. The kinetic
energy K can be decomposed into two parts, i.e.,

K(t) =

Ω

1
2

cuiuidV + γ

Ω

1
2
(1 − c)uiuidV, (21)

where the first part on the right hand side of (21), designated by KH , is associated with heavy fluid
and the second part, designated by KL, is associated with ambient fluid. The effects of diffusion in
the density field on the potential energy can be neglected for gravity currents in the acceleration
phase,14,22,52 and the potential energy in the system is

Ep(t) =

Ω

ρ

1 − γ
[x3cosθ +

�
Lx1 − x1

�
sinθ]dV, (22)

and the second term on the right-hand side of (20) represents the additive inverse of the time
derivative of the potential energy in the system. The potential energy in the system can similarly be
decomposed into two parts, i.e.,

Ep(t) = γ

1 − γ


Ω

[x3cosθ +
�
Lx1 − x1

�
sinθ]dV +


Ω

c[x3cosθ +
�
Lx1 − x1

�
sinθ]dV, (23)
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where the first part on the right hand side of (23) is the potential energy associated with ambient
fluid, which is invariant during the propagation of gravity currents, and the second part is the
available potential energy, Ee

p, only which can be converted into kinetic energy and be dissipated
consequently. The first term on the right-hand side of (20) represents the dissipation and we use Ed

to denote the time integral of dissipation, i.e.,

Ed(t) =
 t

0
ϵ(τ)dτ, ϵ =

2
Re


Ω

si jsi jdV. (24)

In other words, Equation (20) is essentially a statement of conservation of energy, i.e., that
K + Ee

p + Ed is a constant during the propagation of gravity currents. Since our focus is on the
acceleration phase of the propagation, we use the available potential energy drop in the acceleration
phase, ∆Ee

p, to normalize all contributions to the energy budget. Here the superscript n denotes
normalized contributions.

Figure 9 shows the time histories of the normalized kinetic energy and dissipated energy dur-
ing the propagation of gravity currents on a 9◦ slope with φ = 0.16, l0 = 1.25, and Re = 4000 at
three different density ratios, i.e., γ = 0.998, 0.7, and 0.4. The overall energy is conserved with
high accuracy in the acceleration phase and the maximum error is within 1%. It is observed that,
as the density contrast increases, less fraction of potential energy loss is converted into the total
kinetic energy, (Kn

H + Kn
L), and more fraction of potential energy loss is dissipated. Interestingly,

qualitatively distinct dependences of the kinetic energy associated with heavy fluid, Kn
H , and that

associated with ambient fluid, Kn
L, on the density contrast are observed for the first time. As clearly

shown in Figure 9, the time at which Kn
L supersedes Kn

H increases as the density contrast increases.
As the density contrast increases, the heavy fluid retains more fraction of potential energy loss and
Kn

H increases for a longer period of time, while the ambient fluid receives less fraction of potential
energy loss. Here a physical argument may help explain this observation. As the density contrast
increases, the interface between the heavy and light ambient fluids becomes more stable against
roll-up and overturns, through which the ambient fluid is engaged in the convection and heavy fluid
imparts energy upon the ambient fluid. Therefore, the potential energy loss is less prone to being
converted into the kinetic energy associated with ambient fluid with increasing density contrast.

E. Influence of the slope angle

The influence of the slope angle on the Boussinesq downslope gravity currents has been investi-
gated by Ref. 22. It is reported that a maximum front velocity for the Boussinesq downslope gravity
currents exists near θ = 40◦, above which the ambient fluid retains more kinetic energy than the
heavy fluid during the propagation of gravity currents right from the outset. In this section, we
investigate how the influence of the slope angle in the Boussinesq case is modified when the density
contrast increases.

Figure 10 shows the front velocity histories and energy budgets for gravity currents with
φ = 0.16, l0 = 1.25, and Re = 4000 at two slope angles, i.e., θ = 9◦,70◦, and at two density ratios,
i.e., γ = 0.998,0.7. Here the slope angles and density ratios are chosen for illustrative purposes. The
overall energy is conserved with high accuracy and again the maximum error is within 1%.

Interesting features of the energy budgets are observed. In the left column of Figure 10, namely,
for the gravity currents on a 9◦ slope, the kinetic energy associated with heavy fluid, Kn

H , initially
grows faster than that associated with ambient fluid, Kn

L, before Kn
L overtakes Kn

H towards the end
of the acceleration phase. In the right column of Figure 10 for gravity currents on a 70◦ slope, the
kinetic energy associated with ambient fluid, Kn

L, increases as the slope angle increases while the
kinetic energy associated with heavy fluid, Kn

H , and the normalized dissipated energy, En
d
, decrease

as the slope angle increases.
For the Boussinesq case (γ ≈ 1), it is known that the potential energy loss is equally converted

into the kinetic energy associated with heavy fluid and that associated with ambient fluid for the
most part of the acceleration phase at θ ≈ 40◦, at which Uf ,max reaches its maximum value. When
the density contrast increases, as illustrated in Figure 10, the potential energy loss is less prone to
being converted into the kinetic energy associated with ambient fluid. For larger density contrasts,
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FIG. 9. The normalized total energy, kinetic energy, dissipated energy as functions of time for gravity currents on a 9◦

slope at Re= 4000. All contributions to the energy budget are normalized by the potential energy loss from t = 0 to t = 8.
Three different density ratios, i.e., γ = 0.998,0.7,0.4, are chosen for illustrative purposes. Panels: (a) γ = 0.9988, (b) 0.7, (c)
0.4. Symbols: ■, total energy; �, kinetic energy K n; △, kinetic energy associated with heavy fluid K n

H ; ▽, kinetic energy
associated with ambient fluid K n

L ; ◦, dissipated energy En
d

.

therefore, the slope angle is anticipated to increase beyond 40◦ in order for the potential energy loss
to be equally converted into Kn

H and Kn
L for the initial part of the acceleration phase.

The observations in the energy budgets imply that the slope angle at which the maximum
front velocity Uf ,max occurs could increase as the density contrast increases. Such an implication is
further confirmed by the maximum front velocity versus slope angle for different density ratios, as
shown in Figure 11. Physically, such an observation reflects the fact that, as discussed previously,
the ambient fluid is less likely to be engaged in the conversion process of potential energy loss into
the kinetic energy associated with ambient fluid as the density contrast increases. In order for the
ambient fluid to be more easily engaged in the energy transfer process, the slope angle must further
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FIG. 10. Front velocity and the normalized total energy, kinetic energy, dissipated energy as functions of time for gravity
currents at Re= 4000 for different slope angles and density ratios. All contributions to the energy budget are normalized by
the potential energy loss from t = 0 to t = 8. Two slope angles, i.e., θ = 9◦,70◦, and two density ratios, i.e., γ = 0.998,0.7,
are chosen for illustrative purposes. Panels: (a1) front velocity for θ = 9◦, γ = 0.998 (represented by +), 0.7 (represented
by ×); (a2) front velocity for θ = 70◦, γ = 0.998 (represented by +), 0.7 (represented by ×); (b1) energy budgets for θ = 9◦,
γ = 0.998; (b2) energy budgets for θ = 70◦, γ = 0.998; (c1) energy budgets for θ = 9◦, γ = 0.7; (c2) energy budgets for θ = 70◦,
γ = 0.7. Symbols: ■, total energy; �, kinetic energy K n; △, kinetic energy associated with heavy fluid K n

H ; ▽, kinetic energy
associated with ambient fluid K n

L ; ◦, dissipated energy En
d

.

FIG. 11. The maximum front velocity Uf ,max against slope angle for gravity currents at Re= 4000 at four different density
ratios. Symbols: �, γ = 0.998; △, γ = 0.9; ▽, γ = 0.8; ◦, γ = 0.7.
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increase to allow for more destabilizing effects, including a decreasing wall-normal component of
gravity and an increasing downslope component of gravity, as explained by Refs. 22 and 53.

V. CONCLUSIONS

The paper presents high-resolution two-dimensional Navier-Stokes simulations of non-
Boussinesq downslope gravity currents in the acceleration phase. In the laboratory, the range of slope
angle and the range of density contrast are both limited by the accessible apparatus and working
fluids. With the help of simulations, investigation of non-Boussinesq downslope gravity currents
with density ratio in the range of 0.3 ≤ γ ≤ 0.998 and slope angle in the range of 0◦ ≤ θ < 90◦

becomes feasible.
Our results show that for all density ratios considered in the study, two parts of the acceleration

phase can be identified based on the front velocity history, namely, the initial part with maximum
acceleration followed by the latter part where the acceleration is reduced, before reaching the
maximum front velocity Uf ,max. In the latter part of the acceleration phase, the interface between
the heavy and light ambient fluids may roll up into a pair of vortices, which may further accomplish
a complete overturn for slope angles greater than 6◦ in the Boussinesq case. As the density contrast
increases, the roll-up vortices may not accomplish a complete overturn as in the Boussinesq case
and the maximum front velocity Uf ,max increases.

In the Boussinesq case, it is found that a maximum of Uf ,max exists at θ ≈ 40◦, at which
slope angle the potential energy loss is equally converted into the kinetic energy associated with
heavy fluid and that associated with ambient fluid for the most part of the acceleration phase. As
the density contrast increases, energy budgets show that the heavy fluid retains more fraction of
potential energy loss while the ambient fluid receives less fraction of potential energy loss as the
gravity currents propagate. As the density contrast increases, the interface between the heavy and
light ambient fluids becomes more stable against roll-up and overturns and the ambient fluid is less
ably to be engaged in the energy transfer process.

A special feature in the non-Boussinesq downslope gravity currents is that the slope angle, at
which a maximum of Uf ,max occurs, may increase beyond 40◦ as the density contrast increases. Such
an observation is also confirmed by the energy budgets. In order for the ambient fluid to be more
easily engaged in the energy transfer process and for the maximum of Uf ,max to exist, the slope
angle must further increase beyond 40◦ to facilitate the energy transfer of potential energy loss to the
kinetic energy associated with ambient fluid.
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