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Experiments for gravity currents generated from an instantaneous buoyancy source
propagating on an inclined boundary in the slope angle range 0◦ 6 θ 6 9◦ are
reported. While the flow patterns for gravity currents on θ = 6◦, 9◦ are qualitatively
different from those on θ = 0◦, similarities are observed in the acceleration phase
for the flow patterns between θ = 2◦ and θ = 6◦, 9◦ and in the deceleration phase,
the patterns for gravity currents on θ = 2◦ are found similar to those on θ = 0◦.
Previously, it was known that the front location history in the deceleration phase
obeys a power-relationship, which is essentially an asymptotic form of the solution
to thermal theory. We showed that this power-relationship applies only in the early
stage of the deceleration phase, and when gravity currents propagate into the later
stage of the deceleration phase, viscous effects become more important and the front
location data deviate from this relationship. When the power-relationship applies, it
is found that at θ = 9◦, uf (xf + x0)

1/2/B′0
1/2 ≈ 2.88+0.19

−0.17, which changes to 2.86+0.13
−0.13

at θ = 6◦, 2.54+0.08
−0.07 at θ = 2◦, and 1.51+0.07

−0.07 on a horizontal boundary, where uf is
the front velocity, (xf + x0) is the front location measured from the virtual origin,
and B′0 is the released buoyancy. Our results indicate that in the slope angle range
6◦ 6 θ 6 9◦, the asymptotic relationship between the front velocity and front location
in the deceleration phase is not sensitive to the variation of slope angle. In the late
deceleration phase when the front location data deviate from the power-relationship,
we found that the flow patterns for θ = 6◦, 9◦ are dramatically different from those
for θ = 0◦, 2◦. For high slope angles, i.e. θ = 6◦, 9◦, the edge of the gravity current
head experiences a large upheaval and enrolment by ambient fluid towards the end
of the deceleration phase, while for low slope angles, i.e. θ = 0◦, 2◦, the gravity
current head maintains a more streamlined shape without violent mixing with ambient
fluid throughout the course of gravity current propagation. Our findings indicate two
plausible routes to the finale of a gravity current event.
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1. Introduction
Gravity currents, also known as buoyancy or density currents, are flows driven

by a density difference mainly in the horizontal direction. The agents causing the
density difference include temperature differentials, dissolved and suspended materials,
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e.g. salt and sediments. Gravity currents produced by an instantaneous release of
finite buoyancy source on a horizontal boundary, i.e. lock-exchange flows, have drawn
much attention (see e.g. Shin, Dalziel & Linden 2004; Marino, Thomas & Linden
2005; Cantero et al. 2007; La Rocca et al. 2008, 2012a,b; Adduce, Sciortino &
Proietti 2012). Gravity currents propagating down an inclined boundary have been
considered less but are also commonly encountered in geophysical environments
and engineering applications, such as powder-snow avalanches (Hopfinger 1983) and
spillage of hazardous materials (Fannelop 1994). A comprehensive and informative
review of the diversity of gravity currents is given in the monograph by Simpson
(1997).

Categorized by the type of buoyancy source, gravity currents down an inclined
boundary can be continuously supplied with buoyancy inflow (Britter & Linden 1980;
Baines 2001, 2005) or they can be a surge-type flow generated by an instantaneous
release of finite buoyancy (Beghin, Hopfinger & Britter 1981; Monaghan et al. 1999).
The focus in this study is on the latter type of problem, i.e. gravity currents produced
from a finite volume of heavy fluid down an inclined boundary, and to revisit the
problem set forth in Beghin et al. (1981). In summary, their experiments show that,
after the heavy fluid is released on a slope, the gravity currents first go through
an acceleration phase followed by a deceleration phase. The thermal theory was
developed therein to describe the front velocity history and has formed the basis for
many subsequent studies, e.g. gravity currents with sediment resuspension from an
erodable bed (Rastello & Hopfinger 2004) and with particle settling (Dade, Lister
& Huppert 1994). Related to the present work, Webber, Jones & Martin (1993),
Tickle (1996), and Ross, Linden & Dalziel (2002) used the shallow water model to
consider a wedge-shaped cloud on a uniform slope. Birman et al. (2007) performed a
two-dimensional numerical study of the full-depth lock-exchange problem on a slope,
and Seon et al. (2007) performed gravity current experiments in tilted tubes, but
the geometric configurations make their problems qualitatively different from that in
Beghin et al. (1981).

Recently, Maxworthy & Nokes (2007) and Maxworthy (2010) conducted a series
of experiments following Beghin et al. (1981), and reported their observations as
follows. In the acceleration phase, the released heavy fluid continuously feeds the
gravity current head with buoyancy from the following tail current like a line plume,
and such flow patterns occur especially when the lock length is significantly greater
than the lock height. In the deceleration phase, the gravity current head may lose
buoyancy-containing fluid; nevertheless, in the whole range of the deceleration phase
the front location data were reported to robustly follow the power-relationship, which
is essentially an asymptotic form of the solution to thermal theory.

For the reader’s convenience, the configuration of the problem set forth in Beghin
et al. (1981) is sketched in figure 1 and the thermal theory with its variant forms
is summarized as follows. Here the density of ambient fluid is taken as ρ0 and the
density of heavy fluid in the lock region is ρ1, where we consider small density
differences only, i.e. ε = (ρ1 − ρ0)/ρ0� 1. The cross-sectional area of the lock region,
which represents the total amount of released heavy fluid, is A0 = h0l0, where h0 and l0

are the lock height and lock length, respectively. After an instantaneous removal of the
lock gate, the gravity current head develops a semi-elliptical shape, otherwise known
as the ‘thermal cloud’, with the head height-to-head length ratio k = H/L.
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FIGURE 1. Side views of the channel used in the experiments for gravity currents produced
from an instantaneous buoyancy source propagating on a slope which makes an angle θ with
the horizontal. The ambient is filled with fluid of density ρ0, and heavy fluid of density ρ1 is
confined in the lock region. H and L are the height and length of the gravity current head; x0 is
the distance between the virtual origin and the actual origin, i.e. the lock gate; xf is measured
from the gate to the gravity current front. In the initial state, the cross-sectional area of heavy
fluid is A0 = h0l0 and the initial velocity is U0, where h0 = 8 cm and l0 = 10 cm are the lock
height and length, respectively.

The linear momentum equation with bottom friction term takes the form

d(ρ + kvρ0)S1HLU

dt
= B sin θ − CfρU2L, (1.1)

where ρ is the density of mixed fluid in the head, U is the mass-centre velocity of the
head, t is the time, kv = 2k is the added mass coefficient (Batchelor 1967), S1 = π/4 is
a shape factor by which the cross-sectional area of the semi-elliptical head is defined
as S1HL, θ is the slope angle, Cf is the friction coefficient on the bottom, which
is approximately Cf ≈ 10−2 for a rough boundary and 2 × 10−3 for a saline cloud
(Rastello & Hopfinger 2004), and B = g(ρ − ρ0)S1HL denotes the buoyancy that is
contained in the head. Here we may assume that the gravity current head contains only
a fraction χ of heavy fluid in the lock, i.e.

B= χρ0εgA0, (1.2)

where χ = 1 was assumed in Beghin et al. (1981) and χ < 1 was reported in
Maxworthy (2010). With turbulent entrainment assumptions (Ellison & Turner 1959),
the mass conservation takes the form

d
dt
(S1HL)= S2(HL)1/2αU, (1.3)

where S2 = (π/23/2)(4k2 + 1)1/2/k1/2 is another shape factor by which the
circumference of the semi-elliptical head is defined as S2(HL)1/2 and α is the
entrainment coefficient.
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With Boussinesq approximations, the front velocity of gravity current, uf , follows
the relation

u2
f = u2

f 0

(
xf 0

xf + x0

)4+2Cf /(1+2k)α0S1

+ 2
3+ 2Cf /(1+ 2k)α0S1

×C
(

1+ α0

2k

)3 1
xf + x0

[
1−

(
xf 0

xf + x0

)3+2Cf /(1+2k)α0S1
]
, (1.4)

where uf 0 is the initial front velocity, xf 0 is the distance from the ‘virtual origin’ to
the initial front location, α0 is the angle of growth, C = 4kB sin θ/π(1 + 2k)α2

0ρ0, and
x0 is the distance from the ‘virtual origin’ to the lock gate. The reader is referred to
appendix A for more details on the derivation.

If the gravity current starts with a quiescent initial condition, then the solution
(1.4) can be further simplified when the gravity current is sufficiently far into the
deceleration phase, i.e. when (xf + x0)/xf 0� 1,

uf =
[
2/
(
3+ 2Cf /(1+ 2k)α0S1

)]1/2
C1/2(1+ α0/2k)3/2(xf + x0)

−1/2. (1.5)

Upon integration, (1.5) can be rewritten in the following form with an integration
constant t0:

(xf + x0)
3/2 = K3/2

M B′0
1/2
(t + t0), (1.6)

where KM = KBχ
1/3 and B′0 = εgA0. Note that KB follows the form

KB =
(

9
6+ 4Cf /(1+ 2k)α0S1

)1/3( 4
π

)1/3

(1+ α0/2k)
[
k sin θ/α2

0(1+ 2k)
]1/3

. (1.7)

Using the power-relationship (1.6), the front velocity in the deceleration phase follows

uf (xf + x0)
1/2

B′0
1/2 = 2

3
KM

3/2, (1.8)

which is also the form for the front velocity in the deceleration phase given by Beghin
et al. (1981), who reported that KM varies approximately in the range between 2.35
and 2.60 at θ = 15◦ and reduces uniformly with increasing θ to a value between 1.56
and 1.87 at θ ≈ 90◦.

It is worth noting that for gravity currents on a horizontal boundary, i.e. lock-
exchange flows, the ‘virtual origin’ is taken at the lock gate and (1.8) reduces to

uf = 2
3 KM

3/2B′0
1/2xf

−1/2, (1.9)

which is equivalent to the asymptotic behaviour of the front velocity in the inertial
phase. Among other reports, KM = 1.6 and 1.47 have been proposed by Hoult (1972)
and Huppert & Simpson (1980), respectively, whereas Marino et al. (2005) suggest
a range of 1.3–1.6 for full-depth releases and 1.4–1.8 for partial-depth releases. It is
well known that the inertial phase is then followed by the viscous phase, in which the
front velocity decays more rapidly than that in the inertial phase, i.e. uf ∼ t−1/3. For
example, Hoult (1972) derived uf ∼ t−5/8 considering a balance between the viscous
force from the interface and the buoyancy; the analysis was later revised by Huppert
(1982), who accounted for the viscous effect over a rigid horizontal surface and
reported that uf ∼ t−4/5.
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In this study, we re-investigated the propagation of planar gravity currents on
inclined boundaries produced from an instantaneous buoyancy source. The primary
objective is to observe the flow patterns as the gravity currents propagate down slopes
and to identify how these patterns change with slope angles. With the experimental
data, we may further validate the power-relationship for the front location histories
in the deceleration phase and offer explanations for any discrepancy between the
power-relationship and the front location data. Knowledge gained from this study will
help shed light on the evolution of gravity currents on a slope in the deceleration
phase and indicate plausible routes to the finale of a gravity current event.

2. Experiments
The channel used in the experiments was manufactured with a rectangular cross-

section 0.2 m wide, 0.60 m deep and a length of 2.5 m with transparent Perspex
sidewalls. A Perspex board, which is 2.47 m long and slightly less than 0.2 m wide,
was placed in the channel as the inclined bottom slope, of which the angle can be
adjusted in the range 0◦ 6 θ 6 9◦. The channel was reinforced by a specially designed
steel cage. A sketch of the experimental set-up is shown in figure 1. The edges of
the board were sealed with rubber sponge to prevent any leakage of fluid through the
slits between the board and the sidewalls of the channel. During the experiments, the
less dense fluid was fresh water and filled in the channel outside the lock region. The
heavy fluid, a solution of sodium chloride, was injected into the lock mounted on the
higher end of the inclined slope.

The lock was constructed with a height of 8 cm and a length of 10 cm and a gate
which initially enclosed the heavy fluid in the lock. To allow injection of heavy fluid
and escape of trapped air, two holes were drilled and tapped on the back of the lock.
Removing the lock gate sets the heavy fluid into motion.

An electric light sheet and a light-diffusing screen were placed against the back
wall. A Jai CVM 4 + CL CCD camera (1390 × 1024 pixel resolution at 24 frames
per second) was positioned 6 m away from, and normal to, the front wall. The
camera was also rotated at the same angle as the inclined board such that the x and
y axes in the images align with the downslope and wall-normal directions. The heavy
fluid in the lock was dyed with a trace of potassium permanganate to provide flow
visualization. The dye absorbed the light along the path from the back to the front
wall of the channel, and the attenuation of the light passing through the channel was
measured and calibrated via the software DigiFlow (Dalziel 2012). Since potassium
permanganate diffuses at approximately the same rate as sodium chloride, the dye
concentration, c, can be used as a surrogate for the sodium chloride concentration
and, therefore, the fluid density may be inferred (Shin et al. 2004; Marino et al.
2005; Nogueira et al. 2013), i.e. ρ = ρ0 + c(ρ1 − ρ0). Images of the gravity current
were filmed at 24 frames per second and recorded directly onto a PC using the same
software.

Densities were measured using a density meter with an accuracy of 10−4 g cm−3.
The kinematic viscosity of the sodium chloride solution is taken as ν =
1.1 × 10−2 cm2 s−1. Densities of the heavy and light ambient fluids were around
ρ1 ≈ 1.0150 g cm−3 and ρ0 ≈ 0.9975 g cm−3, respectively, and the reduced gravity
g′0 = g(ρ1 − ρ0)/ρ0 was approximately g′0 ≈ 17.16 cm s−2. Density differences were
chosen such that the gravity currents had Reynolds numbers based on the observed
propagation speed and current thickness, in excess of 1000, above which viscous
effects were previously thought to be unimportant (Simpson 1997). In all experiments,
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Angle g′0 (cm s−2) tmax (s) xf max (cm) uf max (cm s−1)

θ = 9◦ 17.11+0.19
−0.19 6.1+0.4

−1.1 46.12+3.67
−10.07 8.83+0.53

−0.44

θ = 6◦ 17.09+0.12
−0.08 6.6+1.9

−0.6 46.85+15.49
−5.93 8.21+0.33

−0.24

θ = 2◦ 17.03+0.08
−0.12 7.0+2.0

−1.5 45.12+13.07
−11.82 7.51+0.16

−0.17

θ = 0◦ 17.23+0.17
−0.21 5.5+1.5

−1.0 35.11+9.05
−6.19 7.63+0.59

−0.45

TABLE 1. Table showing operational parameter, reduced gravity g′0 = εg, and the time,
tmax , and front location, xf max , at which the gravity current reaches its maximum front
velocity, uf max . Each value is the average of five experiments. The lock geometry, i.e.
h0/l0 = 8 cm/10 cm, is maintained fixed for all experiments. The error estimates are to add
and subtract the maximum and minimum values and are not the r.m.s. estimates.

the lock was submerged beneath the water surface by at least 10 cm to reduce the
influence due to the free surface. From viewing the gravity current images, it is
somewhat difficult to determine the rearward boundary of the head, since shedding of
mixed fluid in the form of large, dyed vortices took place and the demarcation was
hard to see. As done in previous studies, it is required to view the video in real time
and make a subjective judgement of the length of the gravity current head.

3. Results
In what follows the experimental results for gravity currents produced from a

buoyancy source of h0/l0 = 8 cm/10 cm on θ = 9◦, 6◦, 2◦, 0◦ are presented in turn.
Other operational parameters are listed in table 1. On each slope angle, at least
five experiments were performed repeatedly to make qualitative and quantitative
observations. The height and length of the lock, i.e. h0 and l0, remained fixed for all
reported experiments. The Reynolds number in the experiments, i.e. Re = √εgh0h0/ν

was approximately Re≈ 8500.

3.1. Gravity currents on a θ = 9◦ slope
3.1.1. Qualitative features

After removal of the lock gate, the heavy fluid was set into motion. Because the
heavy fluid is released with a quiescent initial condition, the gravity current produced
goes through an acceleration phase followed by a deceleration phase. Figure 2 presents
the fluid concentration images for the gravity current on a 9◦ slope in the acceleration
phase. The initial heavy fluid in the lock of dimensions h0/l0 = 8 cm/10 cm collapses
with a small head forming at t = 1.5 s. As the collapse of heavy fluid continues, the
height of heavy fluid in the lock region decreases and more heavy fluid is pushed
into the head, as shown in figure 2 at t = 2.5, 4.0 s. As the gravity current further
propagates in the acceleration phase, a semi-elliptical head forms, and outruns the
tail current, as shown in figure 2 at t = 5.5, 6.5 s. We also note that a large roller
consistently forms behind the head for the runs on a 9◦ slope, although the location of
the roller may be slightly closer to or away from the head with some variability.

Figure 3 presents the concentration images for the gravity current on a 9◦ slope
in the deceleration phase. As the gravity current propagates in this phase, the
head maintains a semi-elliptical shape with persistent Kelvin–Helmholtz instabilities
occurring on the upper edge of the gravity current head and with mixed fluid
consistently left behind in the wake region, as shown in figure 3 at t = 12, 18 s.
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FIGURE 2. Experiment 10/03/12-1: fluid concentration images for the gravity current from
a buoyancy source of h0/l0 = 8 cm/10 cm and g′0 = 17.11 cm s−2 propagating on a 9◦ slope.
Distances in the downslope and wall-normal directions are in units of cm. Time instances are
chosen at (a–f ) t = 0, 1.5, 2.5, 4.0, 5.5, 6.5 s in the acceleration phase.

What is surprising and reported here for the first time is that the gravity current on a
9◦ slope propagates with the described flow pattern in the deceleration phase for only
a finite distance until a large upheaval of the interface between the head and ambient
fluid takes place, as shown in figure 3 at t = 28 s. The uplifted mixed fluid is then
quickly enrolled and engulfed by the ambient fluid. Once the large enrolment of mixed
fluid and upheaval of the interface was initiated, the process was observed to occur
repeatedly towards the end of the runs for gravity currents on a 9◦ slope.

3.1.2. Quantitative results
With the fluid concentration images in figures 2 and 3, the front location can be

identified without ambiguity as the foremost part of the gravity current. After the front
location is identified, the front velocity can be calculated as the time rate of change
of the front location. Figure 4 shows the front location and front velocity histories
for experiment 10/03/12-1. From the front velocity history, it is observed that the
gravity current first goes through an acceleration phase followed by a deceleration
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FIGURE 3. Experiment 10/03/12-1: fluid concentration images for the gravity current on a
9◦ slope. Distances in the downslope and wall-normal directions are in units of cm. Time
instances are chosen at (a–d) t = 7.5, 12, 18, 28 s in the deceleration phase.

phase. At t = 2.0 s, the acceleration of the front begins to reduce significantly until
t = 6.5 s, when the front velocity reaches its maximum value.

Figure 5 presents the (xf + x0)
3/2 versus t relationship for experiment 10/03/12-1.

With the power-relationship (1.6), the deceleration phase is approximated by the solid
straight line of best fit, of which the fitting equation is (xf + x0)

3/2 = 151.8(t + t0),
where x0 = 85.6 cm and t0 = 3.7 s. In figure 5, it is shown that the data approach the
straight line from above, which is consistent with the experiments for gravity currents
on θ = 10.6◦ and 5.9◦ reported by Maxworthy (2010). The data follow the straight
line even at or before t = 6.5 s, when the gravity current reaches its maximum front
velocity. The relationship is therefore shown to be robust in the deceleration phase.
However, the front location of the gravity current follows the power-relationship in
the deceleration phase for only a finite distance. Starting at t ≈ 24 s, the data start to
deviate from and fall below the fitting straight line, as shown in figure 5 and the inset
close-up view for t > 20 s. The departure from the power-relationship is consistently
observed for the runs of gravity currents on the 9◦ slope and such departure indicates
that the front velocity decays more rapidly. It should be noted that it is at this
stage of motion that the large upheaval of the interface of the gravity current head
and the engulfment of uplifted mixed fluid by ambient fluid begin, as shown by
the flow pattern at t = 28 s in figure 3. Values of the head Reynolds numbers,
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FIGURE 4. Experiment 10/03/12-1: front location and front velocity against time for
the gravity current produced from a buoyancy source of h0/l0 = 8 cm/10 cm and g′0 =
17.11 cm s−2 on a 9◦ slope. The front location is measured from the lock gate. The front
location is in units of cm, time is in s, and the front velocity is in cm s−1.
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FIGURE 5. Experiment 10/03/12-1: (xf + x0)
3/2 versus t for the gravity current on a 9◦ slope.

The front location is in units of cm and time is in s. The solid line represents the straight
line of best fit to the deceleration phase and the fitting equation is (xf + x0)

3/2 = 151.8(t + t0),
where x0 = 85.6 cm and t0 = 3.7 s. In this case the maximum front velocity uf = 8.39 cm s−1

occurs at t ≈ 6.5 s and xf ≈ 49 cm.

i.e. ReH = uf H/ν, were estimated in the range 2500 . ReH . 3500 for the runs when
the departure of data from the power-relationship is observed. Additional runs for
gravity currents on slopes with higher Reynolds numbers, Re ≈ 14 000, 20 000, 26 000,
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FIGURE 6. Experiment 10/03/12-1. (a) Close-up view of the head region of the gravity
current on a 9◦ slope at t = 6.5 s, where the distances in the downslope and wall-normal
directions are in units of cm. White solid lines represent the concentration contours and the
numbers indicate the concentration values. (b) Ratio of buoyancy contained within the head
region to the total released buoyancy for the gravity current on a 9◦ slope at t = 6.5 s. Ah/A0 is
defined according to (3.1) and Ah represents the buoyancy within the head region of which the
width-averaged concentration exceeds cc.

were also performed and the head Reynolds numbers were estimated in a consistent
range as the front location data deviate from the power-relationship. In previous
works, viscous effects were thought to be unimportant for Reynolds numbers in this
range and the gravity currents were expected to propagate in the whole range of
the deceleration phase following the power-relationship (1.6). However, our scaling
analysis (appendix B) shows that it is possible that for gravity currents at this stage
of motion in the deceleration phase, the Reynolds number is low enough that viscous
effects could be unexpectedly more important.

Figure 6(a) shows the close-up view for the head region of the gravity current
on a 9◦ slope at t = 6.5 s. The concentration contours are plotted with concentration
values for reference. With the concentration contours, the density distribution inside
the gravity current head is now revealed. Towards the front part of the head the density
gradient across the interface is steep compared with that in the wake region on the
back of the head. Part of the heavy fluid in the head remains almost unmixed in the
core of the head region, e.g. c > 0.8, when the gravity current reaches the maximum
front velocity. To calculate the amount of heavy fluid in the lock that is actually
contained within the head region when the maximum front velocity is reached, the
fluid concentration in the head region is integrated according to

Ah

A0
=
∫ xf

xf−L

∫ ∞
0

c(x, y)|c>cc dy dx, (3.1)
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FIGURE 7. Ratio of buoyancy contained within the head to the total released buoyancy
versus the front location normalized by A1/2

0 . The buoyancy ratio in the head region
is evaluated using (3.1) with cc = 10−2. Symbols: +, experiment 10/03/12-1 for the
gravity current on θ = 9◦; ×, experiment 10/08/12-3 for the gravity current on θ = 6◦;
�, experiment 10/10/12-5 for the gravity current on θ = 2◦. The dashed line represents
Ah/A0 = 0.78, which is estimated for θ = 9◦ via χ = [KM/KB]3 using measured parameters.

where Ah is the amount of heavy fluid contained within the head region of which
the width-averaged concentration exceeds cc, and x and y are the coordinates in the
streamwise and wall-normal directions, respectively. The length of the head, L, in (3.1)
is not a predetermined constant but a variable distance between the front location and
the end of the head, which requires us to view the concentration images in real time
and to use subjective judgement to determine the end of the head. For example, in
figure 3 at t = 12 s, the end of the head is indicated by an arrowhead. Figure 6(b)
shows the ratio of heavy fluid in the head region, of which the concentration value
exceeds cc, to the total released heavy fluid against the threshold value cc. It should be
noted that the contour defined by the threshold value cc also draws a boundary for the
core region of the head. Obviously, the core region defined by a higher value of cc is
more compact in size and shape. Using the threshold value cc allows us to estimate the
amount of heavy fluid inside the core region. For example, it is observed that 75 % of
the released heavy fluid in the head region is bounded by cc = 0.2 at t = 6.5 s. Instead,
as the boundary is taken as cc = 0.6, it is estimated that only 40 % of the released
heavy fluid is contained in the core region of the head.

Using the power-relationship, it is possible to theoretically estimate the amount
of heavy fluid contained within the head as the gravity current propagates into
the deceleration phase. With the fitting equation (xf + x0)

3/2 = 151.8(t + t0), where
KM

3/2B′0
1/2 = 151.8 cm3/2 s−1, the fraction χ = 0.78 can be calculated via χ =

[KM/KB]3 using the measured parameters k = 0.3 and α0 = 0.0538, as listed in table 2.
From figure 7 it is shown that the power-relationship not only robustly describes the
front location data in the early stage of the deceleration phase but also provides a
reasonably good estimate for the amount of heavy fluid contained within the head,
even though the gravity current head may lose buoyancy as it propagates. In the
deceleration phase, mixed fluid is shed from the head and left behind in the wake
region, the buoyancy contained within the head may gradually decrease. Towards the
end of the deceleration phase, mixed fluid in the head is uplifted and engulfed by the
ambient fluid. Therefore, the buoyancy in the head, i.e. the downslope driving force,
is significantly reduced, which is also an important factor for the front location data
falling below the power-relationship represented by the straight fitting line.
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Using the power-relationship fitting equation, we derive that the front velocity
follows uf (xf + x0)

1/2/B′0
1/2 ≈ 2.88+0.19

−0.17 in the deceleration phase, which is consistent
with uf (xf + x0)

1/2/B′0
1/2 ≈ 2.6 ± 0.2 for gravity currents on θ = 15◦ as reported by

Beghin et al. (1981).

3.2. Gravity currents on a θ = 6◦ slope
The gravity current on a 6◦ slope is qualitatively similar to that on a 9◦ slope in
both the acceleration and deceleration phases. As reported previously, here the gravity
current head maintains a semi-elliptical shape with an identifiable wake region, as
shown in figure 8. But we note that the size of roller behind the head is reduced, as
shown in figure 8 at t = 6.0 s. It is worth pointing out that towards the end of the
deceleration phase the large upheaval of the interface between the head and ambient
fluid followed by engulfment of uplifted mixed fluid by ambient fluid, as was observed
for gravity currents on a 9◦ slope, is still present here on a 6◦ slope, as shown in
figure 8 at t = 31.5 s.

Figure 9 shows the front velocity and (xf + x0)
3/2 against time for the gravity

current on a 6◦ slope. The power-relationship is robust in the deceleration phase
during 6.0 s. t . 22.5 s. With the large upheaval of the interface occurring repeatedly
towards the end of the deceleration phase as shown in figure 8 at t = 31.5 s, it is not a
surprise to observe the deviation of the front location data from the power-relationship,
as discussed in the previous section for the gravity current on a 9◦ slope. At this stage,
the head Reynolds numbers were estimated in the range 2000. ReH . 3000.

For gravity currents on a 6◦ slope, the fraction of heavy fluid in the lock that
is contained within the head is estimated as χ = 0.75+0.12

−0.14 via χ = [KM/KB]3, which
appears to be slightly lower than the fraction for gravity currents on a 9◦ slope and
is also consistent with our findings from the experiments, as shown in figure 7. From
table 2, it is observed that KM for θ = 6◦ varies in approximately the same range
overlapping with that for θ = 9◦. It is worth noting that in the experiments for gravity
currents on θ = 5.9◦, 10.6◦ reported by Maxworthy (2010), KM varied erratically from
2.5 to 2.9 without distinguishable dependence of KM on slope angle. Nor can we
identify the relationship between KM and θ here merely based on the results for
θ = 6◦, 9◦. According to Beghin et al. (1981) and using (1.8), KM is found to increase
from 2.0 at θ = 5◦ to its maximum value 2.5 ± 0.1 at θ = 15◦ and decrease uniformly
to 1.7 ± 0.2 at θ ≈ 90◦. It is very likely that, albeit with some scatter in data, KM

assumes its maximum value in the slope angle range 6◦ . θ . 10◦ as studied here and
in Maxworthy (2010). As a result, no clear dependence of KM on θ could be identified
in this slope angle range.

3.3. Gravity currents on a θ = 2◦ slope
For gravity currents on a 2◦ slope, similarities with the flow patterns of gravity
currents on θ = 6◦ and 9◦ in the acceleration phase are found but a number of
qualitative differences in the flow patterns are observed in the deceleration phase. The
heavy fluid in the lock collapses and pushes out a head as reported previously, but
the large roller behind the head no longer exists when the gravity current reaches its
maximum front velocity, as shown in figure 10 at t = 6.5 s. The gravity current head
still maintains a ‘cloud’ form which is separate from the tail current, but the shape
of the head is now more streamlined compared with those on the 6◦ and 9◦ slopes.
When the gravity current propagates into the deceleration phase on a 2◦ slope, the
wake region with intense mixing is observed for a limited duration of time, as shown
in figure 10 at t = 12.5 s. As the gravity current moves further into the deceleration
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FIGURE 8. Experiment 10/08/12-3: fluid concentration images for the gravity current from
a buoyancy source of h0/l0 = 8 cm/10 cm and g′0 = 17.11 cm s−2 propagating on a 6◦ slope.
Distances in the downslope and wall-normal directions are in units of cm. Time instances
are chosen at (a–e) t = 6.0, 10, 22, 26, 31.5 s when the maximum front velocity is reached at
t = 6 s and in the deceleration phase.

phase, the demarcation between the head and the tail current becomes less clear.
Instead of intense mixing with ambient fluid and travelling individually as a ‘cloud’
entity, the gravity current at this stage in the deceleration phase tends to behave more
like ‘spreading’ on the slope, as shown in figure 10 at t = 20, 36 s. It is worth noting
that the large upheaval of the interface is no longer observed here towards the end of
the deceleration phase, as reported previously for θ = 6◦, 9◦. The gravity current head
maintains a more streamlined shape throughout its course of motion.

Figure 11 shows the front velocity and (xf + x0)
3/2 against time for the gravity

current on a 2◦ slope. As in θ = 6◦, 9◦, the gravity current goes through an
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FIGURE 9. Experiment 10/08/12-3: front velocity versus time for the gravity current
produced from h0/l0 = 8 cm/10 cm and g′0 = 17.11 cm s−2 on a 6◦ slope. The front velocity is
in units of cm s−1, the front location is in cm, and time is in s.

acceleration phase followed by a deceleration phase. While the approach to the straight
fitting line is from above in θ = 6◦, 9◦, the approach to the straight fitting line in
θ = 2◦ is from below, which is typical of experiments with sufficiently low driving
force, e.g. small slope angle in this case. As in previous cases, the power-relationship
is robust only in the early deceleration phase, e.g. 8.5. t . 23.5 s in figure 11. When
the gravity current propagates further into the deceleration phase, the data begin to
fall below the straight fitting line as t & 23.5 s. While viscous effects are considered
more important in the deceleration phase when the front location data fall below
the power-relationship, the flow pattern on the 2◦ slope at this stage of motion is
very different from those on θ = 6◦, 9◦. What is different from the results observed
on 6◦ and 9◦ slopes is that the large upheaval of the interface and the engulfment
of uplifted mixed fluid by ambient fluid as the front location data deviate from the
power-relationship are not observed, and the head maintains a more streamlined shape,
with a tail current tapering off towards the end of the deceleration phase.

Using the power-relationship, we may estimate the fraction of heavy fluid in the
lock that is contained within the head to be χ = 0.78+0.03

−0.04 and the experimental
constant KM = 2.43+0.06

−0.04. We should note that KM takes a value obviously smaller than
those for θ = 6◦, 9◦. This observation confirms the notion that in the slope angle range
6◦ . θ . 10◦, KM would very likely assume its maximum value. The dependence of
KM on θ becomes apparent as the slope angle is sufficiently away from this range, i.e.
that KM decreases as θ decreases below this slope angle range 6◦ . θ . 10◦.

3.4. Gravity currents on a θ = 0◦ slope
The concentration images for the gravity current on a horizontal boundary is shown in
figure 12. In the experiments for θ = 0◦, the lock was submerged beneath the water
surface by at least 40 cm. This case is also known as the partial-depth lock-exchange
flow and the lock height to ambient water depth ratio is below 0.2. It has been
reported that in this case the front velocity goes through a slumping phase followed
by an inertial phase and then a viscous phase, while the gravity currents decelerate in
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FIGURE 10. Experiment 10/10/12-5: fluid concentration images for the gravity current from
a buoyancy source of h0/l0 = 8 cm/10 cm and g′0 = 17.02 cm s−2 propagating on a 2◦ slope.
Distances in the downslope and wall-normal directions are in units of cm. Time instances are
chosen at (a–d) t = 6.5, 12.5, 20, 36 s. In this case the maximum velocity occurs at t ≈ 6.5 s.

both the inertial and viscous phases. In the inertial phase, the front velocity follows
the asymptote ũf ∼ t̃−1/3, while in the viscous phase, ũf ∼ t̃−5/8 and ũf ∼ t̃−4/5 were
reported by Hoult (1972) and Huppert (1982), respectively, where the dimensionless
front velocity is ũf = uf /

√
g′0h0 and the dimensionless time is t̃ = t

√
g′0h0/l0. As

shown in figure 13, the inertial and viscous phases are both identifiable in experiment
10/10/12-3 for the gravity current on θ = 0◦. The gravity current is in the inertial
phase during 9. t̃ . 21, i.e. 8. t . 18 s in dimensional time, and then moves into the
viscous phase when t̃ & 21, i.e. t & 18 s.

From the concentration images, we find that a gravity current head quickly forms
as the heavy fluid is released from the lock, but the mixing with ambient fluid is not
as violent as in the gravity currents on θ = 6◦, 9◦. The head does not overrun the tail
current throughout the motion and the gravity current appears more like ‘spreading’ on
the boundary, as observed for the gravity current on θ = 2◦ in the deceleration phase.

For gravity currents on a horizontal boundary, the height of the head does not
increase as in other cases for θ = 2◦, 6◦, 10◦. Therefore, extrapolation of head height
to identify the virtual origin is not applicable. But still we may follow Beghin
et al. (1981) and the front location data could be recast in the power-relationship
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FIGURE 11. Experiment 10/10/12-5: front velocity and (xf + x0)
3/2 versus time for the

gravity current produced from a buoyancy source of h0/l0 = 8 cm/10 cm and g′0 =
17.02 cm s−2 on a 2◦ slope. The front velocity is in units of cm s−1, the front location is
in cm, and time is in s.

form, where the front location is now measured from the lock gate, i.e. x0 = 0 cm,
rather than from the virtual origin. Figure 14 shows xf

3/2 against time for experiment
10/10/12-3. It is seen that when the gravity current decelerates, the power-relationship
consistently applies in the whole range of the inertial phase and in the early viscous
phase, i.e. 8 . t . 21 s; but when the viscous effects dominate, the front location data
begin to fall off from the straight fitting line, as shown in figure 14 at t & 21 s.

It is worth noting that in the viscous phase, the gravity current extends on the
horizontal boundary with the tail current persistently joining the head throughout the
course of motion. The observation for the flow patterns for gravity currents on a
horizontal boundary when the gravity currents decelerate is qualitatively similar to
that on θ = 2◦ in the deceleration phase, where the large upheaval of the interface in
θ = 6◦, 9◦ is not present and the gravity current maintains a more streamlined head
with a connecting tail current.

Although KB = 0 for θ = 0◦ may prohibit us from estimating the parameter χ via
χ = [KM/KB]3, still KM can be derived with the power-relationship (1.6) when applied
in the inertial and early viscous phases. As listed in table 2, KM = 1.72+0.06

−0.11 is derived
using the data collected in this study. It should be noted that for planar gravity currents
on a horizontal boundary, KM = 1.6 and 1.47 have been proposed by Hoult (1972) and
Huppert & Simpson (1980), respectively, while in a more recent study, Marino et al.
(2005) suggests a range for KM between 1.4 and 1.8 for partial-depth lock-exchange
flows. Our findings of KM for gravity currents on a horizontal boundary appear to
be in excellent agreement with reported values. In addition, KM reported here for
θ = 0◦ is less than those for θ = 2◦, 6◦, 9◦, as we expected and discussed in the above
sections.

4. Discussions
Gravity currents produced from an instantaneous buoyancy source propagating on an

inclined boundary in the slope angle range 0◦ 6 θ 6 9◦ are presented here. The main



134 A. Dai

10 20 30 40 50 60 70

45 55 65 75 85 95 105 115

100 110 120 130 140 150 160 170

135 145 155 165 175 185 195 205

0

15(a)

15(b)

15(c)

15(d)

0

0

0

FIGURE 12. Experiment 10/10/12-3: fluid density images for the gravity current on a 0◦
slope. Distances in the downslope and wall-normal directions are in units of cm. Time
instances are chosen at (a–d) t = 4.5, 12, 22, 30 s. In this case the maximum velocity occurs
at t ≈ 4.5 s and the gravity current is in the inertial phase at t ≈ 12 s and in the viscous phase
at t ≈ 30 s.

discussion concerns the applicability of the power-relationship for the front location
history in the deceleration phase and the flow patterns observed when the data deviate
from this relationship. It was reported in previous studies that the power-relationship
was robust in the whole range of the deceleration phase, but we showed that it
may not be so. The front location data for gravity currents on θ = 6◦, 9◦ follow the
power-relationship only in part of the deceleration phase. When the front location
data fall below this relationship at the later stage of the deceleration phase, large
upheaval of the interface between the head and ambient fluid and engulfment of
uplifted mixed fluid by ambient fluid are repeatedly observed towards the end of the
deceleration phase. Similarly, for gravity currents on θ = 0◦, 2◦, the front location data
follow the power-relationship in only part of the deceleration phase and fall below this
relationship when viscous effects are important. However, contrary to the flow patterns
for gravity currents on θ = 6◦, 9◦, the head maintains a streamlined shape without
violent mixing towards the end of the deceleration phase. Our findings here indicate
two plausible routes, namely on high and low slope angles, to the finale of a gravity
current event when the agents causing the density difference, e.g. salinity, sediments,
or particles, do not settle out from the gravity current or when the fall velocity of the
particles is sufficiently small.
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FIGURE 13. Experiment 10/10/12-3: (a) front location versus time and (b) front velocity
versus time, for the gravity current produced from h0/l0 = 8 cm/10 cm and g′0 = 17.40 cm s−2

on a 0◦ slope. The inset figure in (a) shows the close-up view for 16 6 t̃ 6 64. The
dimensionless front location is defined as x̃f = xf /l0, the dimensionless front velocity is
ũf = uf /

√
g′0h0, and dimensionless time is t̃ = t

√
g′0h0/l0. Lines indicate the asymptotes for

the inertial and viscous phases: x̃f ∼ t̃2/3 in (a) and ũf ∼ t̃−1/3 in (b) represent the asymptote in
the inertial phase and x̃f ∼ t̃3/8 (a), ũf ∼ t̃−5/8 (b) (Hoult 1972) and x̃f ∼ t̃1/5 (a), ũf ∼ t̃−4/5 (b)
(Huppert 1982) represent the asymptotes in the viscous phase.

When a gravity current propagates into the deceleration phase on a sufficiently high
slope angle, the ‘cloud’ goes through a distance where the power-relationship applies.
Afterwards, the interface of the head is lifted and the uplifted mixed fluid is largely
engulfed by the ambient fluid. The heavy fluid contained in the head, i.e. the driving
force, is significantly reduced after this process repeats itself a few times. Ultimately,
the gravity currents no longer propagate as a ‘cloud’ entity but as a patch of mixed
fluid of low density difference and the patch velocity decays with downslope distance
more rapidly. Another plausible route to the finale of a gravity current is for low
slope angles. In this case, the gravity current head loses the clear ‘cloud’ shape in
the deceleration phase and tends to spread on the slope without violent mixing with
ambient fluid. Gravity currents on low slope angles propagate with the streamlined
pattern into the stage of motion when the viscous effects dominate.

In the previous work by Maxworthy (2010), KM was reported to vary erratically
between 2.5 and 2.9 at θ = 5.9◦, 10.6◦ without clear dependence on the slope angle.
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FIGURE 14. Experiment 10/10/12-3: xf
3/2 versus t for the gravity current produced from

h0/l0 = 8 cm/10 cm and g′0 = 17.40 cm s−2 on a horizontal boundary. The front location is in
units of cm and time is in s. The solid line represents the straight line of best fit to the inertial
phase and gives the fitting equation xf

3/2 = 88.0(t + t0), where t0 = −3.6 s and the distance
to the front is measured from the gate rather than from the virtual origin. In this case the
maximum velocity uf = 7.46 cm s−1 occurs at t ≈ 4.5 s and xf ≈ 29 cm.
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FIGURE 15. Experimental constant KM versus slope angle θ . Symbols: , present study; ×,
experimental data reported in Maxworthy (2010); , renormalized from experimental data in
Beghin et al. (1981) and using (1.8).

Figure 15 shows that our results at θ = 6◦, 9◦ are consistent with previous reports
and it is very likely that in the slope angle range 6◦ . θ . 10◦, KM would take its
maximum value KM ≈ 2.64 without clear dependence on the slope angle. According to
our results, KM would decrease as the slope angle decreases below this range, or as the
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slope angle increases beyond this range, which is inferred from the front velocity data
in the deceleration phase reported in Beghin et al. (1981) and (1.8).

Using the power-relationship, it is possible to estimate the fraction of heavy fluid
in the lock that is contained within the head, via χ = [KM/KB]3. The theoretical
estimates here are in good agreement with experimental results, but surprisingly those
estimates were dramatically low in the previously published work by Maxworthy
(2010). For example, it was reported that the maximum buoyancy contained in the
head was ∼44 % of the total released buoyancy for a gravity current produced from
a buoyancy source of h0/l0 = 10 cm/10 cm and the ratio was ∼35 % for a gravity
current from a source of h0/l0 = 9.7 cm/5.5 cm, which are both significantly lower
than the observations made here. One of the reasons is that the model constant KB,
which is used in the estimation of χ , was incorrect therein, and so was the ratio χ .
Here we provide a correct expression for KB as (1.7) and (A 10) for reference. Another
possible reason is that only the core region, e.g. c > 0.6 in figure 6, was deemed to
be the head instead, and as such the buoyancy contained within the head region was
experimentally underestimated.

One of the limitations in this study is the limited range of slope angle investigated,
as has been the case in many previously published works. It is also our hope that
further studies for gravity currents on higher slope angles will be continued when a
sufficiently deep channel is built.
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Appendix A. Derivation of model constant KB

In this section, we re-derive the solution to thermal theory, its asymptotic forms, and
the model constant KB in detail.

From (1.3), the height and length of the gravity current head are

H = 1
2

S2

S1
k1/2αx and L= 1

2
S2

S1
k−1/2αx, (A 1)

where x is the distance from the ‘virtual origin’ to the mass-centre of gravity current
head. The ‘virtual origin’ is located x0 beyond the lock gate.

Since the front location of gravity current is a more readily measurable quantity, it
is desired to rewrite the solution in terms of the front location, xf . Using the geometric
relation xf = x + L/2 and the identity α = [2S1/S2k1/2]α0 for the angle of growth α0,
the following relationship, which translates from the mass-centre coordinate system to
that using the front location, is derived as

xf =
(

1+ α0

2k

)
x. (A 2)
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With Boussinesq approximations and upon substitution of (A 1) into (1.1), the
momentum equation becomes

U
d
dx
(x2U)= C − Cf

(1+ 2k)α0S1
(xU2), (A 3)

where

C = 4
π

k

1+ 2k

1
α0

2
χB′0 sin θ with B′0 = εgA0, (A 4)

is the driving force term. The following closed-form solution is then derived:

U2 = U2
0

(x0

x

)4+2Cf /(1+2k)α0S1 + 2
3+ 2Cf /(1+ 2k)α0S1

×C
1
x

[
1−

(x0

x

)3+2Cf /(1+2k)α0S1
]
, (A 5)

where U0 is the initial mass-centre velocity. Transforming (A 3) into the coordinate
system using the front location, i.e. xf = (1+ α0/2k)x and uf = (1+ α0/2k)U, we have

u2
f = u2

f 0

(
xf 0

xf

)4+2Cf /(1+2k)α0S1

+ 2
3+ 2Cf /(1+ 2k)α0S1

×C
(

1+ α0

2k

)3 1
xf

[
1−

(
xf 0

xf

)3+2Cf /(1+2k)α0S1
]
, (A 6)

where uf 0 is the initial front velocity, xf 0 is the distance from the ‘virtual origin’ to the
initial front location and xf 0 = (1+ α0/2k)x0.

If the gravity current starts from a quiescent initial condition, the solution (A 6) can
be further simplified when the gravity current is sufficiently far into the deceleration
phase, i.e. when xf /xf 0� 1,

uf =
[
2/(3+ 2Cf /(1+ 2k)α0S1)

]1/2
C1/2(1+ α0/2k)3/2xf

−1/2. (A 7)

Upon integration, (A 7) can be rewritten in the following form with an integration
constant t0:

xf = KBχ
1/3B′0

1/3
(t + t0)

2/3, (A 8)

where

KB =
(

9
6+ 4Cf /(1+ 2k)α0S1

)1/3( 4
π

)1/3

(1+ α0/2k)[k sin θ/α2
0(1+ 2k)]1/3. (A 9)

When Cf = 0, KB reduces to

KB =
(

6
π

)1/3 (
1+ α0

2k

)[ k sin θ
(1+ 2k)α2

0

]1/3

. (A 10)

We should note that KM = KBχ
1/3 in Maxworthy (2010) and (A 8) can be equivalently

written as

xf
3/2 = KM

3/2B′0
1/2
(t + t0). (A 11)

If the front location is measured from the lock gate rather than from the virtual
origin and x0 represents the distance from the virtual origin to the lock gate, the front
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location xf should then be replaced by xf+x0. In this case, the front velocity asymptote
and the power-relationship for the front location in the deceleration phase then read

uf = [2/(3+ 2Cf /(1+ 2k)α0S1)]1/2C1/2(1+ α0/2k)3/2(xf + x0)
−1/2 (A 12)

and

(xf + x0)
3/2 = KM

3/2B′0
1/2
(t + t0), (A 13)

respectively.

Appendix B. Scaling analysis for the viscous effects
Here we provide a scaling analysis to estimate the front location history when

viscous effects become important. The order of magnitude of the forces per unit
volume of the gravity current head is estimated as follows.
Gravity:

ρ
B′0 sin θ
S1HL

∼ ρ B′0
(x0 + xf )

2 , (B 1)

which indicates that the gravity force per unit volume of the gravity current
head reduces as the current propagates. As we understand from the experiments,
entrainment of ambient fluid causes the dilution of the moving heavy fluid contained
in the head.
Inertia:

ρ
(x0 + xf )

t2
, (B 2)

where the acceleration is estimated as (x0 + xf )t−2 in order of magnitude.
Viscous force:

ρν
(x0 + xf )

t

1
δ

1√
A0
∼ ρν1/2 (x0 + xf )

t3/2

1√
A0
, (B 3)

where the viscous stress is estimated as ρν(x0 + xf )/tδ and
√

A0 is an inherent length
scale for the ‘active’ moving head. The thickness of the boundary layer at the edge of
the moving head is estimated as δ ∼ (νt)1/2.

In the early deceleration phase when gravity and inertia forces are important, using
(B 1) and (B 2) we derive

(x0 + xf )
3/2 ∼ B′0

1/2t, (B 4)

which is consistent with the power-relationship (1.6).
In the late deceleration phase when the front location data deviate from the power-

relationship, we propose that a balance between gravity and viscous forces is struck,
and using (B 1) and (B 3) we derive

(x0 + xf )
2 ∼

(
B′0

2A0

ν

)1/3

t, (B 5)

which suggests that (x0 + xf )
2 ∼ t when viscous effects become important.

Figure 16 shows the relationship between (xf + x0)
2 and t for experiment

10/03/12-1 of the gravity current with g′0 = 17.11 cm s−2 on a 9◦ slope. A smooth
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FIGURE 16. Experiment 10/03/12-1: (xf + x0)
2 versus t for the gravity current with

g′0 = 17.11 cm s−2 on a 9◦ slope. The front location is in units of cm and time is in s.
The solid line represents the straight line of best fit to the data at t & 24 s and the fitting
equation is (xf + x0)

2 = 2996.0(t − t0), where x0 = 85.6 cm and t0 = 1.6 s. In this case the
maximum front velocity occurs at t ≈ 6.5 s and the front location data deviate from the
power-relationship (1.6) when t & 24 s.

transition from the inertia-dominated region to the late deceleration phase where
viscous effects become important is observed. Good agreement between the front
location data and the asymptotic relationship (x0 + xf )

2 ∼ t in the late deceleration
phase indicates that viscous effects could become more important when the front
location data deviate from the power-relationship (1.6) in the late deceleration phase.

R E F E R E N C E S

ADDUCE, C., SCIORTINO, G. & PROIETTI, S. 2012 Gravity currents produced by lock-exchanges:
experiments and simulations with a two layer shallow-water model with entrainment.
J. Hydraul. Engng 138 (2), 111–121.

BAINES, P. G. 2001 Mixing in flows down gentle slopes into stratified environments. J. Fluid Mech.
443, 237–270.

BAINES, P. G. 2005 Mixing regimes for the flow of dense fluid down slopes into stratified
environments. J. Fluid Mech. 538, 245–267.

BATCHELOR, G. K. 1967 An Introduction to Fluid Dynamics. Cambridge University Press.
BEGHIN, P., HOPFINGER, E. J. & BRITTER, R. E. 1981 Gravitational convection from instantaneous

sources on inclined boundaries. J. Fluid Mech. 107, 407–422.
BIRMAN, V. K., BATTANDIER, B. A., MEIBURG, E. & LINDEN, P. F. 2007 Lock-exchange flows in

sloping channels. J. Fluid Mech. 577, 53–77.
BRITTER, R. E. & LINDEN, P. F. 1980 The motion of the front of a gravity current travelling down

an incline. J. Fluid Mech. 99, 531–543.
CANTERO, M., LEE, J., BALACHANDAR, S. & GARCIA, M. 2007 On the front velocity of gravity

currents. J. Fluid Mech. 586, 1–39.



Gravity currents down slopes 141

DADE, W. B., LISTER, J. R. & HUPPERT, H. E. 1994 Fine-sediment deposition from gravity surges
on uniform slopes. J. Sedim. Res. 64, 423–432.

DALZIEL, S. B. 2012 DigiFlow User Guide. Dalziel Research Partners.
ELLISON, T. H. & TURNER, J. S. 1959 Turbulent entrainment in stratified flows. J. Fluid Mech. 6,

423–448.
FANNELOP, T. K. 1994 Fluid Mechanics for Industrial Safety and Environmental Protection.

Elsevier.
HOPFINGER, E. J. 1983 Snow avalanche motion and related phenomena. Annu. Rev. Fluid Mech. 15,

47–76.
HOULT, D. P. 1972 Oil spreading on the sea. Annu. Rev. Fluid Mech. 4, 341–368.
HUPPERT, H. 1982 The propagation of two-dimensional and axisymmetric viscous gravity currents

over a rigid horizontal boundary surface. J. Fluid Mech. 121, 43–58.
HUPPERT, H. & SIMPSON, J. 1980 The slumping of gravity currents. J. Fluid Mech. 99, 785–799.
LA ROCCA, M., ADDUCE, C., LOMBARDI, V., SCIORTINO, G. & HINKERMANN, R. 2012a

Development of a lattice Boltzmann method for two-layered shallow-water flow. Intl J. Numer.
Meth. Fluids 70 (8), 1048–1072.

LA ROCCA, M., ADDUCE, C., SCIORTINO, G., BATEMAN, P. A. & BONIFORTI, M. A. 2012b A
two-layer shallow water model for 3d gravity currents. J. Hydraul Res. 50 (2), 208–217.

LA ROCCA, M., ADDUCE, C., SCIORTINO, G. & PINZON, A. B. 2008 Experimental and numerical
simulation of three-dimensional gravity currents on smooth and rough bottom. Phys. Fluids 20
(10), 106603.

MARINO, B., THOMAS, L. & LINDEN, P. 2005 The front condition for gravity currents. J. Fluid
Mech. 536, 49–78.

MAXWORTHY, T. 2010 Experiments on gravity currents propagating down slopes. Part 2. The
evolution of a fixed volume of fluid released from closed locks into a long, open channel.
J. Fluid Mech. 647, 27–51.

MAXWORTHY, T. & NOKES, R. I. 2007 Experiments on gravity currents propagating down slopes.
Part 1. The release of a fixed volume of heavy fluid from an enclosed lock into an open
channel. J. Fluid Mech. 584, 433–453.

MONAGHAN, J. J., CAS, R. A. F., KOS, A. M. & HALLWORTH, M. 1999 Gravity currents
descending a ramp in a stratified tank. J. Fluid Mech. 379, 39–69.

NOGUEIRA, H. I. S., ADDUCE, C., ALVES, E. & FRANCA, M. J. 2013 Image analysis technique
applied to lock-exchange gravity currents. Meas. Sci. Technol. 24, 047001.

RASTELLO, M. & HOPFINGER, E. J. 2004 Sediment-entraining suspension clouds: a model of
powder-snow avalanches. J. Fluid Mech. 509, 181–206.

ROSS, A. N., LINDEN, P. F. & DALZIEL, S. B. 2002 A study of three-dimensional gravity currents
on a uniform slope. J. Fluid Mech. 453, 239–261.

SEON, T., ZNAIEN, J., PERRIN, B., HINCH, E. J., SALIN, D. & HULIN, J. P. 2007 Front dynamics
and macroscopic diffusion in buoyant mixing in tilted tubes. Phys. Fluids 19, 125105.

SHIN, J., DALZIEL, S. & LINDEN, P. 2004 Gravity currents produced by lock exchange. J. Fluid
Mech. 521, 1–34.

SIMPSON, J. 1997 Gravity Currents, 2nd edn. Cambridge University Press.
TICKLE, G. 1996 A model of the motion and dilution of a heavy gas cloud released on a uniform

slope in calm conditions. J. Hazard. Mater. 49, 29–47.
WEBBER, D., JONES, S. & MARTIN, D. 1993 A model of the motion of a heavy gas cloud released

on a uniform slope. J. Hazard. Mater. 33, 101–122.


	Experiments on gravity currents propagating on different bottom slopes
	Introduction
	Experiments
	Results
	Gravity currents on a θ = 9o   slope
	Qualitative features
	Quantitative results

	Gravity currents on a θ = 6o   slope
	Gravity currents on a θ = 2o   slope
	Gravity currents on a θ = 0o   slope

	Discussions
	Acknowledgements
	Appendix A. Derivation of model constant KB 
	Appendix B. Scaling analysis for the viscous effects
	References




