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ABSTRACT

Numerical simulations of monochromatic surface waves freely propagating over an initially quiescent

flow field are conducted and found to reveal an array of quasi-streamwise vortices of alternating orientation

in a manner akin to that of Langmuir circulation beneath wind-driven surface waves. A linear instability

analysis of the wave-averaged Craik–Leibovich (CL) equation is then conducted to determine whether the

structures in the simulations can be explained by the Craik–Leibovich type 2 (CL2) instability, which re-

quires the presence of spanwise-independent drift and mean shear of the same sign. There is no imposed

shear in the simulations, but they confirm the theoretical analysis of Longuet-Higgins that an Eulerian-

mean shear with amagnitude comparable to that of Lagrangian Stokes drift occurs at the edge of the surface

boundary layer in the otherwise irrotational oscillatory flow. The spanwise wavelength of the least stable

disturbance is found to be close to the spacing between predominant vortex pairs, which likely are excited

by the CL2 instability.

1. Introduction

Tsai et al. (2015) recently conducted a numerical

simulation of monochromatic, finite-amplitude surface

waves propagating over an initially quiescent flow field.

Their intent was to determine the impact of nonbreaking

waves on vorticity generation and, consequently, tur-

bulence production. Their simulation predicted growth

rates of turbulent kinetic energy consistent with those

measured by Savelyev et al. (2012) using thermal-

marking velocimetry. Accordingly both studies depict

spanwise intensity levels near the surface well in excess

of streamwise levels. Such an occurrence is the hallmark

of an array of streamwise vortices of alternating orien-

tation beneath the water surface. The free-surface

footprints of those vortices appear as elongated sur-

face streaks both in the simulations and the experiment.

Of interest in the present work is the mechanism by

which these vortices form.

The footprints and vortices are evident in Fig. 1, which

depicts numerical simulations of two cases, namely,

wind-driven (Tsai et al. 2013) and free-propagating

surface waves (Tsai et al. 2015). More specifically,

Fig. 1 shows views of the elevation of the free surface,

along with distributions of temperature fluctuations

(upper two panels) and streamwise-averaged distribu-

tions of the vertical velocity (lower two panels). The key

difference between the two cases is that tangential and

normal stresses are present on the surface of wind-

driven waves and absent there on free-propagating

waves. Nevertheless, up- and downwelling resulting

from streamwise-oriented rolls and the characteristic

streaky surface signatures due to them are evident in

both cases. Of course, there are differences: the rolls are

weaker beneath free-propagating waves. Indeed, the

level of their average vorticity is an order of magnitude

weaker. Moreover, the vortices beneath wind-driven

waves penetrate deeper into the layer. Finally, the

temperature and velocity fields beneath wind-driven

waves reveal wispy finescale filaments, apparently as-

sociated with turbulence production by wind shear. We

view these vortices as akin to Langmuir circulation

(Langmuir 1938), which are wind-aligned, counter-

rotating rolls beneath wind-driven surface waves.Corresponding author address: Wu-ting Tsai, wttsai@ntu.edu.tw
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It is widely accepted that Langmuir circulation arises

through the interaction of Lagrangian drift of the surface

waves with mean shear in the near-surface layer imparted

by the wind. The equations that govern Langmuir circu-

lation beneath irrotational surfacewaves in the presence of

weak shear were first derived by Craik and Leibovich

(1976) and generalized by Phillips (1998, 2001b) to allow

for rotational waves of any amplitude in the presence of

shear of any level. The former are known as the Craik–

Leibovich (CL) equations and the generalized set is known

as the CLg equations. Both sets are mean field or wave-

averaged equations, in the sense that they exploit the fact

that the primary mean flow and Langmuir circulation

evolve over long time scales, with respect to the wave pe-

riod, and so take a Lagrangian average over the wave. The

rectified effect of thewave field is then exposed as the drift.

The CL equations admit two instability mechanisms,

Craik–Leibovich type 1 and 2 (CL1 and CL2), according to

whether the drift varies laterally or not. Since the latter is

closely realized in a random spectrum of waves, CL2 is

considered themore likely to occur in nature and is thus the

most studied and is the one considered here. On the other

hand, when the shear is strong, as in the case of wind-driven

Langmuir circulation in the laboratory (Melville et al. 1998),

the Langmuir circulation further acts to modulate the im-

posed wave field in a manner described by the more com-

plicated CLg instability (Craik 1982; Phillips and Wu 1994;

Phillips and Shen 1996; Phillips 1998, 2005), a feature first

observed by experimentally by Veron and Melville (2001).

For instability, CL2 requires that the differential drift

and shear be of the same sign (Leibovich 1983) over at

least a portion of themixed region (Phillips andDai 2014).

Our simulations, on the other hand, have no imposed

shear. Nevertheless, Langmuir circulation are observed

not only by us but have also been observed in the open

ocean in the absence of wind (Plueddemann et al. 1996).

Langmuir turbulence (a discrete spectra of Langmuir

circulation) is also evident in the rapid distortion theory

study by Teixeira and Belcher (2002) of the interaction of

turbulence with a monochromatic irrotational surface

wave. But, in fact, the free-surface boundary condition

ensures that there always is a shear flow (Longuet-Higgins

1953).AsCraik (1982) describes it, the viscous diffusion of

momentum owing to the free-surface boundary condition

generates a wave-amplitude squared surface stress that in

turn produces a second-order Eulerian shear current. This

Eulerian-mean flow is discussed further in the context of

Langmuir circulation by Phillips (2002). Thus, although

not explicitly imposed, our simulations have both an em-

bedded shear and drift and are susceptible to CL2.

In this study, we investigate whether linear stability

analysis of the CL equation is able to explain the vortices

found in numerical simulations of the full flow system

studied byTsai et al. (2015) and found experimentally in the

study by Savelyev et al. (2012). We find that streak spacing

(two cells) determined numerically and experimentally are

consistent with those arising through the CL2 instability.

2. Numerical simulations

We consider a progressive monochromatic surface

wave on an incompressible viscous fluid, and the

FIG. 1. Comparison between (a) wind-driven (Tsai et al. 2013) and (b) free-propagating surface waves (Tsai et al.

2015). (top) Numerical simulations showing the prospective views of surface elevations and temperature distri-

butions and (bottom) streamwise-averaged distributions of vertical velocity. Regions of red and blue colors rep-

resent upwelling and downwelling, respectively. The waves propagate in the positive x direction.
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three-dimensional flow field that evolves from an ini-

tially quiescent state beneath it. The flow field is de-

termined by solving the primitive Navier–Stokes

momentum equations subject to solenoidal constraint

and the fully nonlinear boundary conditions on the

exact wavy surface z 5 h(x, y, t). Here, x and y lie

on the mean free surface with x in the direction of

wave propagation, z is vertical positive up, and t is

time. Further, because buoyancy due to temperature

fluctuations does not modify the vertical momentum

equation, temperature is treated as a passive tracer.

The numerical model employs spectral discretization

for horizontal differentials and finite differencing in

the vertical with a mesh fine enough to resolve gravity–

capillary waves down to capillary scale and the viscous

sublayer immediately beneath the wavy surface (Tsai

and Hung 2007). The numerical implementations for

the simulation are the same as those in Tsai et al.

(2015).

Tsai et al. (2015) considered a periodic surface wave of

wavelength l5 7.5 cmwith an initial steepness «5 ak5
0.25, where a is the wave amplitude and the wave-

number k 5 2pl21. In this study, the initial steepness is

unchanged, and four wavelengths are considered, namely,

l 5 7.5, 12.5, 15, and 20cm, with respective amplitude-

based wave Reynolds numbers Rew 5 a2v0n
21 5 255,

550, 722, and 1111. Here, v0 5 (gk)1/2 is the angular

frequency, g is gravity, and n is the kinematic viscosity

of water. The size of the computational domain is 4l,

2l, and 0.8l in, respectively, the streamwise x, spanwise

y, and vertical z directions. The total number of dis-

cretized grid points is (5123 2563 128) for the case of

l5 7.5 cm, which increases to (5763 2883 128) for the

cases of l5 12.5 and 15 cm and to (7683 3833 192) for

the longest wave, l 5 20 cm, considered.

The numerical simulations are initialized using the

velocity field and surface deformation of a Stokes

wave. Superimposed on that flow field are ambient

disturbances whose amplitudes are homogeneous in

the horizontal directions and decay downward. To set

up the initial ambient disturbances, the evolution of a

solenoidal random velocity field beneath a free-slip

surface is first computed, as described in Tsai et al.

(2005), and rescaled such that its kinetic energy is

about 0.1% of the total energy. The superimposed

random disturbances decay rapidly during the spinup

computation. The monochromatic surface waves

therefore develop over a disturbed quiescent flow field

with a fluctuation energy about 0.01% of the total en-

ergy. No prescribed flow structures with predominant

unstable length scales exist in the flow field. Compu-

tations were continued until the flow was statistically

stationary.

3. Coherent vortical structures

Of particular interest are streamwise-oriented, coun-

terrotating vortices, which form in the near-surface re-

gion and live over time scales that are long with respect

to the wave period. Such vortices, or coherent struc-

tures, are composed of rolls determined by y and w and

streaks given by u; the velocity components (u, y, w) are

in the (x, y, z) directions. Since the vortices give rise to

distinctive footprints at the free surface, we begin by

viewing in Fig. 1 the free surface and the footprints on it,

as reflected by the distribution of temperature (upper

panels). To further show that the footprints are a re-

flection of robust long-living structures beneath the

waves, we include streamwise averages of w (lower

panels). The results in Fig. 1 are for l 5 7.5 cm, but the

surface and flow structures and the computed statistics

of the additionally simulated waves (l 5 12.5, 15, and

20 cm) are much the same and concur with those re-

ported in Tsai et al. (2015). Finally, for comparison, we

include a wind-driven case.

Looking first at the free surface, we see that although

elongated regions in x are evident in both cases, the pat-

tern is more distinctive in the case of free-propagating

surface waves (Fig. 1b). This means that energy is largely

confined to one spanwise wavenumber (with the re-

mainder in larger disparate wavenumbers) rather than

distributed over a discrete spectrum of wavenumbers of

similar value, as would appear to be the case with wind

forcing (Fig. 1a). Further insight into whether energy is

redistributed largely into one or a spectrum of wave-

numbers is seen in the surface elevation of the waves,

which began monochromatic but do not remain so. Spe-

cifically, while the amplitudes of newly excited harmonics

are barely visible in Fig. 1b, they are not only clearly

evident in Fig. 1a but vary in y. This spanwise variation

is reminiscent of the CLg instability, in which the

streamwise structures, which are here deeper and more

extensive than those in Fig. 1b, modulate the wave field.

On the other hand, the absence of modulation in free-

propagating waves is consistent with the CL2 instability.

Tsai et al. (2015) identified these streamwise struc-

tures as pairs of counterrotating, streamwise vortices

(see their Fig. 5) and noted that the distinctive elongated

streaks on the surface result from them. In Fig. 2, we see

that the same characteristic surface footprints are evi-

dent in the infrared images of Savelyev et al. (2012).

To further reveal the ubiquity of these vortices, iso-

surfaces of the streamwise vorticity field vx at the time

instance t 5 20T0 are shown in Fig. 3 for progressive

waves with l 5 7.5 and 20 cm. Here, T0 5 2pv21
0 is the

linear wave period of the progressive wave. Two rep-

resentative vorticities of opposite sign but the same
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absolute value are depicted, namely, vorticity strengths

of one-eighth of the second-order, Eulerian-mean shear

immediately beneath the boundary layer at the water

surface, that is, from (5): vx 5 60.25v0a
2k2. The origin

of this shear will be discussed in next section.

The isosurfaces appear in the form of elongated tubes,

which extend in the wave-propagating direction and

modulate in a manner that follows the elevation of the

wavy surface. The modulation further suggests vortex

strength has a maximum near the trough and minimum

near the crest. The temporal array of streamwise,

counterrotating vortices densely covers all parts imme-

diately beneath the surface. However, more elongated

vortex pairs per wavelength of surface wave are ob-

served beneath the longer surface wave l 5 20 cm,

which suggests that the transverse spacing between

vortex pairs ds is a characteristic length scale of the co-

herent flow structure.

To quantify this characteristic length scale, the dis-

turbance velocity v0(x, y, z, t) in the domain of the wave-

following vertical coordinate z 5 (z 1 H)(h 1 H)21,

where H denotes the water depth, is defined by sub-

tracting both the mean component v(z, t) and the wave-

correlated component ~v(x, z, t) from the total velocity

v(x, y, z, t), namely, v0 5 v2 v2 ~v. Here, the mean

component v(z, t) is the average over the x–y plane, and

the wave-correlated component is the difference be-

tween the phase average over spanwise y and the mean

component: ~v(x, z, t)5 hviy(x, z, t)2 v(z, t).

The transverse wavenumber of the predominant co-

herent flow structure can then be quantified by

l
s
(t)5

ð
lS(l, t) dlð
S(l, t) dl

, (1)

where integration is taken over all l, and the streamwise-

averaged power spectral density of the disturbance ve-

locity field is

S(l, t)5

�ð
v̂0(x, l, z, t)v̂0*(x, l, z, t) dz

�
x

, (2)

FIG. 2. (a) Infrared image of the water surface taken by Savelyev

et al. (2012) and (b) surface temperature distribution from the

present numerical simulation showing the elongated thermal

streaks. The infrared image of Savelyev et al. (2012) has been

turned such that the waves propagate from left to right in both

images. The color map of the simulated temperature distribution is

adjusted to resemble that of the infrared image.

FIG. 3. Isosurface distributions of streamwise vorticity at the time

instance t 5 20T0 for the cases of wavelength l 5 (a) 7.5 and

(b) 20 cm. The vorticity strength is one-eighth of the second-order,

Eulerian-mean shear immediately beneath the boundary layer at

the water surface [(5)], that is, vx 5 60.25v0a
2k2. The waves

propagate in the positive x direction. The width (length in y di-

rection) is 2l in both panels. The orange/blue color represents

positive/negative vorticity. The orientation of positive vorticity is

counterclockwise facing upstream (negative x direction).
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in which v̂0(x, l, z, t) is the transverse Fourier compo-

nent of v0, l is the transverse wavenumber, and h�ix is a
streamwise average. Since the length-scale variables are

nondimensionalized by the reciprocal wavenumber of

the surface wave k21, the nondimensional transverse

wavenumber is ls 5 l/ds and is equivalent to the number

of coherent vortex pairs (and also streaks) per wave-

length l.

The transverse characteristic length scale of coherent

structures may also be deduced from an ensemble-

averaged coherent structure. To proceed, the primitive

positions of surface streaks are first located by searching

the local maxima of temperature along cross-wave

transects. A conditional average of a velocity compo-

nent q is then defined as

fqg
c
(c, z, t)5

1

N
s

�
Ns

i51

q(xsi , y2 ysi , z, t), (3)

where (xsi , y
s
i , 0) is the coordinate of detected surface

streak, and Ns is the total number of streaks detected.

The streamwise vertical plane (x, ysi , z) therefore is

considered to approximate the symmetric plane of a

counterrotating vortex pair. The average, denoted by

f�gc, is taken by shifting the cross-wave coordinate ori-

gin c 5 0 to the position of a streak y5 ysi .

Representative, conditional-averaged distributions of

the three fluctuating velocity components for l 5 20 cm

surface waves at t5 10T0 are shown in Fig. 4. The result

reveals an orderly cellular structure that is consistent

with the qualitative properties of ideal Langmuir cells

(Leibovich 1983). Some distinct features are, first, that

the conditionally averaged streamwise velocity compo-

nent is a maximum not at the surface but beneath it. This

is sometimes referred to as a submerged jet (Fig. 4a).

Second, the surface converging velocities are compara-

ble to the downwelling velocities and larger than the

submerged diverging velocities (Figs. 4b,c). Third, the

downwelling velocities are larger than the upwelling

velocities, and both decay rapidly with depth (Fig. 4c).

Fourth, the maximum downwelling velocities are

comparable to the surface velocity anomaly near the

streak (Figs. 4a,c). Streak spacing ds is determined by

the width of a counterrotating vortex pair, that is, two

cells, and so can be measured from the left and right

extents where the spanwise velocity at the water sur-

face vanishes.

Figure 5 depicts the temporal evolution of the non-

dimensional transverse wavenumber for the pre-

dominant flow structure ls 5 l/ds, that is, the number of

coherent vortex pairs per wavelength for various

wavelengths. This was estimated from the spectral

power density distribution of the fluctuating velocities

and from conditionally averaged distributions of span-

wise velocity.

Both methods depict the same trend. Specifically

that ls decreases rapidly in the first few wave periods

(,10T0) due to adjustment from the posed random

noise to realistic fluid motions and then (over the next

20T0) stabilizes to a mean value about which it

evolves. Accordingly, and consistent with that re-

vealed by the isosurface distribution of streamwise

vorticity in Fig. 3, ls increases as the surface wave

wavelength l increases.

Measures of the characteristic transverse wave-

number given by the two methods, however, are not the

same. Specifically, the transverse wavenumbers deduced

from conditional-averaged velocity distribution are

circa 20% smaller than those evaluated using the

FIG. 4. Conditionally averaged distributions of fluctuating

(a) streamwise, (b) spanwise, and (c) vertical velocities for the

surface wave of l5 20 cm at simulated time t5 10T0. The contour

levels are the same for the three velocities and equally distributed

between 60.2% of the linear phase velocity c0.
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spectral power density of the velocity. This is because

the process of conditional averaging acts to filter out the

short wavelength finer structures. This feature is most

evident for longer l5 20 cmwaves, as revealed in Fig. 3.

Looking now at Fig. 5a, we see that the characteristic

transverse wavenumber for coherent disturbances per

wavelength grows with increasing wavelength. Specifi-

cally, we see that ls is about 5 to 6 for shorter progressive

waves (l 5 7.5 cm), is approximately 7 for l 5 12.5 and

15 cm waves, and evolves from 9 at t’ 10T0 to around 8

at t ’ 25T0 for l 5 20 cm. In fact, ls would appear to

scale as l1/2.

4. Wave-induced Eulerian mean flow

The results presented so far clearly reveal the for-

mation of vortices or Langmuir cells beneath the free-

propagating surface waves. Their presence begs the

question whether they form via one of the instability

mechanisms suggested by Craik and Leibovich (1976),

in particular by the CL2 mechanism, which assumes a

spanwise independent Lagrangian drift field in the

presence of a sheared current of the same sign. Here, of

course, our monochromatic waves generate an appro-

priate drift field, but, by design, there is no imposed

Eulerian current, although, as we indicate below, the

viscous action of the waves generates one.

First, according to potential theory for a free-

propagating periodic wave of amplitude a and wave-

number k, there is no mean Eulerian current up to

second-order O(«2), where « 5 ak, but there exists a

second-order mean Lagrangian drift:

u
s
(z)5v

0
a2ke2kz [U

s
e2kz («� 1). (4)

This was first derived by Stokes (1847) and bears his

name: the Stokes drift.

Second, a century later, Longuet-Higgins (1953) rec-

ognized that the viscous action of the waves give rise to a

thin oscillatory boundary layer immediately next to the

free surface that induces amean stress. In turn, the stress

gives rise to a second-order, Eulerian-mean flow ue

oriented in the direction of wave propagation. Since

details of the wave and oscillatory boundary layer vanish

during the average, the stress must act within an O(«2)

range beneath the mean free surface, which, to leading

order, is at the mean free surface z 5 0, with

du
e

dz
5 2v

0
«2 («� 1). (5)

The analysis was confirmed in experimental observa-

tions by Longuet-Higgins (1960) himself. Specifically, by

using a filament of dye to visualize the near-surfacemass

transport, he observed a vertical gradient close to the

summation attributed to both Lagrangian and Eulerian

transport.

Figure 6 depicts the vertical distribution of averaged

streamwise velocity hui from the present numerical

simulations and the corresponding profile of Stokes drift

us [(4)], along with their vertical derivatives dhui/dz and
dus/dz for surface waves of wavelength l5 7.5 and 20 cm

at three representative time instances.

In accord with the Stokes drift, the Eulerian-mean cur-

rent likewise decayswith depth (Fig. 6a) but is weaker than

the drift near the surface (z. 0.8). This weakness becomes

more pronounced as the wavelength increases (Fig. 6b).

Turning now to the vertical differential of the Stokes

drift and Eulerian flow (Figs. 6c,d), we see that except in

close proximity to the surface, they also reveal similar

trends. In contrast to the drift, however, which is a

maximum at the free surface, the sheared Eulerian-

mean current reaches its maximum several boundary

layer thickness scales beneath the surface and then de-

creases with depth. Here, the boundary layer thickness

scale is defined as d5 (2n/v0)
1/2 and is marked in Fig. 6d

by dashes. The sheared Eulerian-mean current there-

fore has a maximum near the edge of the boundary layer

and its value is close to the theoretical prediction of

Longuet-Higgins (1953, 1960). This portion of the flow is

shown in Figs. 6e and 6f.

FIG. 5. Temporal evolution of the ratio of wavelength to domi-

nant streak spacing for various wavelengths (indicated by different

line types) estimated from (a) spectral density distribution of dis-

turbance velocity and (b) cross-stream distribution of conditional-

averaged spanwise velocity.
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Finally, we note that because the differential drift and

shear are of the same sign over much of the mixed layer,

they satisfy the necessary (but not sufficient) condition

shown by Phillips and Dai (2014) to excite the CL2 in-

stability. Our task now is to determine whether the least

stable spanwise spacings given by instability theory are

consistent with our spacings found numerically.

5. Stability analysis of CL equation

Craik (1982) noted that the shear [(5)] identified by

Longuet-Higgins (1953) at the edge of the mean free

surface is equivalent to a wave stress acting on the sur-

face, which in turn generates a temporal, Eulerian-mean

flow or current. Moreover, since such a current beneath

free-propagating waves is, in appropriate circumstances,

unstable to spanwise disturbances via the CL2 instability

mechanism, Leibovich and Paolucci (1981) used the

construct to explore the generation of Langmuir circu-

lation. Our intent now is to revisit their construct and

compare the results with those from our numerical

simulations.

To proceed Leibovich and Paolucci (1981) employ the

Craik and Leibovich (1976) or CL equations, which may

be written as

›v0

›t
1w0›ue

›z
i5 u

s
=
p
u0 2=

p
p0 1La=2

pv
0 , (6)

where v0(y, z)5 u0i1 y0j1w0k is the perturbed rota-

tional velocity, p0 is the perturbed pressure, and

=p 5 ›/›yj1 ›/›zk. These equations may be non-

dimensionalized in various ways (Phillips andDai 2014),

but we employ a form in which the characteristic

length scale L 5 k21; the streamwise velocity is non-

dimensionalized by the characteristic velocity scale

U 5 u2

*n
21
T k21, where nT is the eddy viscosity; the

spanwise and vertical velocities are nondimensionalized

by V 5U1/2
s U1/2; and the pressure is nondimensionalized

by rV 2. This form then exposes the Langmuir number

defined as La5 nTL21V 21.

The maximal eddy viscosity evaluated by nT 5
2u0w0(du/dz)21 at the early stage of the numerical

simulation (t ’ 5T0) is about 2 3 1023 cm2 s21, which is

an order of magnitude less than the molecular viscosity

n. In consequence, the eddy viscosity nT in the Langmuir

number may be replaced by molecular viscosity n. The

friction velocity associated with the wave stress [(5)]

then becomes u*5 (2nv0)
1/2
ak, and the corresponding

Langmuir number

La5
n

21/2a2v
0

5
2p3/2n

g1/2(ak)2l3/2
, (7)

which is the reciprocal of wave Reynolds number.

Transverse instability of the rectified flow is then

sought by assuming the disturbance to be spanwise pe-

riodic with wavenumber l and represented by the normal

mode

FIG. 6. Vertical distributions of (a),(b) averaged streamwise and

Stokes drift velocities hui and us and (c),(d) their vertical de-

rivatives dhui/dz and dus/dz for the cases of l 5 (left) 7.5 and

(right) 20 cm at three representative time instances t 5 5T0 (thin

dashed line), 10T0 (thin solid line), and 30T0 (thick solid line).

(e),(f) The zooms of (c) and (d) near the free surface. The corre-

sponding thickness scales of the boundary layer, d 5 (2n/s)1/2, are

marked by dashes in (e) and (f).
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[v0(y, z), p0(y, z)]5 [v̂0(z), p̂0(z)]Refexp(st1 ily)g . (8)

Here, the spanwise wavenumber l is equivalent to the

ratio of the wavelength of surface wave wavelength l to

the wavelength of spanwise disturbance ld, that is l 5
l/ld. Moreover the growth rate s is complex and the

transverse disturbance is unstable whenRefsg[ sr. 0.

Substituting (8) into the linearized CL equation (6) re-

sults in a system of ordinary differential equations that

are solved for s, v̂0(z), and p̂0(z), given the spanwise

wavenumber l and the Langmuir number La. The equa-

tions are solved in the manner of Leibovich and Paolucci

(1981) using Galerkin techniques, albeit with refinements

introduced by Phillips (2001a), such as orthogonal shape

functions (Chebyshev polynomials). The numerical pro-

cedure is then carried out by solving a generalized complex

eigensystem for the truncated polynomial coefficients as

the eigenvector and s as the eigenvalue.

6. Stability results

Stability diagrams for the wavenumber l and a range

of reciprocal Langmuir number La21 are presented in

Fig. 7 for a mean velocity profile driven by a surface

stress with a vertical shear given by (5). The thick, long-

dashed lines mark the margin of neutral stability sr 5 0.

Variation of the most unstable wavenumber lmax with

La21 is depicted by the thick, solid line. Contour lines of

various growth rates are superimposed on the instability

region in Fig. 7a, and variations of unstable wavenumber

with various fractions of the maximum growth rate are

depicted in Fig. 7b. The flow is globally stable for

La21 & 2:14. Note that this is higher than the 1.46 and

1.4395 globally stable values reported, respectively, by

Leibovich and Paolucci (1981) and Phillips (2001a) be-

cause of a factor of 2 difference in the magnitude of the

Stokes drift. Above this critical reciprocal Langmuir

number, the range of the unstable wavenumber in-

creases monotonically.

Further insight into the growth rates is obtained by

presenting the results in the three-dimensional form

sr 5 sr(La
21, l), as shown in Fig. 8. It reveals that the

most unstable wavenumber lmax, as well as its growth

rate smax
r , increases with La21 but that the increasing

rates decrease asymptotically. More importantly, we see

that the growth rate varies insignificantly for a large

range of wavenumbers near the most unstable modes.

For example, although the wavenumber of the least

stable mode at La21 5 5000 is lmax ’ 20, wavenumbers

with growth rates greater than 90% of the maximum

extend from l ’ 8 to 36.

Now if the longitudinal vortical structures observed

in our numerical simulations and those in the experi-

ment of Savelyev et al. (2012) are induced by the

CL2 instability mechanism, then the dominant spacing

for a pair of coherent vortices should be close to the

spacing specified by the least stable wavenumber, that is,

ls ’ lmax, and is, as we see in Fig. 9.

Looking first to our numerical results, we see for the

shortest progressive wavelength simulated (l 5 7.5 cm)

that ls almost coincides with lmax. The two deviate for

the other longer waves simulated (l 5 12.5, 15, and

20 cm), but not significantly, and in all cases remain

within a range in which the growth rate is 96% to 97%

of the maximum.

Accordingly, the wavenumbers of the predominant

streak spacings estimated from the autocorrelation

function of surface streamwise or spanwise velocities in

the experiments of Savelyev et al. (2012) are also in close

FIG. 7. Instability diagrams of theCL equation showing the range

of unstable wavenumber l for varying reciprocal Langmuir number

La21. The thick, long-dashed lines mark the margin of neutral

stability Refsg 5 0. Variation of the most unstable wavenumber

with La21 is depicted by a thick solid line. (a) Contour lines (thin,

short-dashed lines) of various growth rates are superimposed on

the unstable region; the nondimensional contours range from 0.1 to

10, and some are labeled on the corresponding contours.

(b) Variations of unstable wavenumber with fractions of maximum

growth rate (thin, short-dashed lines) are depicted. The fraction

percentages are indicated on the corresponding lines.
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proximity to the wavenumbers of the least stable dis-

turbances predicted from linear stability theory. Here,

there is more scatter, but the ls are largely within the

range of the unstable wavenumbers with at least 90% of

the maximum growth rate.

Finally, we note that results from both the numerical

simulations and experiment are all smaller than the

transverse wavelengths of the most unstable distur-

bances ls , lmax; that is, the computed and measured

spacings between coherent vortex pairs are wider than

the predicted wavelengths. This does not preclude the

presence of more closely spaced vortices but rather

suggests our method for isolating the spacing is opti-

mized to isolate the largest spacing and effectively filters

out finer structures in the process.

7. Discussion

Analysis of the numerically simulated flow field be-

neath progressive, irrotational, monochromatic, free-

propagating surface waves reveals the presence of

arrays of counterrotating coherent vortex pairs much

like Langmuir circulation beneath wind-driven surface

waves (Tsai et al. 2015). The surface footprints of these

vortices appear as elongated streaks, which are also

observed experimentally (Savelyev et al. 2012). Al-

though no mean shear flow is imposed in the simula-

tions, they generate, in accord with the analysis of

Longuet-Higgins (1953), an Eulerian-mean shear flow

of magnitude comparable with that of the Stokes drift,

induced by the waves.

Since Craik and Leibovich (1976) theory indicates

that mean shear and drift are key to the formation of

Langmuir circulation and since both shear and drift are

present in our simulation, we then question whether

our findings concur with instability theory based upon

the CL equation. Of particular interest is the CL2

instability, which requires spanwise-independent drift,

as arises in our imposed monochromatic waves. In-

stability is tripped by a cross-stream anomaly in mean

shear.

We question first whether the dominant spacings

between coherent vortex pairs deduced from the nu-

merical simulation and laboratory experiments con-

cur with spacings predicted by linear stability analysis

and begin with the simulations (Fig. 9, solid symbols).

We find that there is a preferred lateral spacing and

see that agreement with the least stable (solid line) is

remarkably good. But that is not the complete story

because stability analysis further indicates that energy

will focus not at one specific transverse wavenumber

but rather any one of a broad spectrum of wave-

numbers of comparable growth rate. These are shown

as dashed lines. This occurrence blurs the notion

of preferred spacing because once instability locks

onto a specific wavenumber in this spectrum, it will

stay there.

FIG. 8. Three-dimensional instability diagrams of the CL equa-

tion showing the distribution of growth rate sr for the unstable

range of unstable wavenumber l and reciprocal Langmuir number

La21. The filled contour depicts the distribution of growth rate;

some labeled contour lines (thin dashed lines) are superimposed.

Variations of unstable wavenumber with fractions of maximum

growth rate (thin solid lines) are also superimposed. The fractions

are indicated on the corresponding contour lines.

FIG. 9. Comparison of the unstable wavenumbers predicted from

linear stability analysis of CL equation (solid and dashed lines as

described in Fig. 7b) with the nondimensional dominant streak

spacing computed from the present numerical simulations (solid

symbols; j: l 5 20 cm, m: l 5 15 cm, .: l 5 12.5 cm, and d:

l 5 7.5 cm) and from experimental measurements by Savelyev

et al. (2012) (open symbols; u: l 5 140 cm, 4: l 5 119 cm,P:

l 5 99 cm, 8: l 5 81 cm, and e: l 5 64 cm). Simulated results

at three representative time instances, t 5 5T, 15T0, 25T0, are

shown; the corresponding reciprocal Langmuir number La21 varies

from small to large though the variation is very small.
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In an experiment, therefore, where cross-stream

anomalies in mean shear can arise for a variety of rea-

sons, we would expect instability to be triggered over a

broad range of spacings. Of course, the vortices that

survivewill be those of the highest growth rate, and that is

what we see in Fig. 9 (open symbols), where the growth

rates for all spacings measured by Savelyev et al. (2012)

are at least 85% of that of the least stable mode.

So are the vortices observed in our simulation excited

by the CL2 instability? It is very likely. CL2 is an (ini-

tially) exponentially growing wave-driven inviscid cen-

trifugal instability (Phillips 1998). If we question each

requirement, we note, first, that the initial growth of

the vortices is indeed exponential, and, second, that

because the mean shear is wave driven, the vortices too

are wave driven. To determine the role of viscosity,

however, we would need to repeat the calculations at

much lower La21, which we have not done. Neverthe-

less, the transverse wavenumbers excited in the simu-

lation are consistent with unstable modes predicted by

linear instability theory, and we conclude that the un-

derlying instability therein is the CL2 instability. To-

gether, these features provide the first evidence that the

CL2 instability is realizable. With that in mind, and

knowing that the transverse wavenumbers excited in the

experiments of Savelyev et al. (2012) are likewise con-

sistent with linear instability theory, we infer that their

experiments provide the first experimental evidence

that the CL2 instability is realizable.

Finally, we note that although energy will initially focus

at any one of a spectrum of transverse wavenumbers in

accord with linear stability theory, nonlinearities will at

some stage spawn smaller-scale structures. Since they too

can experience growth rates comparable with that of the

initial structure, the process highlights an efficient direct

cascade of energy into smaller scales. This feature has

broad implications with regard to transition from laminar

to turbulent flow (Ardhuin and Jenkins 2006; Babanin

2006) and is evident in our numerical simulations, albeit

not at the free surface.

Acknowledgments. We acknowledge Dr. Shi-ming

Chen for conducting the computations of conditional

average described in section 3. This work was supported

by grants from Taiwan Ministry of Science and Tech-

nology under Contracts MOST 104-2611-M-002-005-

MY3 and 105-2923-M-002-006-MY3.

REFERENCES

Ardhuin, F., and A. D. Jenkins, 2006: On the interaction of surface

waves and upper ocean turbulence. J. Phys. Oceanogr., 36,

551–557, doi:10.1175/JPO2862.1.

Babanin, A. V., 2006: On a wave-induced turbulence and a wave-

mixed upper ocean layer. Geophys. Res. Lett., 33, L20605,

doi:10.1029/2006GL027308.

Craik, A. D. D., 1982: The drift velocity of water waves. J. Fluid

Mech., 116, 187–205, doi:10.1017/S0022112082000421.

——, and S. Leibovich, 1976: A rational model for Langmuir circula-

tions. J. FluidMech.,73, 401–426, doi:10.1017/S0022112076001420.

Langmuir, I., 1938: Surface motion of water induced by wind.

Science, 87, 119–123, doi:10.1126/science.87.2250.119.

Leibovich, S., 1983: The form and dynamics of Langmuir circula-

tions. Annu. Rev. Fluid Mech., 15, 391–427, doi:10.1146/

annurev.fl.15.010183.002135.

——, and S. Paolucci, 1981: The instability of the ocean to Lang-

muir circulation. J. Fluid Mech., 102, 141–167, doi:10.1017/

S0022112081002589.

Longuet-Higgins, M. S., 1953: Mass transport in water waves.

Philos. Trans. Roy. Soc. London, A245, 535–581, doi:10.1098/

rsta.1953.0006.

——, 1960: Mass transport in the boundary at a free oscillating

surface. J. Fluid Mech., 8, 293–306, doi:10.1017/

S002211206000061X.

Melville, W. K., R. Shear, and F. Veron, 1998: Laboratory

measurements of the generation and evolution of Langmuir

circulations. J. Fluid Mech., 364, 31–58, doi:10.1017/

S0022112098001098.

Phillips, W. R. C., 1998: Finite-amplitude rotational waves in vis-

cous shear flows. Stud. Appl. Math., 101, 23–47, doi:10.1111/

1467-9590.00084.

——, 2001a: On the instability to Langmuir circulations and the

role of Prandtl number and Richardson numbers. J. Fluid

Mech., 442, 335–358, doi:10.1017/S0022112001005110.

——, 2001b: On the pseudomomentum and generalized Stokes

drift in a spectrum of rotational waves. J. Fluid Mech., 430,

209–220, doi:10.1017/S0022112000002858.

——, 2002: Langmuir circulations beneath growing or decaying

surface waves. J. Fluid Mech., 469, 317–342, doi:10.1017/

S0022112002001908.

——, 2005: On the spacing of Langmuir circulation in strong shear.

J. Fluid Mech., 525, 215–236, doi:10.1017/S0022112004002654.

——, and Z. Wu, 1994: On the instability of wave-catalysed lon-

gitudinal vortices in strong shear. J. FluidMech., 272, 235–254,

doi:10.1017/S0022112094004453.

——, and Q. Shen, 1996: A family of wave-mean shear interactions

and their instability to longitudinal vortex form. Stud. Appl.

Math., 96, 143–161, doi:10.1002/sapm1996962143.

——, and A. Dai, 2014: On Langmuir circulation in shallow waters.

J. Fluid Mech., 743, 141–169, doi:10.1017/jfm.2014.37.

Plueddemann,A. J., J. A. Smith,D.M. Farmer, R.A.Weller,W.R.

Crawford, R. Pinkel, S. Vagle, and A. Gnanadesikan, 1996:

Structure and variability of Langmuir circulation during the

surface waves processes program. J. Geophys. Res., 101, 3525–

3543, doi:10.1029/95JC03282.

Savelyev, I. B., E. Maxeiner, and D. Chalikov, 2012: Turbulence

production by nonbreaking waves: Laboratory and numerical

simulations. J. Geophys. Res., 117, C00J13, doi:10.1029/

2012JC007928.

Stokes, G. G., 1847: On the theory of oscillatory waves. Trans.

Cambridge Philos. Soc., 8, 441–455.

Teixeira, M., and S. Belcher, 2002: On the distortion of turbulence

by a progressive surface wave. J. Fluid Mech., 458, 229–267,

doi:10.1017/S0022112002007838.

Tsai, W.-T., and L.-P. Hung, 2007: Three-dimensional modeling of

small-scale processes in the upper boundary layer bounded

542 JOURNAL OF PHYS ICAL OCEANOGRAPHY VOLUME 47

http://dx.doi.org/10.1175/JPO2862.1
http://dx.doi.org/10.1029/2006GL027308
http://dx.doi.org/10.1017/S0022112082000421
http://dx.doi.org/10.1017/S0022112076001420
http://dx.doi.org/10.1126/science.87.2250.119
http://dx.doi.org/10.1146/annurev.fl.15.010183.002135
http://dx.doi.org/10.1146/annurev.fl.15.010183.002135
http://dx.doi.org/10.1017/S0022112081002589
http://dx.doi.org/10.1017/S0022112081002589
http://dx.doi.org/10.1098/rsta.1953.0006
http://dx.doi.org/10.1098/rsta.1953.0006
http://dx.doi.org/10.1017/S002211206000061X
http://dx.doi.org/10.1017/S002211206000061X
http://dx.doi.org/10.1017/S0022112098001098
http://dx.doi.org/10.1017/S0022112098001098
http://dx.doi.org/10.1111/1467-9590.00084
http://dx.doi.org/10.1111/1467-9590.00084
http://dx.doi.org/10.1017/S0022112001005110
http://dx.doi.org/10.1017/S0022112000002858
http://dx.doi.org/10.1017/S0022112002001908
http://dx.doi.org/10.1017/S0022112002001908
http://dx.doi.org/10.1017/S0022112004002654
http://dx.doi.org/10.1017/S0022112094004453
http://dx.doi.org/10.1002/sapm1996962143
http://dx.doi.org/10.1017/jfm.2014.37
http://dx.doi.org/10.1029/95JC03282
http://dx.doi.org/10.1029/2012JC007928
http://dx.doi.org/10.1029/2012JC007928
http://dx.doi.org/10.1017/S0022112002007838


by a dynamic ocean surface. J. Geophys. Res., 112, C02019,

doi:10.1029/2006JC003686.

——, S.-M. Chen, and C.-H. Moeng, 2005: A numerical study on

the evolution and structure of a stress-driven, free-surface

turbulent shear flow. J. FluidMech., 545, 163–192, doi:10.1017/

S0022112005007044.

——, ——, G.-H. Lu, and C. S. Garbe, 2013: Characteristics of

interfacial signatures on a wind-driven gravity-capillary

wave. J. Geophys. Res. Oceans, 118, 1715–1735, doi:10.1002/

jgrc.20145.

——, ——, and ——, 2015: Numerical evidence of turbulence

generated by nonbreaking surface waves. J. Phys. Oceanogr.,

45, 174–180, doi:10.1175/JPO-D-14-0121.1.

Veron, F., and W. K. Melville, 2001: Experiments on the stability

and transition of wind-driven water surfaces. J. Fluid Mech.,

446, 25–65.

MARCH 2017 T SA I ET AL . 543

http://dx.doi.org/10.1029/2006JC003686
http://dx.doi.org/10.1017/S0022112005007044
http://dx.doi.org/10.1017/S0022112005007044
http://dx.doi.org/10.1002/jgrc.20145
http://dx.doi.org/10.1002/jgrc.20145
http://dx.doi.org/10.1175/JPO-D-14-0121.1

