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Non-Boussinesq gravity currents propagating on
different bottom slopes
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Experiments on the non-Boussinesq gravity currents generated from an instantaneous
buoyancy source propagating on an inclined boundary in the slope angle range
0◦6 θ 69◦ with relative density difference in the range of 0.056 ε60.17 are reported,
where ε = (ρ1 − ρ0)/ρ0, with ρ1 and ρ0 the densities of the heavy and light ambient
fluids, respectively. We showed that a 3/2 power-law, (xf + x0)

3/2 = K3/2
M B′0

1/2
(t+ tI0),

exists between the front location measured from the virtual origin, (xf + x0), and
time, t, in the early deceleration phase for both the Boussinesq and non-Boussinesq
cases, where KM is a measured empirical constant, B′0 is the total released buoyancy,
and tI0 is the t-intercept. Our results show that KM not only increases as the relative
density difference increases but also assumes its maximum value at θ ≈ 6◦ for
sufficiently large relative density differences. In the late deceleration phase, the front
location data deviate from the 3/2 power-law and the flow patterns on θ = 6◦, 9◦
slopes are qualitatively different from those on θ = 0◦, 2◦. In the late deceleration
phase, we showed that viscous effects could become more important and another
power-law, (xf + x0)

2 =K2
VB′0

2/3A1/3
0 ν−1/3(t+ tV0), applies for both the Boussinesq and

non-Boussinesq cases, where KV is an empirical constant, A0 is the initial volume of
heavy fluid per unit width, ν is the kinematic viscosity of the fluids, and tV0 is the
t-intercept. Our results also show that KV increases as the relative density difference
increases and KV assumes its maximum value at θ ≈ 6◦.
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1. Introduction
Gravity currents, also known as density currents, are flows driven by a density

difference. A number of factors that are likely to cause variations in the density of
fluid include temperature differentials, dissolved materials, and suspended sediments.
A large number of laboratory studies have been performed for such flows in a
closed horizontal channel with a vertical barrier, where each side of the barrier
is filled with fluid of different density. Removal of the barrier then sets the two
fluids into motion. This type of experiment, i.e. lock-exchange flow, serves as a
model for a variety of geophysical and industrial flows (Allen 1985; Simpson 1997).
Lock-exchange flows have received much attention in the literature and most of these
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experiments were for the Boussinesq case, i.e. the densities of the two fluids were
only slightly different, e.g. (e.g. Shin, Dalziel & Linden 2004; Marino, Thomas &
Linden 2005; Cantero et al. 2007; La Rocca et al. 2008, 2012a,b; Adduce, Sciortino
& Proietti 2012). Although the Boussinesq case is representative of most geophysical
flows, the non-Boussinesq case, where the density difference is significantly larger,
is important in quite a few situations. Fires in a tunnel produce gravity currents
with hot combustion products, the density of which is significantly less than air
due to high temperatures. In powder-snow avalanches, the excess density due to the
suspended snow grains is large compared with that of air. Pyroclastic flows from
volcanic eruptions often take the form of gravity currents and the density within
the flow due to hot ash and rocks is also significantly larger than the surrounding
air. Sediment-laden rivers form turbidity underflows in a lake or reservoir, and it is
not uncommon to observe high sediment concentrations due to extreme precipitation
events in the watershed. Among others, laboratory studies on the non-Boussinesq
lock-exchange flows were reported by Keller & Chyou (1991), Grobelbauer, Fannelop
& Britter (1993), Lowe, Rottman & Linden (2005), and two-dimensional numerical
simulations were performed by Birman, Martin & Meiburg (2005).

Gravity currents propagating down an inclined boundary have been considered
less often, but are also commonly encountered in geophysical environments and
engineering applications, such as powder-snow avalanches (Hopfinger 1983) and
spillage of hazardous materials (Fannelop 1994). Gravity currents down an inclined
boundary can be produced with a continuous, negatively buoyant inflow (Britter &
Linden 1980; Baines 2001, 2005; Cenedese & Adduce 2008) or can be a surge-type
flow generated from the release of a finite volume of buoyancy (Beghin, Hopfinger
& Britter 1981; Monaghan et al. 1999; Dai & Garcia 2010). For gravity currents
produced from an instantaneous source on a slope, it is known that after the heavy
fluid is released, the gravity currents first go through an acceleration phase followed
by a deceleration phase. To describe the front velocity history for gravity currents
from an instantaneous source on a slope, Beghin et al. (1981) developed the thermal
theory for the Boussinesq case which has formed the basis for subsequent studies,
(e.g. Dade, Lister & Huppert 1994; Rastello & Hopfinger 2004). Among other studies
related to the present work, Birman et al. (2007) reported two-dimensional simulations
of the full-depth lock-exchange problem on a slope and Seon et al. (2007) performed
lock-exchange experiments in tilted tubes, but the geometric configurations therein
make the thermal theory less applicable in their problems. We should point out that
none of the above work is for the non-Boussinesq case.

More recently, also looking at the Boussinesq gravity currents from an instantaneous
source on a slope, Maxworthy & Nokes (2007) reported that the released heavy
fluid continuously feeds the gravity current head with buoyancy in the acceleration
phase from the following tail current, like a line plume, and such flow patterns
occur in particular when the lock length is significantly greater than the lock
height. Later, Maxworthy (2010) reported that the gravity current head may lose
buoyancy-containing fluid in the deceleration phase; nevertheless, in the whole range
of the deceleration phase the front location history robustly follows a 3/2 power-law,
which is essentially an asymptotic form of the solution from thermal theory.

This study is a continuation of the investigation done by Dai (2013), in which the
Boussinesq gravity currents from an instantaneous source on a slope were reported,
where the initial density difference between the heavy and light fluids was maintained
at a constant value lower than the density differences used in the present paper. Our
focus here is also on gravity currents produced from a finite volume of heavy fluid



660 A. Dai

Lock gate

θ

Lock gate

Virtual
   origin

L

H
x0

xf

h0

l0

(a)

(b)

FIGURE 1. Side views of the channel used in the experiments for gravity currents
produced from an instantaneous buoyancy source propagating on a slope. The slope angle
is θ , the ambient is filled with fluid of density ρ0, and heavy fluid of density ρ1 is
confined in the lock region. H and L are the height and length of the gravity current head;
x0 is the distance from the virtual origin to the lock gate; xf is the distance from the gate
to the gravity current front. In the initial state, the cross-sectional area of heavy fluid is
A0 = h0l0, where h0 = 8 cm and l0 = 10 cm are the lock height and length, respectively.
Removal of the gate sets the quiescent heavy fluid into motion.

down an inclined boundary, i.e. the problem set forth in Beghin et al. (1981), but
with larger relative density differences. The objective is to observe the flow patterns
for gravity currents down different bottom slopes and to identify how these patterns
change with slope angle. Using the experimental data, quantitative measures for the
relationship between the front location and time in the deceleration phase may be
derived and the influence of relative density difference is clearly shown for the first
time. In § 2, we summarize the power-laws for the front location history in the early
and late stages of the deceleration phase. The apparatus and experimental techniques
are described in § 3. The qualitative and quantitative results are presented in § 4.
Finally, conclusions are drawn in § 5.

2. Theoretical background
The configuration of the problem is sketched in figure 1. Here the nomenclature

mainly follows Beghin et al. (1981) for the reader’s convenience. The density of
ambient fluid is taken as ρ0 and the density of heavy fluid in the lock region is
ρ1, where the relative density difference is ε = (ρ1 − ρ0)/ρ0. For non-Boussinesq
gravity currents, a commonly used parameter characterizing the density difference
is the density ratio, γ = ρ0/ρ1, i.e. γ = 1/(1 + ε). The cross-sectional area of
the lock, which represents the amount of heavy fluid in the lock, is A0. After an
instantaneous removal of the lock gate, the gravity current head develops and the
head approximately takes a semi-elliptical shape with a height-to-length aspect ratio
k=H/L.

The convection of the gravity current is driven by the heavy fluid contained within
the head. Therefore, the linear momentum equation takes the form

d(ρ + kvρ0)S1HLU
dt

= Bsinθ, (2.1)
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where ρ is the density of mixed fluid in the head, U is the mass-centre velocity of
the head, t is the time, kv = 2k is the added mass coefficient (Batchelor 1967), S1 =
π/4 is a shape factor by which the cross-sectional area of the semi-elliptical head is
defined as S1HL, and B= g(ρ−ρ0)S1HL denotes the buoyancy in the head, where g is
acceleration due to gravity. Friction on the slope has been considered minor and can
be neglected for slope angles greater than a few degrees (Beghin et al. 1981; Ross,
Dalziel & Linden 2006). We may assume that the actual amount of heavy fluid in
the head is represented by χA0, i.e. only a fraction χ of heavy fluid in the lock is
contained in the head, and the buoyancy is

B= χg(ρ1 − ρ0)A0, (2.2)

where Beghin et al. (1981) assumed that χ = 1 and Maxworthy (2010), Dai (2013)
experimentally found that χ < 1. Typically the parameter χ should be determined by
experiments and cannot be evaluated based on theoretical arguments. As such, χ is
unspecified at this point in our framework. With turbulent entrainment assumptions
(Ellison & Turner 1959), the mass conservation takes the form

d
dt
(S1HL)= S2(HL)1/2αU, (2.3)

where S2= (π/23/2)(4k2 + 1)1/2/k1/2 is another shape factor by which the circumference
of the semi-elliptical head is defined as S2(HL)1/2 and α is the entrainment coefficient.

From (2.3)

H = 1
2

S2

S1
k1/2αx and L= 1

2
S2

S1
k−1/2αx, (2.4)

where x is the distance from the ‘virtual origin’ to the mass-centre of the gravity
current head. Note here that the mass conservation equation (2.3) and its solution (2.4)
follow Beghin et al. (1981). The ‘virtual origin’ is located a distance x0 beyond the
lock gate and is found by extrapolating the head height, H, in the upslope direction,
as shown in figure 1. The entrainment coefficient α is related to the angle of growth
α0 via the relationship α = (2S1/S2k1/2

)
α0. Upon substitution of (2.4) into (2.1) and

using U = dx/dt, the momentum equation becomes

U
d
dx
(x2U)+ ε

(
χ

2
π

k
1+ 2k

A0

α2
0

)
dU2

dx
=C, (2.5)

where
C= 4

π

k
1+ 2k

1
α0

2
χB′0sinθ with B′0 = εgA0, (2.6)

is the driving force term.
In previous works on the Boussinesq case, e.g. Beghin et al. (1981), the influence

of density variation on the inertia term, the O(ε) term on the left-hand side of (2.5),
has been neglected. For the non-Boussinesq case here, the O(ε) term on the left-hand
side of (2.5) is retained and the following closed-form solution is derived:

U2 = U2
0

(
1
2 x0

2 + εQ
)2( 1

2 x2 + εQ
)−2

+C
(

1
6

(
x3 − x0

3
)− εQ(x− x0)

) (
1
2 x2 + εQ

)−2
, (2.7)

where U0 is the initial mass-centre velocity and Q= 2χkA0/(1+ 2k)πα2
0 .



662 A. Dai

When the buoyancy source is released with a quiescent initial condition, the solution
approaches the following asymptote:

U = ( 2
3

)1/2
C1/2x−1/2, (2.8)

when x/x0� 1 and x2/x2
0� 6εQ/x2

0. Note that the same asymptote is approached for
the Boussinesq case when x/x0� 1. Here in the non-Boussinesq case, an additional
condition is required, i.e. x2/x2

0 � 6εQ/x2
0. It should be pointed out that since

x0α0 ≈ O(h0), 6εQ/x2
0 ≈ O(ε) and the second condition is no more stringent than

the first condition x/x0 � 1 as long as ε . O(1). In other words, it is anticipated
that the velocity of non-Boussinesq gravity currents follows the same asymptote
in the deceleration phase as the Boussinesq case. As entrainment of ambient fluid
reduces the density difference between the fluid in the head and ambient fluid, it is
not surprising that non-Boussinesq gravity currents approach the same asymptote as
the Boussinesq case for late stages due to the reduced non-Boussinesq effects. In
essence, the additional condition for the non-Boussinesq gravity currents to approach
the asymptote (2.8), i.e. x2/x2

0�O(ε), is equivalent to the statement that the average
excess density in the head is small compared with that of ambient fluid. For strong
non-Boussinesq effects such that x2/x2

0 . O(ε), the non-Boussinesq gravity currents
may not follow (2.8) and the similarity between the non-Boussinesq and Boussinesq
cases may not exist. We should keep in mind that entrainment of ambient fluid and,
consequently, the angle of growth of the head are important parameters in the thermal
theory framework, which then may not be readily applicable to the extreme cases,
ε� 1, such as water and air, because mixing between the two fluids in the extreme
cases is very limited.

Since the front location of a gravity current is a relatively easily measurable
quantity, it is desirable to rewrite the solution in terms of the front location, xf , which
is measured from the lock gate. Using the geometric relation (xf + x0)= x+ L/2, i.e.
(xf + x0)= (1+ α0/2k)x, and its time derivative, uf = (1+ α0/2k)U, the front velocity
in the deceleration phase approaches the following asymptote:

uf =
(

2
3

)1/2

C1/2
(

1+ α0

2k

)3/2
(xf + x0)

−1/2. (2.9)

Upon integration, (2.9) can be rewritten in the following form with an integration
constant tI0:

(xf + x0)
3/2 =K3/2

M B′0
1/2
(t+ tI0), (2.10)

where KM = KBχ
1/3 and B′0 is the total released buoyancy. The expression for KB

should follow the form

KB =
(

6
π

)1/3 (
1+ α0

2k

)( ksinθ
(1+ 2k)α2

0

)1/3

. (2.11)

After taking the time derivative of (2.10), the front velocity in the deceleration phase
follows

uf (xf + x0)
1/2

B′0
1/2 = 2

3
KM

3/2, (2.12)

which was also the asymptotic form suggested by Beghin et al. (1981), who reported
for the Boussinesq case that KM varies approximately between 2.35 and 2.60 at
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θ = 15◦ and reduces uniformly with increasing θ to a value between 1.56 and 1.87
at θ ≈ 90◦.

As the gravity force per unit volume of the gravity current head scales as
ρB′0(xf + x0)

−2 and the inertia scales as ρ(xf + x0)t−2, the power-law (2.10) is in
essence a statement of balance between gravity and inertia forces in the early
deceleration phase and K3/2

M is a proportionality constant. In the late deceleration phase
when viscous effects become more important, the viscous force per unit volume scales
as ρν(xf + x0)t−1δ−1A0

−1/2, where the viscous stress is estimated as ρν(xf + x0)t−1δ−1,
and δ∼ (νt)1/2 and A0

1/2 are estimates for the thickness of the boundary layer at the
edge of, and an inherent length scale for, the ‘active’ moving head, respectively (Dai
2013). The balance between gravity and viscous forces then results in

(xf + x0)
2 =K2

V

(
B′0

2A0

ν

)1/3

(t+ tV0), (2.13)

where K2
V is a proportionality constant which has to be determined by experiments

and tV0 is the t-intercept.
For gravity currents on a horizontal boundary, i.e. lock-exchange flows, the head

height does not increase or even slowly decreases as the gravity current propagates;
the ‘virtual origin’ is then taken at the gate (cf. Beghin et al. 1981) and (2.12) is
equivalent to

x̃f =KM t̃ 2/3 or x̃3/2
f =K3/2

M t̃, (2.14)

which is just the asymptotic behaviour for the front location in the inertial phase,
where x̃f = xf /l0, t̃ = t

√
g′0h0/l0, and l0 and h0 are the lock length and lock height,

respectively. Among other values, KM = 1.6 and 1.47 were proposed by Hoult (1972)
and Huppert & Simpson (1980), respectively, whereas more recently Marino et al.
(2005) suggested that KM varies between 1.3 and 1.6 for full-depth releases and
between 1.4 and 1.8 for partial-depth releases. However, recall that all of the above
reports are for the Boussinesq case. It is well known that following the inertial phase
is the viscous phase, in which the front velocity decays more rapidly than in the
inertial phase. For example, Hoult (1972) derived x̃f ∼ t̃3/8 by considering a balance
between the viscous force from the interface and the buoyancy and Huppert (1982)
revised the analysis by adding the viscous effects over a rigid horizontal surface and
reported that x̃f ∼ t̃1/5.

3. Experiments
The channel used in the experiments was manufactured with a rectangular cross-

section 0.2 m wide, 0.60 m deep and 2.5 m long with transparent Perspex sidewalls.
A Perspex board, which is 2.47 m long and slightly less than 0.2 m wide, was placed
in the channel as the inclined slope, the angle of which can be adjusted in the range of
0◦6 θ 6 9◦. The channel was reinforced by a specially designed steel cage. A sketch
of the experimental set-up was shown in figure 1. The edges of the board were sealed
with rubber sponge to prevent leakage of fluid through the slits between the board
and the sidewalls of the channel. During the experiments, the less dense fluid was
fresh water and filled the channel outside of the lock region. A solution of sodium
chloride was injected into the lock as the heavy fluid and the lock was mounted on
the higher end of the inclined slope. The lock height and lock length are 8 cm and
10 cm, respectively, and removing the lock gate sets the heavy fluid into motion.
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An electric light sheet and a light-diffusing screen were placed against the back
wall. A Jai CVM 4+CL CCD camera (1390× 1024 pixel resolution at 24 frames per
second) was positioned 6 m away from, and normal to, the front wall. The camera
was rotated with the inclined board such that the x and y axes in the images align with
the downslope and wall-normal directions. The heavy fluid in the lock was dyed with
a trace of potassium permanganate to provide flow visualization. The dye absorbed
the light along the path from the back to the front wall of the channel, and the light
intensity was measured and calibrated to give width-averaged concentration via the
software DigiFlow (Dalziel 2012). Since potassium permanganate diffuses at about the
same rate as sodium chloride, the dye concentration, c, can be used as a surrogate
for the sodium chloride concentration and, therefore, the fluid density may be inferred
(Shin et al. 2004; Marino et al. 2005; Nogueira et al. 2013a,b), i.e. ρ=ρ0+ c(ρ1−ρ0).
Images of the gravity current were recorded directly onto a PC with a time resolution
of 0.5 s using the same software.

Densities of the fresh water and heavy fluid injected into the lock were measured
using a density meter with an accuracy of 10−4 g cm−3. The reduced gravity is
g′0 = g(ρ1 − ρ0)/ρ0, where ρ0 and ρ1 are the densities of the light and heavy fluids,
respectively. The kinematic viscosity of the sodium chloride solution is taken as
ν = 1.1 × 10−2 cm2 s−1. While ρ0 ≈ 0.9979 g cm−3 was maintained fixed in the
experiments, three different ρ1 values were chosen, i.e. ρ1 ≈ 1.0478, 1.0978 and
1.1678 g cm−3. Therefore, the reduced gravity here approximately ranges from 49.05
to 167.02 cm s−2. Density differences in the experiments were chosen such that
the produced gravity currents had Reynolds numbers in excess of 1000, above
which viscous effects have been thought to be unimportant (Simpson 1997). In all
experiments, the lock was submerged beneath the water surface by at least 10 cm
to reduce the influence from the free surface. From viewing the gravity current
images, it is somewhat difficult to determine the rearward boundary of the head,
since shedding of mixed fluid in the form of large, dyed vortices took place and the
demarcation was hard to see. It is thus necessary to view the video in real time and
make a subjective judgement of the length of the gravity current head, L.

With the width-averaged concentration and the length of the head, the amount of
heavy fluid in the head region can be calculated according to

Ah

A0
= 1

A0

∫ xf

xf−L

∫ ∞
0

c(x, y) dy dx, (3.1)

where Ah/A0 represents the ratio of the amount of heavy fluid in the head region
to the total released heavy fluid, x and y are the coordinates in the streamwise and
wall-normal directions, respectively. The length of the head, L, in (3.1) is a variable
distance between the front location and the end of the head, where the end of the head
has to be determined by viewing the video, as done in previous studies, and discussed
above.

4. Results
In what follows the experimental results for gravity currents produced from

a buoyancy source of h0/l0 = 8 cm/10 cm on slopes θ = 9◦, 6◦, 2◦ and 0◦ are
presented in turn. On each slope, three different density ratios were chosen, i.e.
γ = ρ0/ρ1 ≈ 0.95, 0.91 and 0.85, or equivalently in terms of the relative density
differences, i.e. ε = (ρ1 − ρ0)/ρ0 ≈ 0.05, 0.10 and 0.17. Other operational parameters
and dependent variables are listed in tables 1 and 2. At least five experiments were



Non-Boussinesq gravity currents down slopes 665

Case θ γ ; ε g′0 tmax xf max uf max Ah,max/A0

(deg.) (cm s−2) (s) (cm) (cm s−1)

9I 9 ≈ 0.85; ≈ 0.17 166.97+0.07
−0.03 3.7+0.3

−0.2 76.08+11.20
−5.92 25.28+0.27

−0.27 0.63+0.03
−0.02

9II 9 ≈ 0.91; ≈ 0.10 97.99+0.31
−0.26 4.3+0.2

−0.3 71.42+4.96
−5.32 19.10+0.21

−0.22 0.57+0.05
−0.09

9III 9 ≈ 0.95; ≈ 0.05 49.15+0.01
−0.01 5.7+0.8

−1.7 65.40+9.69
−17.38 13.10+0.28

−0.27 0.68+0.01
−0.01

6I 6 ≈ 0.85; ≈ 0.17 166.81+0.09
−0.09 3.7+0.3

−0.2 71.18+8.76
−7.54 23.44+0.21

−0.16 0.56+0.04
−0.07

6II 6 ≈ 0.91; ≈ 0.10 98.14+0.35
−0.22 4.0+0.5

−1.0 64.68+5.38
−10.15 18.36+0.19

−0.26 0.59+0.04
−0.07

6III 6 ≈ 0.95; ≈ 0.05 49.09+0.06
−0.13 5.3+0.7

−0.8 59.02+9.66
−12.69 13.14+0.41

−0.27 0.67+0.02
−0.03

2I 2 ≈ 0.85; ≈ 0.17 167.01+0.01
−0.01 2.5+0.0

−0.0 44.84+5.42
−4.58 21.38+0.26

−0.31 0.54+0.04
−0.04

2II 2 ≈ 0.91; ≈ 0.10 98.02+0.37
−0.28 2.8+1.2

−0.8 39.33+14.63
−10.14 16.36+0.16

−0.14 0.52+0.03
−0.03

2III 2 ≈ 0.95; ≈ 0.05 49.05+0.10
−0.10 4.2+0.3

−0.2 41.65+3.96
−2.89 11.49+0.19

−0.17 0.54+0.03
−0.02

0I 0 ≈ 0.85; ≈ 0.17 167.41+0.14
−0.07 2.5+0.0

−0.0 40.99+1.32
−0.78 19.76+0.18

−0.20 —

0II 0 ≈ 0.91; ≈ 0.10 98.75+0.17
−0.33 3.8+1.7

−0.3 49.56+5.65
−8.81 15.16+0.43

−0.29 —

0III 0 ≈ 0.95; ≈ 0.05 49.35+0.10
−0.10 4.7+0.3

−1.7 44.51+3.87
−2.18 11.17+0.24

−0.25 —

TABLE 1. Table showing operational parameters, including the slope angle θ , density
ratio γ , relative density difference ε = (1 − γ )/γ , reduced gravity g′0 = εg, the time,
tmax, and front location, xf max, at which the gravity current reaches its maximum front
velocity, uf max. The maximum values of the ratio of the buoyancy in the head to the total
released buoyancy are listed in Ah,max/A0. Each value is the average of five experiments.
The lock geometry, i.e. h0/l0 = 8 cm/10 cm, is maintained fixed for all experiments. The
error estimates are to add and subtract the maximum and minimum values and are not the
r.m.s. estimates.

Case k α0 x0/A0
1/2 tI0g′0

1/2
/A0

1/4 tV0g′0
1/2
/A0

1/4

9I 0.23+0.02
−0.03 0.0183+0.0013

−0.0007 37.26+1.03
−1.55 31.83+0.93

−1.71 21.09+2.22
−1.90

9II 0.25+0.03
−0.02 0.0231+0.0024

−0.0014 30.15+0.82
−0.51 25.31+0.35

−0.43 16.56+1.84
−3.22

9III 0.26+0.04
−0.04 0.0264+0.0008

−0.0008 22.53+1.09
−0.76 18.59+1.24

−1.04 7.90+0.57
−0.50

6I 0.27+0.03
−0.02 0.0097+0.0002

−0.0002 69.99+2.34
−1.86 71.41+1.97

−2.68 56.79+4.13
−4.78

6II 0.24+0.05
−0.04 0.0176+0.0009

−0.0005 38.82+1.00
−0.72 36.80+0.83

−0.60 22.31+3.68
−2.45

6III 0.24+0.03
−0.04 0.0213+0.0004

−0.0005 31.39+1.41
−0.76 28.03+1.46

−1.32 16.71+0.81
−0.72

2I 0.26+0.02
−0.02 0.0057+0.0008

−0.0008 100.96+1.23
−1.45 129.81+2.92

−1.94 128.75+3.41
−5.43

2II 0.25+0.04
−0.06 0.0110+0.0011

−0.0012 53.25+2.40
−2.87 67.06+3.95

−5.00 60.00+4.60
−5.59

2III 0.22+0.04
−0.04 0.0130+0.0003

−0.0003 45.79+0.81
−1.29 57.52+3.65

−3.89 53.80+2.00
−3.98

TABLE 2. Table showing dependent variables. Each value is the average of five
experiments. The lock geometry, i.e. h0/l0 = 8 cm/10 cm, is maintained fixed for all
experiments. The error estimates are to add and subtract the maximum and minimum
values and are not the r.m.s. estimates.

performed in each case to make qualitative and quantitative observations. The height
and length of the lock, i.e. h0 and l0, remained fixed for all reported experiments.
Reynolds numbers in the experiments, i.e. Re=√εgh0h0/ν, range from Re≈ 14 000
for ε ≈ 0.05 (γ ≈ 0.95) to Re≈ 26 000 for ε ≈ 0.17 (γ ≈ 0.85).
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FIGURE 2. Experiment 01/29/13-5: fluid concentration images for the gravity current from
a buoyancy source of h0/l0 = 8 cm/10 cm and g′0 = 167.10 cm s−2 propagating on a 9◦
slope. Distances in the downslope and wall-normal directions are in units of centimetres.
Time instants are chosen at t= 0, 1.0, 1.5, 3.0 and 3.5 s in the acceleration phase. In this
case the maximum front velocity uf ≈ 25.28 cm s−1 and occurs at t≈ 3.5 s.

4.1. Gravity currents on θ = 9◦ slope
4.1.1. Qualitative features

The heavy fluid was set into motion when the lock gate was withdrawn. The gravity
current produced went from a quiescent initial condition, through an acceleration
phase followed by a deceleration phase. Figure 2 presents fluid concentration images
for the gravity current with ε ≈ 0.17 on a 9◦ slope in the acceleration phase. The
initial heavy fluid in the lock of dimensions h0/l0 = 8 cm/10 cm collapsed with a
small head forming at t = 1.0 s. As time progressed, the heavy fluid in the lock
region was injected into the head, as shown in figure 2 at t = 1.5 and 3.0 s. As the
gravity current propagated further in the acceleration phase, the head approximately
took a semi-elliptical shape with a roller consistently forming behind the head, as
shown in figure 2 at t= 3.5 s.

Table 1 lists the operational parameters along with the time and front location at
which the gravity currents reached their maximum front velocity. We note the fact
that given the same slope angle, as the relative density difference increases from
ε ≈ 0.05 to 0.17, the maximum front velocity increases as expected, while the time
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FIGURE 3. Experiment 01/29/13-5: fluid concentration images for the gravity current on a
9◦ slope. Distances in the downslope and wall-normal directions are in units of centimetres.
Time instants are chosen at t= 4.5, 5.5, 7.5 and 9.5 s in the deceleration phase.

required for the acceleration phase decreases and the distance for the acceleration
phase increases.

Figure 3 presents concentration images for the gravity current with ε ≈ 0.17 on a
9◦ slope in the deceleration phase. At this stage of motion, the head maintained a
semi-elliptical shape with Kelvin–Helmholtz instabilities between the moving heavy
fluid and light ambient fluid. In the deceleration phase, mixed fluid was consistently
left behind in the wake region, as shown in figure 3 at t= 4.5, 5.5 and 7.5 s. A new
flow pattern is identified here for the gravity current with ε ≈ 0.17 on a 9◦ slope, as
shown in figure 3 at t= 9.5 s. The interface between the moving heavy fluid and light
ambient fluid, namely the edge of the gravity current head, undergoes a large-scale
rolling-up with ambient fluid towards the end of run in the deceleration phase. In
fact, this new flow pattern was observed to occur for all the relative density differences
considered in this study, i.e. ε ≈ 0.05, 0.10 and 0.17, for the gravity currents on a 9◦

slope. Since the qualitative observations for gravity currents with ε ≈ 0.05 and 0.10
on θ = 9◦ are similar to those with ε ≈ 0.17 as reported, other concentration images
for ε≈ 0.05 and 0.10 are omitted for brevity, and only the relationships between (xf +
x0)

3/2 and t and between (xf + x0)
2 and t are presented.
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FIGURE 4. Experiment 01/29/13-5: front velocity history for the gravity current produced
from a buoyancy source of h0/l0 = 8 cm/10 cm and g′0 = 167.10 cm s−2, i.e. ε ≈ 0.17,
on a 9◦ slope. In this case the maximum front velocity uf ≈ 25.28 cm s−1 and occurs at
t≈ 3.5 s.

4.1.2. Quantitative results
The fluid concentration images, e.g. figures 2 and 3, can be used to identify the

front location as the foremost part of the gravity current. The front velocity can then
be calculated as the time derivative of the front location history. Figure 4 shows the
front velocity history for experiment 01/29/13-5. From the front velocity history, the
acceleration and deceleration phases are clearly seen, with the maximum front velocity,
uf max ≈ 25.28 cm s−1 reached at t ≈ 3.5 s. From the relationship between (xf + x0)

3/2

and t in figure 5(a) for ε ≈ 0.17, it is observed that the power-law (2.10) applies in
the early deceleration phase. Here, the departure of front location data from (2.10)
towards the end of the deceleration phase is not a coincidence and was observed for
all the relative density differences considered and for all the runs on θ = 9◦. From the
relationship between (xf + x0)

2 and t in figure 5(b), it is observed that the power-law
(2.13) applies towards the end of the deceleration phase, which confirms the notion
that viscous effects could become more important in the late deceleration phase.

Figure 6 shows the relationships between (xf + x0)
3/2 and t and between (xf + x0)

2

and t for experiment 01/13/13-2 with ε ≈ 0.05 on θ = 9◦. The departure of front
location data from the power-law (2.10) and approach to the power-law (2.13) in
the late deceleration phase are again observed for ε ≈ 0.05. On comparing the flow
patterns with the relationship between (xf + x0)

3/2 and t, we consistently found that
the departure from power-law (2.10) is associated with the large-scale rolling-up of the
moving heavy fluid and light ambient fluid. As an example, the flow pattern shown in
figure 3 at t= 9.5 s occurs when the front location data deviate from the power-law
(2.10), i.e. t& 8.0 s in figure 5(a). These observations point to the fact that the front
velocity may decay more rapidly when the front location data deviate from (2.10). The
power-law (2.10) is obviously not applicable in the whole range of the deceleration
phase. When the front location data deviate from (2.10), the head Reynolds numbers,
ReH = uf H/ν, were estimated in the range 2000–3000 for all the cases on θ = 9◦.

Where the power-law (2.10) applies, the early deceleration phase is best fitted
by straight lines as shown in figure 5(a) and figure 6(a). The slope of the fitting
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FIGURE 5. Experiment 01/29/13-5: relationship between (a) (xf + x0)
3/2 and t and (b)

(xf + x0)
2 and t for the gravity current produced from a buoyancy source of h0/l0 =

8 cm/10 cm and g′0 = 167.10 cm s−2, i.e. ε ≈ 0.17, on a 9◦ slope. The solid line in
(a) represents the straight line of best fit to the early deceleration phase and the fitting
equation is (xf + x0)

3/2= 737.0(t+ tI0), where x0= 319.4 cm and tI0= 7.0 s. The solid line
in (b) represents the straight line of best fit to the late deceleration phase and the fitting
equation is (xf + x0)

2= 19410.4(t+ tV0), where tV0= 4.4 s. In this case the maximum front
velocity uf ≈ 25.28 cm s−1 and occurs at t≈ 3.5 s.

lines represents K3/2
M B′0

1/2 and the empirical constant KM can be calculated. Table 3
lists the values of KM in different cases. We note that for θ = 9◦, KM increases
from 2.97 to 3.48 as the relative density difference, ε, increases from 0.05 to 0.17.
Based on our results, KM is clearly not a universal constant. In the Boussinesq
case reported by Maxworthy (2010), where 0.01 < ε < 0.05, KM was observed to
vary erratically between 2.5 and 2.9 for θ = 5.9◦ and 10.6◦. Such observations are
consistent with our expectations for KM for low relative density differences. Where
the power-law (2.13) applies, the late deceleration phase is best fitted by straight lines
as shown in figure 5(b) and figure 6(b). The slope of the fitting lines then represents
K2

VB′0
2/3A1/3

0 ν−1/3 and the empirical constant KV can be calculated, as also listed in
table 3. Our results show that for θ = 9◦, KV increases from 1.26 to 1.35 as the
relative density difference increases from 0.05 to 0.17.

With the measured KM and computed KB, the amount of heavy fluid in the head
region in the deceleration phase can be estimated theoretically via χ = (KM/KB)

3.
For example, for experiment 01/29/13-5 shown in figures 2–5, using K3/2

M B′0
1/2 =

737.0 cm3/2 s−1 and B′0 = 13368.0 cm3 s−2, KM = 3.44 is derived. With measured
parameters k ≈ 0.25 and α0 = 0.0196, KB = 5.26 is then computed via (2.11) and
therefore χ = 0.28. As listed in table 3 and shown from figure 7, it is observed
that the power-law (2.10) not only describes the front location data in the early
deceleration phase but also provides a reasonable estimate for the amount of heavy
fluid in the head region, even though the gravity current head may lose buoyancy as
it propagates. Here the theoretical estimates for χ generally tend to fall below the
maximum values of Ah/A0 from experiments. It should be noted that the estimate
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FIGURE 6. Experiment 01/13/13-2: relationship between (a) (xf + x0)
3/2 and t and (b)

(xf + x0)
2 and t for the gravity current produced from a buoyancy source of h0/l0 =

8 cm/10 cm and g′0 = 49.16 cm s−2, i.e. ε ≈ 0.05, on a 9◦ slope. The solid line in (a)
represents the straight line of best fit to the early deceleration phase and the fitting
equation is (xf + x0)

3/2 = 311.9(t + tI0), where x0 = 198.6 cm, tI0 = 7.8 s. The solid line
in (b) represents the straight line of best fit to the late deceleration phase and the fitting
equation is (xf + x0)

2= 7267.4(t+ tV0), where tV0= 3.6 s. In this case the maximum front
velocity uf ≈ 13.09 cm s−1 and occurs at t≈ 6.5 s.
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FIGURE 7. Ratio of the buoyancy in the head region to the total released buoyancy,
Ah/A0, against the front location normalized by A0

1/2, where Ah/A0 is evaluated using (3.1).
Symbols: +, experiment 01/29/13-5 for ε ≈ 0.17 on θ = 9◦; ×, experiment 01/23/13-1
for ε ≈ 0.17 on θ = 6◦; �, experiment 01/24/13-2 for ε ≈ 0.17 on θ = 2◦. Dashed line
represents χ = 0.28 which is estimated for θ = 9◦ via χ = (KM/KB)

3 using measured
parameters.

is based on the momentum principle and should be understood as a lower limit for
the ‘effective’ or ‘active’ buoyancy that plays the role of driving mechanism. In the
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FIGURE 8. Experiment 01/23/13-1: relationship between (a) (xf + x0)
3/2 and t and (b)

(xf + x0)
2 and t for the gravity current produced from a buoyancy source of h0/l0 =

8 cm/10 cm and g′0 = 166.73 cm s−2, i.e. ε ≈ 0.17, on a 6◦ slope. The solid line in
(a) represents the straight line of best fit to the early deceleration phase and the fitting
equation is (xf + x0)

3/2=888.8(t+ tI0), where x0=621.7 cm and tI0=16.7 s. The solid line
in (b) represents the straight line of best fit to the late deceleration phase and the fitting
equation is (xf + x0)

2 = 28491.8(t + tV0), where tV0 = 13.3 s. In this case the maximum
front velocity uf ≈ 23.28 cm s−1 and occurs at t≈ 3.5 s.

head region, there may be more buoyancy-containing fluid as part of it is diluted or
‘ineffective’ in driving the gravitational convection.

4.2. Gravity currents on θ = 6◦ slope
The flow patterns of gravity currents on a 6◦ slope are qualitatively similar to those
on a 9◦ slope in both the acceleration and deceleration phases. It is also observed that
towards the end of the deceleration phase, large-scale rolling-up of the moving heavy
fluid and light ambient fluid occurs on a 6◦ slope as reported previously for the 9◦
slope.

Figure 8 shows (xf + x0)
3/2 versus t and (xf + x0)

2 versus t for gravity currents on
a 6◦ slope with ε ≈ 0.17. As for θ = 9◦, the power-law (2.10) applies in the early
deceleration phase here for θ =6◦. Towards the end of the deceleration phase, the front
location data deviate from the power-law (2.10) and approach the power-law (2.13) as
the large-scale rolling-up of the two fluids occurs. When the front location data deviate
from (2.10), the head Reynolds numbers were estimated in the range 2000–3000 for
all cases with θ = 6◦.

As reported previously, it is observed that KM increases with ε, and the numerical
values of KM at θ = 6◦ are consistently greater than those at θ = 9◦. In the Boussinesq
case for θ = 5.9◦ and 10.6◦ considered by Maxworthy (2010), KM appeared to vary
erratically between 2.5 and 2.9 without strong dependence on θ . From table 3 and
figure 14, we show that as the relative density difference increases, KM assumes a
maximum value at θ ≈ 6◦. Our results also indicate that KV increases with ε and KV
reaches a maximum value at θ ≈ 6◦, as shown in figure 15.
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Case KM KB KV χ

9I 3.48+0.06
−0.04 5.48+0.15

−0.23 1.35+0.01
−0.02 0.26+0.02

−0.02

9II 3.28+0.07
−0.05 4.81+0.14

−0.26 1.29+0.02
−0.03 0.32+0.05

−0.04

9III 2.97+0.04
−0.06 4.38+0.05

−0.03 1.26+0.03
−0.04 0.31+0.02

−0.01

6I 3.96+0.07
−0.07 7.21+0.06

−0.07 1.64+0.02
−0.03 0.17+0.01

−0.01

6II 3.36+0.04
−0.03 4.90+0.15

−0.29 1.42+0.01
−0.02 0.33+0.07

−0.04

6III 3.22+0.05
−0.05 4.37+0.09

−0.12 1.38+0.03
−0.02 0.40+0.03

−0.03

2I 3.93+0.06
−0.04 7.20+0.61

−0.65 1.64+0.04
−0.03 0.17+0.04

−0.03

2II 3.10+0.02
−0.03 4.71+0.41

−0.24 1.33+0.08
−0.06 0.29+0.05

−0.06

2III 2.95+0.06
−0.03 4.18+0.06

−0.05 1.30+0.01
−0.01 0.35+0.04

−0.01

0I 1.57+0.03
−0.05 — — —

0II 1.56+0.03
−0.04 — — —

0III 1.61+0.04
−0.03 — — —

TABLE 3. Table showing experimental constants and the estimated effective buoyancy
ratio, χ , in the deceleration phase. Each value is the average of five experiments. The
lock geometry, i.e. h0/l0= 8 cm/10 cm, is maintained fixed for all experiments. The error
estimates are to add and subtract the maximum and minimum values and are not the r.m.s.
estimates.

The amount of heavy fluid in the head region can be estimated via χ = (KM/KB)
3,

as listed in table 3. We note that the theoretical estimates for χ are consistent with
Ah/A0 derived from the concentration images, as shown in figure 7, but the theoretical
estimates tend to fall below the maximum values of Ah/A0. Based on our results for
Ah/A0, approximately 60 % or more of the heavy fluid in the lock is discharged into
the head at most, as listed in table 1.

4.3. Gravity currents on θ = 2◦ slope
For gravity currents on a 2◦ slope, we first note that the maximum front velocity
occurs at a earlier time and a shorter distance from the gate than those for θ = 6◦
and 9◦. The mixing at θ = 2◦ is obviously less intense than θ = 6◦, 9◦ and the roller
behind the head no longer exists at the end of the acceleration phase, as shown in
figure 9 at t= 2.5 s.

The gravity current head on θ = 2◦ still has a ‘cloud’ shape, which appears to be
more streamlined compared with those on θ = 6◦ and 9◦ and the large-scale rolling-up
of the heavy fluid and light ambient fluid towards the end of the deceleration phase
does not exist here.

Figure 10 shows the relationships between (xf + x0)
3/2 and t and between (xf + x0)

2

and t for gravity currents on a 2◦ slope with ε ≈ 0.17. While the approach to the
power-law (2.10) is from above for θ = 6◦ and 9◦, it is from below in θ = 2◦
due to the low slope angle. As in previous cases, (2.10) applies only in the early
deceleration phase and the power-law (2.13) applies in the late deceleration phase.
The deviation from (2.10) appears when the gravity current propagates sufficiently far
into the deceleration phase with the head Reynolds numbers estimated in the range
2000–3000. What differs from the observations for θ = 6◦ and 9◦ is that the gravity
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FIGURE 9. Experiment 01/24/13-2: fluid concentration images for the gravity current from
a buoyancy source of h0/l0 = 8 cm/10 cm and g′0 = 167.01 cm s−2 propagating on a 2◦
slope. Distances in the downslope and wall-normal directions are in units of centimetres.
Time instants are chosen at t= 0, 0.5, 2.5, 5.0 and 9.0 s. In this case the maximum front
velocity uf ≈ 21.64 cm s−1 and occurs at t≈ 2.5 s.

current head maintains a streamlined shape without large-scale mixing towards the
end of the deceleration phase.

As listed in table 3 and shown in figures 14 and 15 below, both KM and KV increase
with ε and their values at θ = 2◦ become slightly lower than at θ = 6◦. The theoretical
estimates for the heavy fluid in the head, χ , show agreement with Ah/A0. Based on our
results for θ = 2◦, the maximum buoyancy in the head is approximately 50 % or more
of the heavy fluid originally contained in the lock. As listed in table 1, the maximum
values of the fraction of heavy fluid in the head, i.e. Ah,max/A0, for θ = 2◦ tend to be
slightly lower than those for θ = 6◦ and 9◦.

4.4. Gravity currents on θ = 0◦ slope
Concentration images for the gravity current on a horizontal boundary are shown in
figure 11. In the experiments for θ = 0◦, the lock was submerged beneath the surface
by approximately 40 cm, and the lock height to ambient depth ratio is below 0.2,
which is also termed partial-depth lock-exchange flow (Marino et al. 2005).

From the concentration images, the initiation process of a gravity current is similar
to those on θ = 9◦, 6◦ but the mixing with ambient fluid is not as violent. Specifically,
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FIGURE 10. Experiment 01/24/13-2: relationship between (a) (xf + x0)
3/2 and t and (b)

(xf + x0)
2 and t for the gravity current produced from a buoyancy source of h0/l0 =

8 cm/10 cm and g′0 = 167.01 cm s−2, i.e. ε ≈ 0.17, on a 2◦ slope. The solid line in
(a) represents the straight line of best fit to the early deceleration phase and the fitting
equation is (xf + x0)

3/2 = 893.4(t + tI0), where x0 = 905.5 cm, tI0 = 30.7 s. The solid line
in (b) represents the straight line of best fit to the late deceleration phase and the fitting
equation is (xf + x0)

2 = 29026.6(t + tV0), where tV0 = 30.6 s. In this case the maximum
front velocity uf ≈ 21.64 cm s−1 and occurs at t≈ 2.5 s.

a roller behind the head at the end of the acceleration phase was not present for θ =0◦,
neither was it for θ = 2◦. The head and tail currents seemed to join up in both the
acceleration and deceleration phases.

It is already known for lock-exchange flows that in the inertial phase, the front
location follows the asymptote x̃f ∼ t̃ 2/3 while in the viscous phase, x̃f ∼ t̃ 3/8 and
x̃f ∼ t̃1/5 were reported by Hoult (1972) and Huppert (1982), respectively. Here the
front location is normalized by l0 and the time is normalized by a characteristic time
scale, l0/

√
g′0h0.

As shown in figure 12, the inertial phase and a transition to the viscous phase
are both identifiable for gravity currents on θ = 0◦ with ε ≈ 0.05, 0.10 and 0.17.
The coefficient of proportionality between x̃f and t̃2/3 is KM, as indicated in (2.14).
Interestingly, the inertial phase exists for all three density differences ε ≈ 0.05, 0.10
and 0.17 when 20. t̃. 40. When t̃& 40, deviation from the inertial phase indicates
a transition to the viscous phase, as shown by the approach of the front location data
to the dash-dotted lines in figure 12(b). The head Reynolds numbers for the cases
on θ = 0◦ were in the range 1000–2000 when a transition to the viscous phase was
observed.

For gravity currents on θ = 0◦, the head height does not increase or even decreases
slowly during the motion. As such, extrapolation of head height in the upslope
direction to identify the virtual origin becomes unfeasible and the front location data
could be recast in the power-law form by stipulating x0 = 0 (Beghin et al. 1981), i.e.
that the front location is now measured from the lock gate.

Figure 13 shows xf
3/2 versus t for gravity currents on θ = 0◦ with ε ≈ 0.17(a) and

0.05(b). It is observed that (2.14) applies in the inertial phase. Deviation from (2.14)
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FIGURE 11. Experiment 02/05/13-2: fluid concentration images for the gravity current
from a buoyancy source of h0/l0= 8 cm/10 cm and g′0= 167.55 cm s−2 propagating on a
0◦ slope. Distances in the downslope and wall-normal directions are in units of centimetres.
Time instants are chosen at t= 0, 1.0, 2.5, 8.0 and 13.0 s. In this case the maximum front
velocity uf ≈ 19.55 cm s−1 and occurs at t≈ 2.5 s.

appears again in the transition to the viscous phase. It should be pointed out that when
the deviation from (2.14) occurs, the large-scale mixing identified on θ = 9◦, 6◦ is
not present on θ = 0◦. The gravity current maintains a more streamlined head in the
deceleration phase as on θ = 2◦.

Mindful that the thermal theory was specifically developed for gravity currents
down an inclined boundary, θ = 0◦ results in KB = 0 and to theoretically estimate the
parameter χ = (KM/KB)

3 seems inappropriate. However, we may still estimate KM

using (2.14) in the inertial phase.
As listed in table 3, KM varies in the range between 1.56 and 1.61 for θ = 0◦

with ε = 0.17, 0.10 and 0.05. From our results, no strong dependence of KM on ε

can be inferred on θ = 0◦. On the other hand, our results show excellent agreement
with previous reports for the Boussinesq gravity currents on a horizontal boundary.
Among others, KM = 1.6 and 1.47 have been reported by Hoult (1972) and Huppert
& Simpson (1980), respectively, while more recently, Marino et al. (2005) suggested
1.4.KM . 1.8 for partial-depth lock-exchange flows.
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FIGURE 12. The front location, x̃f , versus time, t̃, on a log–log scale for experiment
02/05/13-2 with g′0 = 167.55 cm s−2, i.e. ε ≈ 0.17 (�), experiment 02/05/13-3 with g′0 =
98.92 cm s−2, i.e. ε ≈ 0.10 (×), and experiment 02/04/13-2 with g′0 = 49.45 cm s−2, i.e.
ε ≈ 0.05 (+) on θ = 0◦. In all cases, the gravity currents are produced from a buoyancy
source of h0/l0 = 8 cm/10 cm. The front location is non-dimensionalized by l0 and time
is non-dimensionalized by l0/

√
g′0h0. The dashed lines in (a) represent the asymptotes for

the inertial phase: x̃f ∼ t̃2/3. (b) Close-up view for 30 6 t̃ 6 70, where the dashed line
indicates x̃f ∼ t̃2/3, and the dashed-dotted lines represent the asymptotes for the viscous
phase, i.e. x̃f ∼ t̃3/8 by Hoult (1972) and x̃f ∼ t̃1/5 by Huppert (1982).

5. Conclusions
Gravity currents produced from an instantaneous buoyancy source propagating on

an inclined boundary as the relative density difference varies in the range of 0.056
ε 6 0.17 and the slope angle varies in the range of 0◦ 6 θ 6 9◦ are presented.

First, we consider the applicability of power-law (2.10) for the front location history
in the deceleration phase. This relationship was reported by Maxworthy (2010) to be
robust in the whole range of the deceleration phase for the Boussinesq case. As we
found by performing the experiments on different slopes and with different relative
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FIGURE 13. Relationships between x3/2
f and t for (a) experiment 02/05/13-2 with g′0 =

167.55 cm s−2, i.e. ε ≈ 0.17, and (b) experiment 02/04/13-2 with g′0 = 49.45 cm s−2, i.e.
ε≈0.05, on a horizontal boundary. The front location is measured from the gate. The solid
lines represent the straight lines of best fit to the inertial phase. The fitting equation for
(a) is x3/2

f = 232.8(t− tI0), where tI0 = 1.5 s and in this case the maximum front velocity
uf ≈19.55 cm s−1 and occurs at t≈2.5 s. The fitting equation for (b) is x3/2

f =126.3(t− tI0),
where tI0= 2.4 s and in this case the maximum front velocity uf ≈ 10.92 cm s−1 and occurs
at t≈ 4.5 s.

KM

1
0 2 4 6 8 10 12

2
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FIGURE 14. Experimental constant KM versus slope angle θ at different relative density
differences: �, ε ≈ 0.17; �, ε ≈ 0.10; ∗, ε ≈ 0.05; +, experimental data for ε ≈ 0.02
reported in Dai (2013);×, experimental data for 0.01 < ε < 0.05 reported in Maxworthy
(2010).

density differences, the power-law (2.10) applies only in the early deceleration phase
for both the Boussinesq and non-Boussinesq cases. In the late deceleration phase,
viscous effects could become more important and the front location data deviate from
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FIGURE 15. Experimental constant KV versus slope angle θ at different relative density
differences: �, ε≈0.17; �, ε≈0.10; ∗, ε≈0.05; +, experimental data for ε≈0.02 derived
from Dai (2013).

(2.10) and approach the power-law (2.13). It is interesting to note that for gravity
currents on θ = 6◦, 9◦, large-scale mixing between the heavy and light ambient fluids
occurs in the late deceleration phase; for gravity currents on θ = 0◦, 2◦, the head
maintains a more streamlined shape without violent mixing when the deviation from
the power-law (2.10) is observed. Our findings indicate that depending on the slope
angle, the flow patterns in the late deceleration phase of a gravity current may be
qualitatively different.

Secondly, in the Boussinesq case considered by Maxworthy (2010), KM was
reported to vary erratically in the range approximately between 2.5 and 2.9 when
0.01 < ε < 0.05 at θ = 5.9◦ and 10.6◦ without strong dependence on the slope
angle. Our results do not support KM to be a universal constant. We showed that for
sufficiently large slope angle, θ & 2◦, KM increases as the relative density difference
increases and KM assumes its maximum value at θ ≈ 6◦. For sufficiently low relative
density differences, namely the Boussinesq case, the values of KM reported by
Maxworthy (2010) are in accordance with our expectations. In addition, when the
front location data deviate from (2.10) and approach (2.13), our results also indicate
that KV increases with the relative density difference and assumes a maximum value
at θ ≈ 6◦.

Using the power-law (2.10), it is possible to estimate the fraction of heavy fluid
in the lock that is contained in the head, via χ = (KM/KB)

3. We showed that (2.10)
applies in the early deceleration phase for both the Boussinesq and non-Boussinesq
cases. The theoretical estimates are in good agreement with the experimental results,
although the theoretical estimates tend to be lower than the maximum values of
the fraction derived from experimental data. We need to point out that (2.10) is
essentially based on the momentum principle and the theoretical estimate for χ

should be understood as a lower bound for the ‘effective’ or ‘active’ buoyancy in
driving the gravitational convection.

For gravity currents on sufficiently low slope angles, i.e. θ ≈ 0◦, it is well
understood that the inertial phase is followed by the viscous phase where viscous
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effects become more important. It is then not irrational to infer that viscous effects
could be unexpectedly more important when the front location data deviate from
the power-law (2.10). Indeed, our findings support the notion that viscous effects
could become more important in the late deceleration phase, which appears to be
an exception to the general belief that viscous effects are unimportant at Reynolds
numbers above 1000.

One of the limitations in this study is the range of slope angle investigated due to
the limited depth of our channel, as has been the case in many previously published
works. The aim of investigating the influence of density difference on the propagation
of gravity currents is achieved in a somewhat limited range of density ratio, i.e. 0.856
γ 6 0.95, or equivalently in terms of the relative density difference, i.e. 0.05 6 ε 6
0.17, due to the solubility of sodium chloride in water at room temperature. For higher
density differences, it has been documented that the density ratio can reach as low
as 0.61 (Lowe et al. 2005) with the help of sodium iodide, which is an expensive
material typically used for radiation detection and other medical purposes. It is hoped
that further studies on gravity currents on higher slope angles and with even higher
relative density differences will be conducted when the apparatus and working fluids
are available.
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