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Gravity currents generated from an instantaneous buoyancy source propagating down
a slope in the range of 0◦ ≤ θ < 90◦ have been investigated in the acceleration phase by
means of high-resolution two-dimensional simulations of the incompressible Navier-
Stokes equations with the Boussinesq approximation. Front velocity history shows
that, after the heavy fluid is released from rest, the flow goes through the acceleration
phase, reaching a maximum front velocity Uf ,max, and followed by the decelera-
tion phase. The existence of a maximum of Uf ,max is found near θ = 40◦, which is
supported by the improved theory. It is identified for the first time that the time of
acceleration decreases as the slope angle increases, when the slope angle is approx-
imately greater than 10◦, and the time of acceleration increases as the slope angle
increases for gravity currents on lower slope angles. A fundamental difference in flow
patterns, which helps explain the distinct characteristics of gravity currents on high
and low slope angles using scaling arguments, is revealed. Energy budgets further
show that, as the slope angle increases, the ambient fluid is more easily engaged in the
gravitational convection and the potential energy loss is more efficiently converted
into the kinetic energy associated with ambient fluid. The propagation of gravity
currents on a slope is found to be qualitatively modified as the depth ratio, i.e., the
lock height to channel height ratio, approaches unity. As the depth ratio increases,
the conversion of potential energy loss into the kinetic energy associated with heavy
fluid is inhibited and the conversion into the kinetic energy associated with ambient
fluid is enhanced by the confinement of the top wall. C 2015 AIP Publishing LLC.
[http://dx.doi.org/10.1063/1.4923208]

I. INTRODUCTION

Gravity currents, otherwise known as buoyancy or density currents, are flows driven by a density
difference mainly in the horizontal direction. The density difference may be attributed to a number
of factors, including temperature differentials, dissolved and suspended materials, e.g., salt and sedi-
ments. In the literature, gravity currents on a horizontal boundary produced from an instantaneous
finite buoyancy source, i.e., lock-exchange flows, have drawn the most attention.1–9 Gravity currents
either down or up a slope are much less considered but are also commonly encountered in geophysical
environments and engineering applications.10–15

For gravity currents down a slope, the influence of the slope angle on the classical, full-depth,
lock-exchange flows has been investigated by Ref. 16 with two-dimensional Navier-Stokes simula-
tions and experiments, where the depth ratio, i.e., the lock height to channel height ratio, was unity and
the aspect ratio of released heavy fluid, i.e., the lock length to lock height ratio, was ten. It was found
that the flow produced from full lock releases goes through an initial quasi-steady phase with a con-
stant front velocity, which has a maximum for slope angles around 40◦, then followed by a transition
to a second phase with a larger, unsteady, front velocity. The reason for the transition to a second phase
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is that for such a long lock length, the fluid layers behind the front move faster than the front itself
due to streamwise component of the gravity acceleration and eventually the transition is triggered
because the front is unable to absorb more fluid from behind. Reference 17 also performed gravity
current experiments in tilted tubes. Reference 18 investigated the gravity currents in a cylindrical tube
and in a square channel using two-dimensional and three-dimensional simulations. It was reported
that two-dimensional simulations correctly predict the acceleration phase and constant front velocity
slumping phase, but fail to do so during later stages when the gravity currents decelerate due to the
possibility of three-dimensional vortex interactions. Some applications are adequately described by
the lock-exchange flows on a slope, such as the propagation of an accidental release of methane in a
mine and the spreading of hot combustion products from a tunnel fire.

In other geophysical and geological environments, e.g., in the form of powder snow avalanches,
pyroclastic flows, or turbidity currents down the continental slope, the gravity currents down inclined
slopes are not confined by the top wall because the height of the flow domain is essentially infinite.
Reference 19 investigated the propagation of a fixed, finite volume of heavy fluid down a slope in a
channel, where the depth ratios were 0.16 and 0.13 for the two working channels and the aspect ratio
of released heavy fluid was 1.25, which is significantly smaller than that in Ref. 16. It is worth noting
that in order to model gravity currents in deep ambient, in some experiments such as Refs. 19 and 20,
the gravity currents are produced in a tilted channel and the top boundary is parallel to the bottom
rather than a horizontal free surface. Even though the ambient depth was essentially finite, the effect
of the top boundary was neglected and the influence of the depth ratio was not considered in Ref. 19.
One of our objectives in the study, therefore, is to understand how the presence of the top boundary
affects the gravity currents when the depth ratio approaches unity. It was reported therein that the
thermal theory gives a good description of the gravity currents propagating on a slope, which go
through an acceleration phase followed by a deceleration phase. This problem was computationally
investigated by Refs. 21 and 22 using two-dimensional and three-dimensional simulations and it has
also been confirmed that the three-dimensional interactions are not important as long as the gravity
currents remain in the acceleration phase and therefore, two-dimensional simulations are sufficiently
representative of the gravity currents in the acceleration phase. This problem was also experimentally
revisited by Ref. 23 for larger aspect ratio of released heavy fluid, and it was found that the acceleration
distance is increased and the produced gravity currents behave more like a “starting plume,” in which
a constant buoyancy flux is maintained at the upstream end, as inferred by Ref. 20. The influence of
the aspect ratio of released heavy fluid on the lock-exchange flows in deep ambient was also studied
by Ref. 24 using two-dimensional Navier-Stokes simulations. More recently, the theoretical work
of Refs. 25 and 26 reported that the propagation of gravity currents obeys the thermal theory in the
early deceleration phase and deviation from the theory occurs in the late deceleration phase when
viscous effects become important. This problem was further extended by Ref. 27 for the influence of
density contrast on the propagation of gravity currents on a slope. The influence of density contrast
in lock-exchange flows was also demonstrated in Ref. 28.

For the gravity currents propagating on a slope in a semi-infinite domain, Ref. 19 followed the
famous Ref. 29 and developed the thermal theory for the gravity currents propagating on a slope in
a semi-infinite domain, which has formed the basis for many subsequent studies.30,31 Figure 1 shows
the flow domain in this study and a schematic diagram of the gravity currents in the thermal theory.
Please note that the thermal theory was originally developed for the case when the limit h̃0 ≪ L̃x3 is
approached and the gravity currents were approximated by a semi-elliptical shape with aspect ratio
k = H̃/L̃ during the propagation, where H̃ and L̃ are the height and length of the semi-elliptical
head, respectively. In summary, with the Boussinesq approximation, the thermal theory bears on the
principles of momentum conservation, i.e.,

d ρ̃0(1 + kv)S1H̃ L̃Ũ
dt̃

= B̃ sin θ, (1)

and mass conservation, i.e.,

d
dt̃
(S1H̃ L̃) = S2(H̃ L̃)1/2α(θ)Ũ . (2)
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FIG. 1. Sketch for the gravity current propagating on a sloping boundary. Streamwise and wall-normal directions are denoted
by x1 and x3, respectively. The domain of interest is set as L̃x1× L̃x3, where L̃x1= 10l̃0, L̃x3= h̃0φ

−1, and φ is the lock height
to channel height ratio. Heavy fluid initially occupies the shaded region of h̃0× l̃0 without momentum. At t = 0, the heavy fluid
is instantaneously released and begins to propagate in the downslope direction, x1. The gravity current head approximately
takes the form of a semi-elliptical shape, with height H̃ and length L̃. The channel is inclined so the gravity vector ẽg makes
an angle θ with the wall-normal direction, x3.

Here, the density of ambient fluid is taken as ρ̃0 and the density of heavy fluid in the lock region is
ρ̃1, where ( ρ̃1 − ρ̃0) ≪ ρ̃0. The total buoyancy is defined to be B̃ = ( ρ̃ − ρ̃0)S1H̃ L̃. The cross-sectional
area and the circumference of the semi-elliptical head are defined as S1H̃ L̃ and S2(H̃ L̃)1/2, respec-
tively, where S1 = π/4 and S2 = (π/23/2)(4k2 + 1)1/2/k1/2 are the shape factors. In addition, Ũ is the
velocity of the centre of mass of the head, kv = 2k is the added mass coefficient,32 and α is the
entrainment coefficient.33 Equation (2) yields self-similar solutions for H̃ and L̃ that grow linearly
with distance, and the “virtual origin,” is a fictitious location where H̃ = 0 by extrapolating H̃ in the
upstream direction.

Finally, when the current starts from rest, the centre of mass velocity normalized by the velocity

scale,

g̃′0h̃0, is

U =

C *
,

1
XB
− 1

X4
B

+
-



1/2

, C =
(8S1B̃ sin θ)

(3 ρ̃0(1 + kv)α2S2
2 x̃0g̃

′
0h̃0)

, (3)

where C is a function of θ, x̃0 is the distance from the virtual origin to the gate of release, and
XB = x̃CM/x̃0. The front location, when measured from the virtual origin, is related to the position
of the centre of mass by x̃F = (1 + αS2/4k1/2S1)x̃CM. Therefore, the front velocity Uf , sometimes
referred to as the Froude number, is related to the centre of mass velocity byUf = (1 + αS2/4k1/2S1)U.

In fact, the solution to the thermal theory, i.e., (3), predicts that gravity currents on a slope initially
go through an acceleration phase followed by a deceleration phase. Of particular interest here is the
maximum front velocity,

Uf ,max ≈ 0.69(1 + 1
4

αS2

k1/2S1
)√C, (4)

which is novelly derived here by evaluating (3) at the position where velocity gradient vanishes. It is
worth noting that the maximum front velocity is, in general, neither a constant nor a monotonically
increasing function of

√
sin θ, since the right hand side of (4) involves variables that are functions of

the slope angle. Reference 19 found the relationship between the front velocity and the front position
in the deceleration phase but the existence of a maximum Uf ,max was not specified unequivocally
possibly due to substantial scatter in the experimental data.

Other studies that are related to the present work include, Refs. 34 and 35 who found similarity
solutions of the shallow-water equations. Reference 36 investigated the gravity currents produced
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from an instantaneous release of buoyancy propagating on a vertically and laterally unconfined uni-
form slope and developed a theoretical model in the same spirit of thermal theory by Ref. 19.

The present study is a computational extension of the studies reported by Ref. 19 and by Ref. 26.
The primary objective is to investigate the influence of the slope angle in the entire range of 0◦ ≤ θ <
90◦, the depth ratio φ = h̃0/L̃x3, and the Reynolds number Re on the initial development of gravity cur-
rents. The lock length here follows Refs. 19 and 26 and remains l0 = l̃0/h̃0 = 1.25 in this study. In what
follows, we outline the numerical formulation of the problem in Sec. II and the results and analysis are
presented in Sec. III. Since the focus is on the acceleration phase of the downslope gravity currents
and it has been shown that two-dimensional simulations are sufficiently representative in this flow
regime, the investigation is conducted by means of high-resolution two-dimensional Navier-Stokes
simulations.

II. NUMERICAL FORMULATION

Figure 1 gives a sketch of the configuration for simulations of gravity currents down slopes. The
heavy fluid of density ρ̃1 is confined in the lock region and separated from the light fluid of density ρ̃0.
Here we adopt the Boussinesq approximation, in that the density difference is assumed sufficiently
small such that the influence of density variations is retained only in the buoyancy term but neglected
in the inertia and diffusion terms. Consequently, the governing equations take the form

∂uk

∂xk
= 0, (5)

∂ui

∂t
+
∂(uiuk)
∂xk

= ρegi −
∂p
∂xi
+

1
Re

∂2ui

∂xk∂xk
, (6)

∂ρ

∂t
+
∂(ρuk)
∂xk

=
1
Pe

∂2ρ

∂xk∂xk
. (7)

Here ui denotes the velocity, ρ the density, egi the unit vector in the direction of gravity, and p
the pressure. The set of equations (5)-(7) is made dimensionless by the lock height, h̃0, as the length
scale and the buoyancy velocity,

ũb =


g̃′0h̃0

with

g̃′0 = g̃
ρ̃1 − ρ̃0

ρ̃0
,

(8)

as the velocity scale. The dimensionless density, i.e., the concentration of fluid mixture, is given by

ρ =
ρ̃ − ρ̃0

ρ̃1 − ρ̃0
. (9)

The Reynolds number Re and the Péclet number Pe arising in the dimensionless equations are
defined by

Re =
ũbh̃0

ν̃

and

Pe =
ũbh̃0

κ̃
,

(10)

respectively. The two fluids are assumed to have identical kinematic viscosities ν̃ and diffusion coef-
ficients κ̃. They are related by the Schmidt number

Sc =
ν̃

κ̃
, (11)

which represents the ratio of the kinematic viscosity to molecular diffusivity. Typically in saline exper-
iments, Sc ≈ 700, but it has been observed by many researchers37–40 that the influence of Schmidt
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number on the dynamics of the gravity current is weak as long as Sc ≈ O(1) or larger. Therefore, we
follow suit here and employ Sc = 1 in the simulations.

The set of equations in the velocity-pressure formulation is solved in the flow domain with reso-
lution Nx1 × Nx3. The channel running length in the streamwise direction, Lx1, was chosen ten times
larger than the length of the lock to allow full development of the acceleration phase. The depth ratio is
φ, i.e., φ = h̃0/L̃x3, in other words the dimensionless height of the channel is Lx3 = φ−1, where φ ≤ 1.
Fourier expansion with the periodic boundary condition is employed in the streamwise direction.41

To ensure a reflection condition at the left wall (x1 = 0) as in the experiments and to prevent any
upslope propagation upon the release of heavy fluid, an image is placed to the left of the domain of
interest such that the heavy fluid in the lock is fully discharged into the channel of length Lx1.

22 Cheby-
shev expansion with Gauss-Lobatto quadrature points is employed in the wall-normal direction. The
Gauss-Lobatto quadrature points provide a straightforward implementation of boundary conditions
and have high resolution near the walls. Here we employ no-slip and no-flux conditions at the top and
bottom walls for the velocity and density fields, respectively. The influence of boundary conditions
will not be discussed here, since previous computational investigations, including Refs. 21 and 41,
have done so and have shown that the dominant qualitative features of the flow are unchanged, except
that gravity currents with slip conditions propagate faster than those with no-slip conditions.

The flow field is advanced in time by the low-storage third-order Runge-Kutta scheme.42 The
convection and buoyancy terms are treated explicitly while the diffusion terms are treated implicitly
with Crank-Nicolson scheme. To reduce the aliasing error, Arakawa method43 is used to evaluate the
convection term alternately between divergence and convective forms. The de-aliased pseudospectral
code has been employed in Refs. 39 and 44 for lock-exchange flows and in Refs. 21 and 22 for gravity
currents down sloping boundaries. In all simulations, the velocity field was initialized with quiescent
conditions everywhere. The initial density field is prescribed unity in the heavy fluid region and zero
elsewhere with a smooth error-function type transition in the interface region.45 With increasing Re,
the complexity and required resolution increase. To resolve the flow structures of the gravity currents
in the domain Lx1 × Lx3 = 10l0 × φ−1, adequate resolution requires a grid size of ∆x1 ≈ (Re Sc)−1/2

in the streamwise direction37,41 and the grids Nx1 × Nx3 used in Sec. III are listed in Table I. The time
step was chosen to produce a Courant number less than 0.5.

III. RESULTS

A. Overview

We begin by describing results from a representative case of the gravity current propagating on
a 9◦ slope with φ = 0.16, as considered experimentally by Refs. 19 and 26. As we will discuss the
influence of the depth ratio later in Sec. III E, when the depth ratio is φ = 0.16, the gravity currents fill

TABLE I. Table showing parameters used in the two-dimensional simu-
lations referred to in different sections, including the Reynolds number Re,
depth ratio φ, slope angle θ, and computational grid Nx1×Nx3. The compu-
tational domain is Lx1×Lx3= 10l0×φ−1 and the lock length is maintained
fixed as l0= 1.25 for all simulations.

Sections Re φ θ (deg) Nx1×Nx3

III A–III D 4 000 0.16 0-90 672 × 768
III E 4 000 0.075 9 672 × 1232
III E 4 000 0.4 9 672 × 320
III E 4 000 0.7 9 672 × 192
III E 4 000 1.0 9 672 × 128
III F 100 0.16 9 132 × 132
III F 1 000 0.16 9 384 × 384
III F 10 000 0.16 9 1232 × 1232
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FIG. 2. A gravity current propagating on a 9◦ slope at Re= 4000. Flow evolution is visualized by the density and vorticity
contours. Here the thick solid lines represent ρ = 0.5 and thin solid (dashed) lines represent positive (negative) vorticity
contours. Time instances are chosen at t = 0.88,1.77,2.65,4.42,6.19,7.78,8.84, and 9.55.

less than a quarter of the whole depth of the channel and the influence of the top boundary can be ne-
glected.19,20,46 In the following presentation of the results, unless otherwise specified, we will use only
dimensionless variables, where the velocity scale is ũb, the length scale is h̃0, the time scale is h̃0/ũb,
and others as specified in Sec. II. Figure 2 shows the density and vorticity contours for Re = 4000. It
is observed that, following the release of buoyancy, the heavy fluid collapses and forms a bell shape,
as shown in Figure 2 at t = 0.88. At this stage, the current head has not yet been fully developed.
As time progresses, the heavy fluid continues to slump and push out the head. Spanwise vorticity is
generated along the interface between the heavy and ambient fluids and the interface begins to roll
up, as shown in Figure 2 at t = 1.77. It is observed here that the two roll-up vortices accomplish a
complete overturn in the leapfrog process and a large roller is left behind the current front, as shown
in Figure 2 at t = 2.65−9.55. Recent experiments consistently showed that a large roller takes form
at the end of the acceleration phase for the gravity current on a 9◦ slope, as illustrated in Figure 3 for
the reader’s convenience, cf. Figure 2 in Ref. 26. In the laboratory, the maximum slope angle was

FIG. 3. Image from the experiment 10/03/12-1 reported by Ref. 26 for the gravity current from a buoyancy source of
l̃0/h̃0= 10 cm/8 cm and g̃ ′0= 17.11 cm s−2 propagating on a 9◦ slope. Distances in the downslope and wall-normal directions
are normalized by the lock height, h̃0. Time instance is chosen at t ≈ 9.5 dimensionless units. Reynolds number in the
experiment is at Re≈ 9400.
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FIG. 4. Dimensionless front velocity versus time for gravity currents propagating on a number of different slope angles with
φ = 0.16 and Re= 4000. Symbols: �, θ = 0◦; △, θ = 2◦; ◦, θ = 9◦; ▽, θ = 20◦; •, θ = 30◦; N, θ = 50◦; ▼, θ = 70◦.

limited by the flume height, whereas here we may investigate the gravity currents in the entire range
of slope angles with simulations.

In order to unambiguously measure the front location of gravity currents, we follow the robust
procedure using the equivalent height,1,16,22,39 which is defined as

h(x1, t) =
 Lx3

0
ρ(x1, x3, t)dx3. (12)

The front velocity, Uf , can then be derived using the front location data, via Uf = dx f /dt. Figure 4
shows the front velocity versus time for gravity currents on a number of slope angles. After the heavy
fluid is released, the front velocity rapidly increases from zero with maximum acceleration until
t ≈ 1.4. In this initial part of acceleration phase with maximum acceleration, the velocity history is
not very sensitively influenced by the variation of the slope angle. In the latter part of the acceler-
ation phase, t & 1.4, the acceleration is reduced and a maximum front velocity, Uf ,max, is reached.
For example, when θ = 50◦, the gravity current reaches a maximum front velocity Uf ,max ≈ 0.81 at
t ≈ 5.13. It is found here that the aforementioned leapfrog process of roll-up vortices takes place
in the latter part of the acceleration phase and the formation of a “cloud” shape in the gravitational
convection is persistently observed at the end of the acceleration phase for all slope angles approx-
imately greater than 6◦, as illustrated in Figure 5. In the deceleration phase, the two-dimensional
simulations present strong time variation in the front velocity, e.g., the abrupt decrease in the front
velocity at t ≈ 11 for θ = 30◦ in Figure 3, due to long-lasting vortex interaction, which is mitigated
or absent in the three-dimensional simulations because stretching and breakdown of vortices are at
work in the deceleration phase.22,39 For the cases when θ = 0◦,2◦, the gravity currents do not continue
to accelerate following the initial part of the acceleration phase but move into the slumping phase at
a nearly constant speed, as reported previously for partial-depth lock-exchange flows by Ref. 2.

B. Influence of the slope angle

The influence of the slope angle on the maximum front velocity, Uf ,max, is shown in Figure 6(a)
with φ = 0.16 and Re = 4000. Our simulation results are in qualitatively good agreement with previ-
ous experimental data.19,26 However, it should be pointed out that there exists a discrepancy between
the available experimental data and the simulation results and presently the cause of the discrepancy
still cannot be identified. The maximum front velocity, which is associated with finite-differencing
the data, shows larger scatter than the time of acceleration on large slopes. Increase in the Reynolds
number in the simulations results in insignificant increase in the maximum front velocity, which will
be discussed later in Sec. III F. Due to the substantial scatter in the experimental data and the limited
range of slope angle, previously the existence of a maximum of Uf ,max in Ref. 19 and in Ref. 26 was
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FIG. 5. Flow patterns on different slope angles, i.e., θ = 20◦ (a), 30◦ (b), 50◦ (c), 70◦ (d), with φ = 0.16 and Re= 4000
visualized at the times when the maximum front velocity Uf ,max is reached. Flow patterns are visualized by the density and
vorticity contours. Here, the thick solid lines represent ρ = 0.5 and thin solid (dashed) lines represent positive (negative)
vorticity contours. Time instances are chosen at t = 7.78,6.72,5.13, and 4.24 for θ = 20◦ (a), 30◦ (b), 50◦ (c), and 70◦

(d), respectively.

not concluded unequivocally. It is observed here from the simulation results that a maximum of Uf ,max

exists near θ = 40◦, with little variation between 35◦ and 50◦.
To further support the findings of a maximum of Uf ,max on a theoretical basis, we make use of the

formula for Uf ,max, (4), while incorporating the entrainment coefficient and aspect ratio of the head
that are functions of the slope angle. With the reported experimental data, cf. Table 1 in Ref. 19, the
entrainment coefficient and the aspect ratio of the head incorporated into (4) as α = 0.3380(θπ/180) +
0.0408 and k = −0.1313(θπ/180)2 + 0.4011(θπ/180) + 0.2061, respectively, which are best fit for
the experimental measurements and the slope angle are in units of degree. Fortuitously, the novelly
derived formula for Uf ,max shows that a maximum front velocity exists around θ ≈ 49◦, with little
variation between 40◦ and 60◦, as shown by the solid line in Figure 6(a). In comparison, the full-depth
lock-exchange flows in sloping channels reported by Ref. 16 go through an initial quasi-steady phase
with a constant front velocity, and this quasi-steady front velocity also has a maximum for slope
angles around θ = 40◦. The findings on the influence of the slope angle in Ref. 16 are similar, which
is perhaps surprising, considering that the depth ratio φ = 1 and the aspect ratio of released heavy
fluid l0 = 10 in Ref. 16 make their configuration quite different from the present set-up.

Figure 6(b) shows the dependence of the time of acceleration, tc, i.e., when the maximum front
velocity is reached, on the slope angle with φ = 0.16 and Re = 4000. Our computational data show
a surprisingly consistent relationship between the time of acceleration and the slope angle as the

FIG. 6. Maximum dimensionless front velocity Uf ,max (a) and dimensionless time of acceleration tc (b) as functions of
the slope angle, in units of degree, with l0= 1.25, φ = 0.16, and Re= 4000. A maximum of Uf ,max exists near θ = 40◦ and
a maximum of tc exists near θ = 10◦. Symbols: �, computational data at Re= 4000; ◦, computational data at Re= 104; ■,
experimental data from Ref. 19 for l0= 1.25 at Re≈ 104; •, experimental data from Ref. 26 for l0= 1.25 at Re≈ 9400; ▼,
experimental data from Refs. 23 and 47 for l0≈ 2 at Re≈ 104; N, experimental data from Ref. 47 for l0≈ 1 at Re≈ 104. Solid
lines in (a) and (b) represent theory (4) and scaling law (13), respectively.

 This article is copyrighted as indicated in the article. Reuse of AIP content is subject to the terms at: http://scitation.aip.org/termsconditions. Downloaded

to  IP:  140.112.26.124 On: Tue, 07 Jul 2015 00:20:03



076602-9 Albert Dai Phys. Fluids 27, 076602 (2015)

FIG. 7. A gravity current propagating on a 2◦ slope at Re= 4000. Flow evolution is visualized by the density and vorticity
contours. Here, the thick solid lines represent ρ = 0.5 and thin solid (dashed) lines represent positive (negative) vorticity
contours. Time instances are chosen at t = 0.88,2.65,4.42, and 4.95.

experimental data. It is worth noting that for slope angles approximately greater than 10◦, the time
of acceleration decreases as the slope angle increases. However, for lower slope angles, the time of
acceleration increases as the slope angle increases. A simple scaling argument allows us to estimate
the relationship between the time of acceleration and the slope angle. In line with the thermal theory,
the gravity currents are driven by the streamwise component of gravity, i.e., g̃′0 sin θ. With the length
scale taken as h̃0, an acceleration time can be estimated as

t̃c ∼
1

√
sin θ


h̃0

g̃′0
, (13)

which indicates that the dimensionless time of acceleration tc scales as 1/
√

sin θ and is in good agree-
ment with the experimental and computational data for slope angles greater than approximately 10◦,
as shown by the solid line in Figure 6(b).

Interestingly, the question concerning the time of acceleration for gravity currents on low slope
angles naturally arises. The departure of the time of acceleration from scaling law (13) for low slope
angles surely deserves an explanation. To shed some light on the underlying mechanism of initiation
of the gravity currents on low slope angles, Figure 7 shows the density and vorticity contours with
θ = 2◦, φ = 0.16, and Re = 4000. In Figure 7, the interface roll-up process is similar to that shown in
Figure 2 until t ≈ 4.42, but here the roll-up vortices do not accomplish a complete overturn and both
vortices are left behind the head, as shown in Figure 7 at t = 4.95 when the maximum front velocity is
reached. Experiments consistently showed that at low slope angles, the gravity current head maintains
a more streamlined shape without a large roller, cf. Figure 10 in Ref. 26. The observation made avail-
able by the simulations explains the fundamental difference in flow patterns between gravity currents
on high and low slope angles. For gravity currents on high slope angles, the heavy fluid convects in
the form of a “cloud” shape, which, as assumed, is driven by the streamwise component of gravity,
i.e., g̃′0 sin θ. For gravity currents on low slope angles, the heavy fluid tends to spread on the slope as
in the lock-exchange problem and the flow is mainly driven by the wall-normal component of gravity,
i.e., g̃′0 cos θ, and as such the time of acceleration increases with increasing slope angle. Therefore,
based on the distinct flow patterns and the scaling arguments, the relationship between the time of
acceleration and the slope angle is apparently different in the two situations.

C. Mixing

As modeled by the theory, it is known that entrainment of ambient fluid is a major retarding
mechanism in the propagation of gravity currents on a slope. As shown in Figures 2 and 7, large-scale
vortex overturn events contribute to the mixing of fluids in the acceleration phase and are influ-
enced by the slope angle. It is worth noting that such large-scale vortex structures are predominantly
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FIG. 8. The dimensionless size of the mixed region versus time for gravity currents on slopes with φ = 0.16 and Re= 4000.
Six different slope angles are chosen for illustrative purposes. Symbols: +, θ = 2◦; △, θ = 10◦; ▽, θ = 20◦; ◦, θ = 40◦; �,
θ = 60◦; �, θ = 80◦.

two-dimensional in the acceleration phase but are subject to three-dimensional vortex breakdown in
the deceleration phase in three-dimensional simulations.22,39 In order to quantify this observation, we
define the mixed region of which the density is within the range of

ρ̃0 +
1

10
∆ ρ̃ < ρ̃ < ρ̃1 −

1
10
∆ ρ̃, (14)

where ∆ ρ̃ = ρ̃1 − ρ̃0. Please note that (14) is in essence equivalent to 0.1 < ρ < 0.9 but the cut-off
values, that are chosen for illustrative purposes following Ref. 16, do not change the qualitative fea-
tures of the relationship between the size of the mixed region and time. Figure 8 shows the size of
mixed region versus time on different slope angles, where the size of mixed region is made dimension-
less by the square of the length scale, i.e., h̃2

0. It is observed that in the initial part of the acceleration
phase, i.e., 0 ≤ t . 1.4, the size of mixed region is not sensitively influenced by the slope angle, while
in the latter part of the acceleration phase, the size of mixed region increases uniformly with increasing
slope angle. Our results are consistent with previous experimental and computational observations
that the vortex interactions and mixing are enhanced at larger slope angles.16,33,48

D. Energy budgets

From the point of view of energy budgets, the propagation of gravity currents on an inclined
boundary is essentially a conversion process of the available potential energy into kinetic energy and
subsequently into dissipation by viscous friction. However, information on the energy budgets can be
very difficult to attain in the experiments. In the following, we will provide a computational analysis
of the overall energy budget.

The equation for the time derivative of the kinetic energy is obtained by multiplying momentum
equation (6) by ui, i.e.,

D
Dt

(
1
2

uiui

)
= − ∂

∂xi
(pui) + 2

Re
∂

∂x j

�
si jui

�
− 2

Re
si jsi j + ρ (sin θu − cos θw) , (15)

where D/Dt denotes the material derivative and si j denotes the strain rate tensor, si j = 1
2 (ui, j + u j, i).

Integration of (15) over the entire flow domain Ω leads to the evolution equation of the total kinetic
energy K , i.e.,

dK
dt
= − 2

Re


Ω

si jsi jdV +

Ω

ρ (sin θu − cos θw) dV, K(t) =

Ω

1
2

uiuidV, (16)

where the divergence terms on the right-hand side of (15) vanish after integration. By weighting the
kinetic energy with the dimensionless density, we can associate a fraction of the kinetic energy with
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heavy fluid, i.e.,

KH =


Ω

1
2
ρuiuidV, (17)

and the remainder of the total kinetic energy is associated with ambient fluid, i.e., KL = K − KH .
When the effects of diffusion in the density field on the potential energy are neglected,41,49 the time
derivative of the potential energy in the system is

dEp

dt
= −


Ω

ρ (sin θu − cos θw) dV, Ep(t) =

Ω

ρ[x3 cos θ +
�
Lx1 − x1

�
sin θ]dV. (18)

The first term on the right-hand side of (16) represents the dissipation and we use Ed to denote
the time integral of dissipation, i.e.,

Ed(t) =
 t

0
ϵ(τ)dτ, ϵ =

2
Re


Ω

si jsi jdV. (19)

By weighting the time integral of dissipation with the dimensionless density, we can associate a
fraction of the time integral of dissipation with heavy fluid, i.e.,

EdH =

 t

0
ϵH(τ)dτ, ϵH =

2
Re


Ω

ρsi jsi jdV, (20)

and the remainder of the dissipated energy is associated with ambient fluid, i.e., EdL = Ed − EdH . In
other words, Equation (16) is essentially a statement of conservation of energy, i.e., that K + Ep + Ed

is a constant during the propagation of gravity currents.
Figure 9 shows the time histories of the normalized kinetic energy and dissipated energy dur-

ing the propagation of gravity currents with φ = 0.16 and Re = 4000 on three different slope angles,
i.e., θ = 9◦, 40◦, and 60◦. The acceleration times for θ = 9◦, 40◦, and 60◦ are tc = 7.78, 6.01, and 4.77,
respectively. For convenient comparison among the three cases, the energy budgets are plotted for and
normalized with the potential energy drop during the initial eight dimensionless time units. Here, the
superscript n denotes normalized contributions. The overall energy is conserved with high accuracy
in the acceleration phase and the maximum error is within 1%. It is observed that, as the slope angle
increases, less fraction of potential energy loss is converted into the kinetic energy associated with
heavy fluid, i.e., Kn

H , and more fraction of potential energy loss is converted into the kinetic energy
associated with ambient fluid, i.e., Kn

L, as the gravity currents propagate downslope in the acceler-
ation phase. For slope angles less than 40◦, Kn

H grows faster than Kn
L initially before Kn

L overtakes
Kn

H towards the end of the acceleration phase. When the slope angle is approximately near 40◦, the
kinetic energy is equally distributed between the heavy fluid and the ambient fluid after the release
of heavy fluid, before Kn

L exceeds Kn
H towards the end of the acceleration phase. As the slope angle

increases beyond 40◦, the kinetic energy associated with heavy fluid is persistently lower than that
associated with ambient fluid. The normalized dissipated energy, En

d
, decreases as the slope angle

increases, while the heavy fluid dissipates more energy than the ambient fluid in the acceleration
phase. In summary, in the gravity current propagation the potential energy loss is converted into the
kinetic energies associated with heavy and ambient fluids simultaneously before ultimately dissipated.
However, as the slope angle increases, the ambient fluid is more easily engaged via interface roll-up
and vortex overturns, as the size of mixed region shows in Sec. III C, and the potential energy loss is
more efficiently converted into the kinetic energy associated with ambient fluid. The energy analysis
indicates that, for sufficiently large slope angles, the ambient fluid could gain more kinetic energy
from the available potential energy than the heavy fluid right from the outset, which also supports the
findings of the existence of a maximum of Uf ,max near θ = 40◦.

E. Influence of the depth ratio φ

As mentioned in the Introduction, depending on the environment, gravity currents on an inclined
boundary can be vertically confined (φ ≈ 1) in a tunnel, or unconfined (φ ≪ 1) in deep ambient. In
the following, we will discuss the influence of depth ratio by analyzing the front velocity histories
and energy budgets of the gravity currents propagating on a 9◦ slope.
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FIG. 9. The normalized total energy, kinetic energy, dissipated energy as functions of time for φ = 0.16 and Re= 4000.
Three different slope angles are chosen, i.e., θ = 9◦,40◦, and 60◦, for illustrative purposes. All contributions to the energy
budget are normalized by the potential energy loss from t = 0 to t = 8. The acceleration times for θ = 9◦,40◦, and 60◦ are
tc = 7.78,6.01,4.77, respectively. Panels: top (a1 and a2), θ = 9◦; middle (b1 and b2), θ = 40◦; bottom (c1 and c2), θ = 60◦.
Symbols: ■, total energy; �, kinetic energy K n; △, kinetic energy associated with heavy fluid K n

H ; ▽, kinetic energy
associated with ambient fluid K n

L ; ◦, dissipated energy En
d

; N, dissipated energy associated with heavy fluid En
dH

; ▼,
dissipated energy associated with ambient fluid En

dL
.

FIG. 10. Front velocity versus time for gravity currents propagating on a 9◦ slope at Re= 4000. Five different depth ratios
are chosen for illustrative purposes. Symbols: △, φ = 0.075; ▽, φ = 0.16; ◦, φ = 0.4; �, φ = 0.7; �, φ = 1.
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FIG. 11. The normalized kinetic energy and dissipated energy as functions of time for the case with θ = 9◦ and Re= 4000.
Two different depth ratios, i.e., φ = 0.16,1, are chosen for illustrative purposes, where open symbols represent results from
φ = 0.16 and closed symbols represent those from φ = 1. Panel (a) shows K n, K n

dH
, K n

dL
, and En

d
and panel (b) shows En

d
,

En
dH

, and En
dL

. Symbols in (a): � and ■, kinetic energy K n; △ and N, kinetic energy associated with heavy fluid K n
H ; ▽

and ▼, kinetic energy associated with ambient fluid K n
L ; ◦ and •, dissipated energy En

d
. Symbols in (b): ◦ and •, dissipated

energy En
d

; N, dissipated energy associated with heavy fluid En
dH

; ▼, dissipated energy associated with ambient fluid En
dL

.

Figure 10 shows the front velocity versus time for five different depth ratios, i.e., φ = 0.075, 0.16,
0.4, 0.7, and 1, while other parameters in the investigation remain unchanged as θ = 9◦ and Re = 4000.
The flow domain is set as Lx1 × Lx3 = 10l0 × φ−1 and the grids used for φ = 0.075,0.4,0.7,and 1 are
listed in Table I. It is observed that, for φ = 1, namely, the full-depth release, and for φ = 0.7, the front
velocity increases initially and falls slightly at t ≈ 1.4 before approaching a quasi-steady phase, char-
acterized by a constant front velocity, and followed by a deceleration phase. This quasi-steady phase
persists for t & 2 when φ = 1 and for 2 . t . 9 when φ = 0.7. Here, the existence of a quasi-steady
phase for a sufficiently large depth ratio, i.e., φ ≥ 0.7, is confirmed by the quasi-steady phase in the
full-depth lock-exchange flow on a slope reported in Ref. 16. It is further observed here that the
quasi-steady front velocity increases approximately from 0.43 to 0.52 as the depth ratio decreases
from 1 to 0.7. As the depth ratio further decreases, i.e., φ ≤ 0.4, the gravity currents do not main-
tain a quasi-steady phase but continue to accelerate following the initial collapse of heavy fluid until
reaching a maximum front velocity. It is worth noting the close agreement between the front velocity
histories of φ = 0.16 and φ = 0.075, which indicates that φ = 0.16 is a sufficiently good represen-
tation of the case of gravity currents in deep ambient, and also validates the experimental set-up in
Ref. 19.

Figure 11 shows the comparison of the energy budgets for φ = 0.16 and φ = 1, where open sym-
bols represent the results from φ = 0.16 and closed symbols represent those from φ = 1. For illustra-
tive purposes, the energy budgets are plotted for and normalized with the potential energy drop during
the initial eight dimensionless time units. As presented in Sec. III D, for φ < 1, Kn

H grows faster than
Kn

L initially before Kn
L overtakes Kn

H towards the end of the acceleration phase and the heavy fluid
dissipates more energy than the ambient fluid in the acceleration phase. As the depth ratio increases, it
is observed that more fraction of potential energy loss is converted into the kinetic energy associated
with ambient fluid, less fraction of potential energy loss is converted into the kinetic energy associated
with heavy fluid, and dissipated energy increases in both fluids. In fact, for the full-depth release,
i.e., φ = 1, the kinetic energy and dissipated energy are both equally distributed between the heavy
and ambient fluids during the initial acceleration and early stage of the quasi-steady phase and the
ambient fluid dissipates more energy than the heavy fluid in the later stage of the quasi-steady phase.
From the energy analysis, it is observed that the conversion of potential energy loss into the kinetic
energy associated with heavy fluid is inhibited and the conversion into the kinetic energy associated
with ambient fluid and into dissipation appears to be enhanced by the confinement of the top wall.

F. Influence of the Reynolds number

In order to investigate the dependence of the flow on Re, we restrict our attention to the gravity
currents on a 9◦ slope with φ = 0.16. Figure 12 shows the density contours at t = 4.42 for the four
Re-values of 100, 1000, 4000, and 10 000. The computational grids are listed in Table I. It is observed

 This article is copyrighted as indicated in the article. Reuse of AIP content is subject to the terms at: http://scitation.aip.org/termsconditions. Downloaded

to  IP:  140.112.26.124 On: Tue, 07 Jul 2015 00:20:03



076602-14 Albert Dai Phys. Fluids 27, 076602 (2015)

FIG. 12. Density contours at t = 4.42 for gravity currents propagating on a 9◦ slope with φ = 0.16 at (a) Re= 100, (b)
Re= 1000, (c) Re= 4000, and (d) Re= 10 000.

that, as Re increases, the number of vortical structures over the boundary of the gravity current head
increases. Furthermore, the two major roll-up vortices manifest themselves approximately at and
above Re ≈ 4000. Figure 13 shows the maximum front velocity versus Reynolds number for gravity
currents on a 9◦ slope with φ = 0.16. The maximum front velocity increases as Re increases and the
influence of Re gradually diminishes as Re increases. In fact, the maximum front velocity increases
by less than 5% as Re increases from 4000 to 10 000. One additional three-dimensional simulation
of the gravity current on a 9◦ slope at Re = 4000 also confirms that two-dimensional runs faithfully
represent the gravity current in the acceleration phase.

G. Buoyancy within the head

Buoyancy within the head has been observed to increase initially by addition of heavy fluid from
the following current and to reach its maximum at the end of the acceleration phase. Previous experi-
mental efforts to quantify the buoyancy within the head include Refs. 26 and 47. Much to our surprise,
Ref. 47 reported that on a 10.6◦ slope, the maximum buoyancy within the head was approximately
44% of the buoyancy from a lock of l̃0/h̃0 = 10 cm/10 cm and approximately 35% of the buoyancy
from a lock of 5.5 cm/9.7 cm. In contrast, Ref. 26 reported that the maximum buoyancy within the
head was approximately between 75% and 82% for gravity currents on 6◦ and 9◦ slopes from a lock
of 10 cm/8 cm. In this section, our computational data are used to clarify the controversy.

FIG. 13. Maximum front velocity versus Reynolds number for gravity currents propagating on a θ = 9◦ slope with l0= 1.25
and φ = 0.16. Symbols: �, two-dimensional computational data; ◦, three-dimensional computational data at Re= 4000; ■
experimental data from Ref. 19 for l0= 1.25 at Re≈ 104; • experimental data from Ref. 26 for l0= 1.25 at Re≈ 9400; ▼,
experimental data from Ref. 47 for θ = 10.6◦ and l0≈ 2 at Re≈ 104; N, experimental data from Ref. 47 for θ = 10.6◦ and
l0≈ 1 at Re≈ 104.
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FIG. 14. Density distribution in the head of the gravity current propagating on a 9◦ slope at tc = 7.78, when the maximum
front velocity is reached, with φ = 0.16 and Re= 4000. Solid lines represent the contours of ρ = 0.1,0.3,0.6, and 0.9 as inset
numbers show.

Figure 14 shows the density distribution with contours for the gravity current head on a 9◦ slope
at the end of the acceleration phase, i.e., tc = 7.78. The roller is clearly seen in the region enclosed
by the contour ρ = 0.6, which follows the less diluted head enclosed by the contour ρ = 0.9. It might
appear difficult to draw the boundary between the gravity current head and ambient fluid due to the
bulgy nature of the contours. To help visualize the distribution of buoyancy within the head, we use
the threshold value of density contour, ρc, to define the boundary of the head. Therefore, the buoyancy
within the head can be quantified as

BH =

 x f

x f−L

 Lx3

0
ρ(x1, x3, tc)|ρ≥ρcdx3dx1, (21)

where the integration is performed between the front location and the end of the head and within the
head boundary defined by ρ(x1, x3, tc) ≥ ρc. The length of the head, L, in (21) is a variable distance
between the front location and the end of the head, where the end of the head has to be determined
by a subjective judgement, as done in previous studies. Note that the total dimensionless buoyancy
is B0 = l0.

Figure 15 shows the ratio of buoyancy within the head, as shown in Figure 14, to the total buoy-
ancy, BH/B0, versus the threshold value ρc. Due to mixing with ambient fluid as the gravity current
propagates, the amount of heavy fluid in the head, of which the density exceeds 0.9 and which occupies
the core region of gravity current head, is approximately only 30% of the total buoyancy. When the
threshold value is lowered, the portion of heavy fluid within the head, of which the density exceeds
ρc, increases to approximately 50% at ρc = 0.6 and to 70% at ρc = 0.3. The amount of mixed fluid,
of which the density falls below ρc = 0.2, makes little contribution to the buoyancy within the head.
As an example, in Figure 15, BH/B0 approaches 0.77 as ρc → 0. Our computational analysis shows
very good agreement with the experimental results by Ref. 26. It is very likely that in Ref. 47, only

FIG. 15. Ratio of buoyancy within the head, as shown in Figure 14, to the total buoyancy, BH/B0, versus the threshold
value, ρc, which defines the head boundary.
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FIG. 16. Ratio of maximum buoyancy within the head to the total buoyancy, BH/B0, versus the slope angle, in units of
degree. Gravity currents are produced from a lock of l0= 1.25 with φ = 0.16 and Re= 4000. The threshold value chosen for
the integration in (21) is ρc = 0.01.

the core region, e.g., that encircled by ρc = 0.6 in Figure 14, was taken as the gravity current head
and the buoyancy within the head reported therein could be underestimated.

Figure 16 shows the dependence of BH/B0 on the slope angle. It is observed that BH/B0 increases
monotonically with increasing slope angle. As the slope angle increases beyond approximately 25◦,
over 90% of the buoyancy in the lock is contained within the gravity current head at the end of the
acceleration phase.

IV. CONCLUSIONS

The paper presents high-resolution two-dimensional Navier-Stokes simulations of gravity cur-
rents from instantaneous buoyancy sources propagating on different slope angles in the acceleration
phase. Typically, in the laboratory the range of slope angle is limited by the flume height. In the simu-
lations, investigations of gravity currents propagating on a slope in the entire range of 0◦ ≤ θ < 90◦

become feasible.
Our results show that based on the front velocity history, after the heavy fluid is released from rest,

the flow goes through the acceleration phase, reaching a maximum front velocityUf ,max, then followed
by the deceleration phase. It is shown that the time of acceleration decreases with increasing slope
angle, when the slope angle is approximately greater than 10◦ and for gravity currents on lower slope
angles, the time of acceleration increases with increasing slope angle. The distinct characteristics are
appropriately addressed by different scaling arguments, which is also supported by the fundamental
difference in flow patterns between gravity currents on high and low slope angles.

Considering the substantial scatter in previously reported experimental data and the limited range
of slope angle, previously the existence of a maximum of Uf ,max was not ascertained. The existence
of a maximum of Uf ,max near θ = 40◦ is identified here unequivocally. Our observation is further
reinforced by the novelly derived formula for Uf ,max that a maximum of Uf ,max could exist when
the slope angle falls between 40◦ and 60◦. With the help of energy analysis, it is shown that as the
slope angle increases, the potential energy loss is more efficiently converted into the kinetic energy
associated with ambient fluid, with less fraction of energy being converted into the kinetic energy
associated with heavy fluid and being dissipated. Typically for gravity currents on lower slope angles,
the heavy fluid contains more kinetic energy than the ambient fluid. As the slope angle increases
beyond approximately 40◦, the ambient fluid retains more kinetic energy than the heavy fluid, which
also suggests the existence of a maximum Uf ,max.

Here, a physical argument may help offer an insight into the role played by the slope angle. For
gravity currents on a slope, while the streamwise component of gravity acts as the driving force, the
wall-normal component of gravity stabilizes the flowing heavy fluid against unstable interface roll-up
and vortex overturns with light ambient fluid. As the slope angle increases, not only the driving force
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increases but also the stabilization provided by the wall-normal component of gravity diminishes.
Both effects act to destabilize the interface between the heavy and light ambient fluids and explain
that the mechanisms engaging ambient fluid, including interface roll-up and vortex overturns, are
enhanced as the slope angle increases.

In the literature, gravity currents on a slope have been studied either in deep ambient or within
a confined channel from a full-depth release. It is found that the latter part of the acceleration phase,
which leads to a maximum front velocity, can be essentially annihilated, for sufficiently large depth
ratios, and under such circumstances, the flow goes through a quasi-steady phase with a constant front
velocity rather than reaching a maximum front velocity.

As the depth ratio increases, the conversion of potential energy loss into the kinetic energy asso-
ciated with heavy fluid is inhibited and the conversion into the kinetic energy associated with ambient
fluid and into dissipation is enhanced by the top wall confinement. In fact, for the full-depth releases,
i.e., φ = 1, the kinetic energy and dissipated energy are both equally distributed between the heavy
and light ambient fluids during the initial acceleration and early stage of the quasi-steady phase.

In the present study, extensive investigations on gravity currents in the acceleration phase in the
entire range of slope angles are possible thanks to the high-resolution two-dimensional Navier-Stokes
simulations. It is understood that two-dimensional simulations are sufficiently representative for grav-
ity currents in the acceleration phase, during which time three-dimensional interactions have been
shown previously not important. Although the simulation results in the study show qualitative agree-
ment with available experimental data, it should be noted that a discrepancy between the experimental
data and the simulation results still exists and remains to be explained. For the propagation of grav-
ity currents on a slope in the deceleration phase, the possibility of spanwise variations is likely to
affect the flow and, as indicated by other computational studies,18,22 three-dimensional simulations
are required in that case. Efforts in this direction will be made when sufficient computational resources
are available.
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