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Abstract
Gravity currents propagating on 12◦ , 9◦ , 6◦ , 3◦ unbounded uniform slopes and on an 
unbounded horizontal boundary are reported. Results show that there are two stages of the 
deceleration phase. In the early stage of the deceleration phase, the front location history 
follows (xf + x

0
)2 = (KIB)

1∕2(t + tI) , where (xf + x
0
) is the front location measured from the 

virtual origin, KI an experimental constant, B the total buoyancy, t time and tI the t-intercept. 
In the late stage of the deceleration phase for the gravity currents on 12◦ , 9◦ , 6◦ unbounded 
uniform slopes, the front location history follows (xf + x

0
)8∕3 = KVSB

2∕3V
2∕9

0
�
−1∕3(t + tVS) , 

where KVS is an experimental constant, V
0
 the initial volume of heavy fluid, � the kinematic 

viscosity and tVS the t-intercept. In the late stage of the deceleration phase for the grav-
ity currents on a 3◦ unbounded uniform slope and on an unbounded horizontal boundary, 
the front location history follows (xf + x

0
)4 = KVMB

2∕3V
2∕3

0
�
−1∕3(t + tVM) , where KVM is an 

experimental constant and tVM the t-intercept. Two qualitatively different flow morpholo-
gies are identified in the late stage of the deceleration phase. For the gravity currents on 
12

◦ , 9◦ , 6◦ unbounded uniform slopes, an ‘active’ head separates from the body of the cur-
rent. For the gravity currents on a 3◦ unbounded uniform slope and on an unbounded hori-
zontal boundary, the gravity currents maintain an integrated shape throughout the motion. 
Results indicate two possible routes to the final stage of the gravity currents on unbounded 
uniform slopes.

Keywords Gravity currents · Deceleration phase · Unbounded uniform slope

1 Introduction

Gravity currents, which are flows driven by density differences, occur in many natural and 
man-made environments  [46, 49]. The density differences may be attributed to a num-
ber of factors, including temperature differentials, dissolved materials and suspended sedi-
ments. The lock-exchange set-up has long served as a paradigm configuration for study-
ing the evolution of gravity currents  [1, 22–25, 34, 38, 45]. In the classic lock-exchange 
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experiments, two fluids of different densities are separated by a removable gate in a long, 
horizontal channel and, after the gate is removed, the heavy fluid travels along the bot-
tom boundary in the streamwise direction and the light ambient fluid travels along the top 
boundary in the opposite direction. Such gravity currents are also called the planar gravity 
currents as the flows are bounded by the channel walls and the structures of the gravity cur-
rents are statistically homogeneous in the spanwise direction.

Gravity currents may occur not only on a horizontal plane but also on a sloping bound-
ary. In the literature, some studies investigated the planar gravity currents propagating on 
a favourable slope  [3, 4, 8, 10–12, 29–31, 33, 37, 39, 40, 43, 47, 51] while some others 
investigated the planar gravity currents propagating on an adverse slope  [20, 27, 28, 35, 
36]. For the planar gravity currents propagating down a slope  [3], it was observed that the 
gravity currents may go through an acceleration phase followed by a deceleration phase 
and developed the thermal theory to describe the two phases of motion. The deceleration 
phase of the planar gravity currents down a slope was further categorised into an early 
stage where the buoyancy force is in balance with the inertia force and a late stage where 
the buoyancy force is in balance with the viscous force  [8, 10]. The front location history 
of the planar downslope gravity currents follows different power-relationships in the early 
deceleration phase and in the late deceleration phase.

Gravity currents may also propagate radially outward without being bounded in the 
spanwise direction by the channel walls  [5, 14, 19, 26, 41, 42]. For the gravity currents 
propagating down an unbounded uniform slope, the gravity currents may propagate in both 
the streamwise and spanwise directions. This configuration is more similar to that of tur-
bidity currents down a continental shelf and powder snow avalanches [16]. Using the shal-
low water model, it was predicted that the gravity currents on an unbounded uniform slope 
would take a self-similar cylindrical wedge shape [48, 50] . It was shown experimentally 
[44] and computationally [52] that such gravity currents take a shape which is similar to a 
triangular wedge or a boomerang.

Consistent with the planar gravity currents propagating down a slope, the gravity cur-
rents propagating on an unbounded uniform slope may also go through the acceleration 
phase followed by the deceleration phase. For the acceleration phase of propagation, using 
high-resolution direct numerical simulations, the gravity currents on an unbounded uni-
form slope for a range of slope angles between 5◦ and 20◦ were investigated in [52] and two 
consecutive acceleration phases were detected. It was reported that the first acceleration 
phase occurs when the heavy fluid initially advances in a diverging manner and the second 
acceleration phase occurs when the heavy fluid converges towards the centre of the gravity 
currents due to the presence of a slope. After the two consecutive acceleration phases, the 
gravity currents on an unbounded uniform slope move into the deceleration phase. For the 
deceleration phase of propagation, it was shown in [44] that the front location history was 
well described by the wedge integral model for the whole range of the deceleration phase. 
The wedge integral model, developed by [44], is essentially in the same spirit as [32] and 
the subsequent thermal theory adopted in [3, 6–10] for the gravity currents on an inclined 
boundary with bounded walls.

As explained above, while most previous investigations, including the ones published 
by the authors, were focused on the gravity currents confined in the spanwise direction by 
the channel walls, there was less attention focused on the gravity currents propagating on 
slopes without being bounded in the streamwise and spanwise directions. For the gravity 
currents confined in the spanwise direction, i.e. the planar gravity currents, the gravity cur-
rents can grow in the streamwise and wall-normal directions and are theoretically treated 
as two-dimensional. For the gravity currents propagating on slopes without being bounded 
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in the streamwise and spanwise directions, the gravity currents can grow in the streamwise, 
spanwise and wall-normal directions and should be theoretically treated as three-dimen-
sional. In the literature, for the gravity currents on unbounded uniform slopes, only one 
deceleration phase was identified and the wedge integral model was found to appropri-
ately describe the front location history in the deceleration phase. We aim at deepening the 
understanding of the gravity currents on unbounded uniform slopes by performing labora-
tory experiments and, as will be shown in the following sections, two stages of the decel-
eration phase can be identified and the wedge integral model is appropriate only for the 
early stage of the deceleration phase.

In this study, we investigated the gravity currents produced from a finite volume of 
heavy fluid propagating on different unbounded uniform slopes. The density difference 
between the heavy fluid and the ambient fluid is sufficiently small so that our experiments 
may be classified as Boussinesq. Our focus in this study is on the deceleration phase of 
propagation of the gravity currents. As will be shown in more detail, the asymptotic rela-
tionship for the front location history based on the wedge integral model applies only for 
the early stage of the deceleration phase. In the late stage of the deceleration phase, dif-
ferent flow morphologies and relationships for the front location history are identified and 
reported here for the first time. Specifically, using the laboratory experiments, we may 
qualitatively observe how the gravity currents propagate on an unbounded uniform slope 
and quantitatively measure the influence of the slope in the early stage and late stage of 
the deceleration phase. In Sect. 2, we summarize the theoretical relationships for the front 
location history in the early and late stage of the deceleration phase. The experimental 
setup and techniques are described in Sect. 3. Qualitative and quantitative results are pre-
sented in Sect. 4 and the conclusions are drawn in Sect. 5.

2  Theoretical background

The configuration of the problem is sketched in Fig.  1. Here we summarize the wedge 
integral model developed by [44] and follow the nomenclature therein for the reader’s con-
venience. The density of heavy fluid in the lock is �1 and the density of light ambient fluid 
is �0 . As an approximation in the model, it is assumed that the gravity currents maintain a 
self-similar wedge geometry [44, 48, 50]. The overall width and height of the self-similar 
wedge prescribed by [50] are b = �l and h = ltan� , respectively, where l represents the 
length of the wedge. The top area and front area of the wedge are given by AT = S1l

2 and 
AF = S2l

2tan� , respectively, and the wedge volume is V = S3l
3tan� , where S1 , S2 and S3 

are the shape factors. For the cylindrical wedge shape given by [50], the shape factors take 
the values S1 = 3�∕4 , S2 = 8∕3 and S3 = 5�∕16 . It is worth noting that the wedge integral 
model is not restricted to the shape prescribed by the shallow water model of [50] but can 
be applied for other self-similar wedge shapes. When other self-similar wedge shapes are 
used, different values for the shape factors are adopted. As indicated by [44], for a self-
similar wedge with a triangular top, the shape factors S1 = 1 , S2 =

√

2 and S3 = 1∕3 should 
be in use.

The motion of the gravity currents is driven by the density difference between the heavy 
fluid contained within the wedge and the ambient fluid. We assume that the density differ-
ence is small, i.e. (𝜌1 − 𝜌0) ≪ 𝜌0 , such that the Boussinesq approximation applies. There-
fore, following [44], the linear momentum equation takes the form
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where CA is the ‘added mass’ coefficient, which takes into account the ambient fluid car-
ried along with the gravity currents, U the velocity of the centre of mass of the current 
wedge, B = V0g(�1 − �0)∕�0 the buoyancy which is conserved during the propagation of 
the gravity currents, CT and CF the bottom and form drag coefficients and t the time. The 
added mass coefficient cannot be calculated easily for the gravity current wedge, which 
deforms and entrains ambient fluid while propagating on a slope. However, it is reasonable 
to estimate the added mass coefficient based on those for similar typical shapes [3]. The 
values for a circular cylinder and a sphere are given as 1 and 0.5, respectively, by [2]. For 
a streamlined wedge of width b and length l, the added mass coefficient for the wedge is 
estimated as CA = 0.5 in this study [21]. For turbulent flows in the experiments, the drag 
force is modeled as being proportional to velocity squared. In fact, it was showed in [44] 
that the influence of adding the drag force is negligible and it was also shown in [9] that the 
dominant retarding mechanism is the entrainment of ambient fluid and excluding the drag 
force term from the momentum equation does not alter the form of the asymptotic relation-
ship for the front location history in the deceleration phase.

With the assumption of turbulent entrainment [15], the mass conservation takes the 
form

where � is the entrainment coefficient and AE = S4l
2tan� is the area over which the entrain-

ment takes place, where S4 is another shape factor. We could have separate terms for the 
entrainment over top and front areas, with different entrainment coefficients. However, 
it can be shown that for the self-similar wedge shape the two terms for the entrainment 

(1)
d

dt

[(

1 + CA

)

VU
]

= Bsin� −
(

CTAT + CFAF

)

U2,

(2)
dV

dt
= �UAE,

Fig. 1  Sketch of the experimen-
tal setup and the wedge integral 
model for the gravity currents 
produced from a finite volume 
of heavy fluid propagating on 
an unbounded uniform slope, 
which makes an angle � with the 
horizontal plane. a top view and 
b side view of the tank. In a, the 
length and width of the wedge 
are designated by l and b, respec-
tively. In b, the height of the 
wedge is designated by h. The 
heavy fluid initially contained 
in the lock has density �

1
 while 

the ambient fluid has density 
�
0
 . The front location xf  is 

measured from the lock gate and 
the virtual origin is at a distance 
x
0
 upslope of the lock gate. The 

lock has length l
0
= 10 cm, width 

b
0
= 10 cm and height h

0
= 8 cm 

in all experiments

(b)

(a)
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are proportional and may be absorbed into one term [48]. A similar assumption of one 
entrainment coefficient was also applied in the model of [26] for simulating unconfined 
gravity currents. For the cylindrical wedge shape given by [50], S4 = �

√

2 and for the tri-
angular wedge shape, S4 = 2

√

2 as chosen by [44] and followed here. From (2) and using 
U = dx∕dt , we may derive

where x is the distance measured from the ‘virtual origin’ to the centre of mass of the 
wedge. The ‘virtual origin’ is located x0 upslope of the lock gate and can be identified by 
extrapolating the development of the width of the wedge in the upslope direction, as shown 
in Fig.  1. Upon substituting (3) into (1) and again using U = dx∕dt , we may derive the 
solution for the momentum equation, i.e.

where

When the gravity currents start from rest, the model predicts that, after an initial accel-
eration phase, the centre of mass of the current wedge reaches a maximum velocity at the 
downstream location

In the limit when the bottom and form drags are negligible, i.e. CT → 0 and CF → 0 , the 
centre of mass velocity reaches its maximum at x∕x0 → 31∕4 . After the initial acceleration 
phase, the centre of mass velocity of the wedge decreases with the distance measured from 
the virtual origin. When the gravity currents are sufficiently far into the deceleration phase, 
i.e. x∕x0 ≫ 1 , the centre of mass velocity of the wedge approaches the following asymptote

Since the front location is a more easily measurable quantity than the centre of mass of 
the wedge, we rewrite the solution (7) in terms of the front location, xf  , which is measured 
from the lock gate. Using the geometric relation for a triangular wedge xf + x0 = x + l∕2 , 
i.e. xf + x0 =

(

1 + S4�∕6S3
)

x , the front velocity in the deceleration phase approaches the 
following asymptote

Upon integration, (8) can be rewritten in the following form with an integration constant tI

(3)l =
S4�

3S3
x,

(4)U2 = U2

∞

(x0

x

)2

+
(

U2

0
− U2

∞

)

(x0

x

)

�

,

(5)U2

∞
=

54BS2
3
cos�

x2
0
�
3S3

4
(1 + CA)(� − 2)

and � = 6

(

1 +
CTS1 + CFS2tan�

�S4tan�(1 + CA)

)

.

(6)
x

x0
=
(

�

2

)1∕(�−2)

.

(7)U =
54

1∕2B1∕2S3cos
1∕2

�

�
3∕2S

3∕2

4

√

(1 + CA)
√

(� − 2)
x−1.

(8)
Uf =

�

1 +
�S4

6S3

�2
54

1∕2B1∕2S3cos
1∕2

�

�
3∕2S

3∕2

4

√

(1 + CA)
√

(� − 2)

× (xf + x0)
−1
,
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where KI follows the form

which is independent of the buoyancy and is a function of the slope angle. From (9), it 
is clear that when the front location history is plotted in terms of (xf + x0)

2 versus t, the 
slope in the deceleration phase can be measured from the experimental data and should be 
(KIB)

1∕2 . Therefore, the experimental constant KI can be calculated based on the measured 
slope in the plot of (xf + x0)

2 versus t in the deceleration phase and the total buoyancy B. 
Once the experimental constant KI is determined, we may calculate the entrainment coeffi-
cient � with the help of (10). While the ‘virtual origin’ is identified as explained above, we 
do not have control over the t-intercept tI in (9). The t-intercept tI is identified by finding the 
point where (9) crosses the t-axis. In our study, tI does not have physical significance but 
we still include tI for completeness as will be shown later in Table 2. We are particularly 
concerned about the slope in the plot of (xf + x0)

2 versus t, which is related to the experi-
mental constant KI and the entrainment coefficient.

We should point out that for the planar gravity currents on a slope, as indicated by [13], 
the planar gravity currents may take only part of the total buoyancy in the lock and carry it 
into the deceleration phase. The fraction of the total buoyancy which is taken by the planar 
gravity currents into the deceleration phase could also be estimated experimentally and 
theoretically, as done by [8]. The central idea, which makes the estimation of the fraction 
of the total buoyancy in the deceleration phase possible theoretically, is that the entrain-
ment coefficient for the planar gravity currents was estimated geometrically and was inde-
pendent of the constant KB in [8]. In other words, KB for the planar gravity currents is 
known a priori. Therefore, via the measured slope KM , cf. (1.6) in [8], and KB , we may 
estimate the fraction of the total buoyancy taken into the deceleration phase for the planar 
gravity currents.

However, in our case the gravity currents on laterally unbounded uniform slopes, the 
shape may vary as the gravity currents propagate on the slope and the entrainment coef-
ficient in the wedge integral model is essentially a combination of the entrainment coef-
ficients over the top and front areas, as explained above. As such, we are not in a good 
position to determine the entrainment coefficient in our case as a priori. In fact, KI in our 
study is a function of the entrainment coefficient. We calculate KI using (9) based on the 
measured slope and the total buoyancy and use (10) to calculate the entrainment coefficient 
once KI is known. Since the entrainment coefficient in our study is not independent of KI , it 
seems not likely to estimate the fraction of the total buoyancy carried into the deceleration 
phase for the gravity currents on unbounded uniform slopes. In the literature, as also done 
in [44], the value of the entrainment coefficient was chosen such that the wedge integral 
model, with total buoyancy in the gravity currents, best describes the front location his-
tory. In order to compare our results with [44], including both KI and � , here we adopt the 
total buoyancy in (9) and use (10) to calculate the entrainment coefficient. We could have 
assumed that only a fraction of the total buoyancy is taken into the deceleration phase and, 
consequently, the entrainment coefficient would take smaller values. But at this stage we do 
not have sufficient density field information to determine the fraction of the total buoyancy 
which is taken into the deceleration phase for the gravity currents on unbounded uniform 

(9)(xf + x0)
2 =

(

KIB
)1∕2

(t + tI),

(10)KI =

(

1 +
�S4

6S3

)4 216S2
3
cos�

�
3S3

4
(1 + CA)(� − 2)

,
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slopes. We should keep in mind that assuming the gravity currents carrying the total buoy-
ancy into the deceleration phase in our study is a first-order approximation.

We should also remark that the wedge integral model is based on the turbulent entrain-
ment assumption, which appears to be appropriate for the gravity currents on 12◦ , 9◦ , 6◦ 
unbounded uniform slopes in our study. Strictly speaking, the wedge integral model is not 
appropriate for the gravity currents on 3◦ unbounded uniform slope and unbounded hori-
zontal boundary in our study. Although, based on the scaling arguments, the front location 
history for the gravity currents on 3◦ unbounded uniform slope and unbounded horizontal 
boundary similarly follows (9) when the buoyancy and inertia forces are in balance, we 
should not use (10) to compute the entrainment coefficients.

The wedge integral model includes the buoyancy force and inertia force and the asymp-
totic relationship (9) is essentially a statement of balance between these two forces. Using 
the scaling arguments similar to [8, 17], the buoyancy force per unit volume of the wedge 
scales as �0B(xf + x0)

−3 and the inertia force scales as �0(xf + x0)t
−2 . Therefore, when a 

balance between the buoyancy force and inertia force is reached, the front location history 
follows the power-relationship (9) and we shall term this time period the early stage of the 
deceleration phase.

In this study, we found for the first time that for the gravity currents on unbounded uni-
form slopes there exists a late stage of the deceleration phase during which the viscous 
force becomes more important. Here we provide a scaling analysis to describe the front 
location history in the late stage of the deceleration phase. In the late stage of the decelera-
tion phase, the viscous force per unit volume scales as �0�(xf + x0)t

−1
�
−1V0

−1∕3 , where the 
viscous stress is estimated as �0�(xf + x0)t

−1
�
−1 , the thickness of the boundary layer at the 

edge of the current is estimated as � ∼ (�t)1∕2 and V0
1∕3 is an estimate for the length scale 

for the ‘active’ current head. As will be shown later in more detail, for the gravity currents 
propagating on an unbounded uniform slope equal to and greater than 6◦ , an ‘active’ cur-
rent head separates from the body in the late deceleration phase and leaves an ‘inactive’ 
body of the current behind. Therefore, when a balance between the buoyancy force and 
viscous force is reached for the ‘active’ current head, the following relationship applies in 
the late deceleration phase, i.e.

where KVS is an experimental constant and tVS is the t-intercept. The experimental constant 
KVS needs to be determined by the measured slope in the plot of (xf + x0)

8∕3 versus t in the 
late stage of the deceleration phase. As explained above for (9), we do not have control 
over the t-intercept tVS in (11). The t-intercept tVS is identified by finding the point where 
(11) crosses the t-axis. We include tVS for completeness as will be shown later in Table 2. 
We are particularly concerned about the slope in the plot of (xf + x0)

8∕3 versus t, which is 
related to the experimental constant KVS and is a strong evidence showing that the front 
propagates progressively slower than (9) as time proceeds.

For the gravity currents propagating on an unbounded uniform slope equal to and less 
than 3◦ , the gravity currents maintain an integrated shape throughout the motion and the 
separation process of an ‘active’ head for the gravity currents propagating on a slope equal 
to and greater than 6◦ does not exist. In the early stage of the deceleration phase when the 
buoyancy and inertia forces are in balance, based on the scaling arguments, the front loca-
tion history similarly follows the relationship (9). In the late stage of the deceleration phase 

(11)(xf + x0)
8∕3 = KVS

(

B2V
2∕3

0

�

)1∕3

(t + tVS),
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when the buoyancy and viscous forces are in balance, the front location history follows the 
power-relationship

where KVM is an experimental constant and tVM is the t-intercept. The scaling analysis is 
based on the fact that the gravity currents maintain an integrated shape throughout the 
motion. Here the viscous stress is applied over the whole top area, which is estimtated as 
being proportional to (xf + x0)

2 . The experimental constant KVM needs to be determined 
by the measured slope in the plot of (xf + x0)

4 versus t in the late stage of the deceleration 
phase. Similarly, we do not have control over the t-intercept tVM in (12). The t-intercept tVM 
is identified by finding the point where (12) crosses the t-axis and is included for complete-
ness in Table 3. We are concerned about the slope in the plot of (xf + x0)

4 versus t, which 
is related to the experimental constant KVM and is also a strong evidence showing that the 
front propagates progressively slower than (9) as time proceeds. Encouragingly, the power-
relationship (12) is consistent with that originally proposed by [17] for the gravity cur-
rents propagating radially outward on an unbounded horizontal plane in the viscous phase 
and, as will be shown later, our experimental constant KVM is consistent with the estimate 
based on [17]. Based on the experiments reported by [17, 18] for the gravity currents on 
an unbounded horizontal plane in the inertial phase, the experimental constant KI in our 
configuration can be estimated as 5.71 and 3.62, respectively. Furthermore, based on the 
experiments reported by [17] for the gravity currents on an unbounded horizontal plane 
in the viscous phase, the experimental constant KVM in our configuration can be estimated 
as 1.24. It is reasonable to expect that the gravity currents propagating on a 3◦ unbounded 
uniform slope and on an unbounded horizontal boundary behave similarly and the power-
relationship (12) applies in the late stage of the deceleration phase.

3  Experimental setup

A sketch of the tank, with top and side views, used in the experiments is provided in Fig. 1. 
The rectangular tank has dimensions of 1.6 m in width, 0.6 m in depth and 2.5 m in length. 
For visualization purposes, all four sides were constructed by transparent Perspex walls 
fitted in a reinforced steel frame. A Perspex board with dimensions of 2.47 m in length 
and slightly less than 1.6 m in width was installed near the bottom of the tank to act as 
an unbounded uniform slope, of which the slope angle can be adjusted in the range of 
0◦ ≤ � ≤ 12◦ . The Perspex board was reinforced with grid structure at its base to minimize 
the curvature which might have undesired influence on the propagation of gravity currents.

The lock has dimensions of b0 = 10 cm in width, h0 = 8 cm in height and l0 = 10 cm in 
length and was mounted on the upslope end of the Perspex board. One side of the lock, fac-
ing the downslope end of the sloping bottom, is slidable and can be easily withdrawn from 
the lock. Two holes with diameter of 1/4 in were drilled and tapped on the back of the lock 
to allow injection of heavy fluid into and escape of trapped air from the lock. The lock was 
submerged beneath the surface of ambient fluid by more than 10 cm to reduce the influence 
due to the free surface. The heavy fluid in the lock was set into motion when the gate was 
removed from the lock.

(12)(xf + x0)
4 = KVM

(

B2V2

0

�

)1∕3

(t + tVM),
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To aid flow visualization, potassium permanganate was added in the heavy fluid. Two 
uniform LED light boards and light-diffusing screens were placed against both the upslope 
and downslope walls of the tank to provide illumination. To record video of the propaga-
tion of gravity currents, a Sony HDR-PJ670 was positioned 4 m above the free surface of 
ambient fluid for the top views and a Canon EOS 700D was positioned at about 4 m away 
from the side wall of the tank for the side views of the gravity currents. Both cameras 
have spatial and temporal resolutions of 1920 × 1080 at 24 frames per second. The Canon 
EOS 700D camera was rotated at the same angle as the bottom slope such that the x and 
y axes in the images align with the downslope and wall-normal directions. A distance of 
250.00 cm along the slope in the tank corresponds to about 1000 pixels in the images, so 
each pixel in the downslope direction represents 0.25 cm approximately. The recorded vid-
eos of the gravity currents were exported to a PC for postprocessing.

In the experiments, sodium chloride solution was chosen as the heavy fluid while tap 
water was chosen as the ambient fluid. The kinematic viscosity of the sodium chloride 
solution is taken to be the same as the tap water as � = 1.1 × 10−2 cm2 s−1 . Densities of the 
heavy fluid and ambient fluid were measured by KEM DA-130N density meter with an 
accuracy of 10−3  g  cm−3 and maintained at �1 = 1.015 ± 0.001  g  cm−3 and 
�0 = 0.998 ± 0.001  g  cm−3 , respectively. The reduced gravity g�

0
= g(�1 − �0)∕�0 was 

approximately g�
0
≈ 16.71 cm s−2 and the Reynolds number Re =

√

g�
0
h0h0∕� ≈ 8500 was 

far in excess of 1000, above which the viscous effects were thought to be negligible com-
pared with the inertial effects [46].

4  Results

In the following we shall present the results for the gravity currents produced from a finite 
volume of heavy fluid propagating on unbounded uniform slopes � = 12◦ , 9◦ , 6◦ , 3◦ , 0◦ in 
order. The dimensions of the lock and the densities of the heavy fluid and ambient fluid 
were maintained unchanged throughout the experiments. On each slope angle, at least five 
repeated runs were performed in order to make qualitative and quantitative observations. 
Other experimental parameters are listed in Table 1.

4.1  Gravity currents propagating on a 12◦ slope

4.1.1  Qualitative features

The flow morphology of the gravity current propagating on a 12◦ slope is shown from the 
top view in Fig. 2 and from the side view in Fig. 3. After the gate is removed, the heavy 
fluid immediately spreads outward from the lock, as shown in Figs. 2 and 3 at t = 2 , 6 s. 
Afterwards, the gravity current takes a wedge shape, of which the thickness increases 
towards the front of the current, as shown in Figs. 2 and 3 at t = 10 , 20 s. Our qualitative 
observation on the shape of the gravity current is consistent with the wedge or boomerang 
shape reported previously [44, 52]. In the top view images, we can also observe the undula-
tions occurring around the edge of the gravity current as the lobe and cleft structure. Once 
the wedge shape is formed, the gravity current continues to propagate on the slope while 
maintaining the wedge shape, as shown in Figs. 2 and 3 at t = 30 s. The width and height 
of the wedge progressively increase as the gravity current propagates downslope. How-
ever, the gravity current maintains its integrated shape only for a limited period of time. As 
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shown in Fig. 2 at t = 40 , 50, 60 s, bare regions as represented by the white patches emerge 
as the gravity current propagates further downslope. Figure 3 at t = 40 , 50, 60 s also shows 
that an ‘active’ part of the head becomes disintegrated from the body of the current. While 

Fig. 2  Experiment 12/21/16-1: top view images for the gravity current propagating on a 12◦ unbounded uni-
form slope. The reduced gravity in this experiment was g�

0
= 17.10 cm s−2 . Distances in the downslope and 

spanwise directions are in units of cm. Time instances are chosen at (a–h) t = 2 , 6, 10, 20, 30, 40, 50, 60 s
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Fig. 3  Experiment 12/21/16-1: side view images for the gravity current propagating on a 12◦ unbounded 
uniform slope as shown in Fig. 2. Distances in the downslope and wall-normal directions are in units of cm. 
Time instances are chosen at (a–h) t = 2 , 6, 10, 20, 30, 40, 50, 60 s

Table 1  Table showing the 
operational parameters, including 
the slope angle � , reduced 
gravity g′

0
 , time tmax and front 

location xfmax , measured from the 
lock gate, at which the gravity 
currents reach the maximum 
front velocity Uf max

Each value is the average of five experiments. The error estimates are 
to add and subtract the maximum and minimum values and are not the 
r.m.s. estimates

� g′
0
 (cm s −2) tmax (s) xf max (cm) Uf max

 (cm s −1)

12
◦

17.02
+0.12
−0.05

7.16
+1.66
−1.99

35.29
+8.95
−10.79

6.13
+1.35
−0.53

9
◦

17.12
+0.09
−0.18

5.03
+1.63
−1.03

26.65
+9.85
−8.90

6.60
+0.23
−0.34

6
◦

17.05
+0.20
−0.15

5.19
+0.63
−0.52

26.37
+2.87
−3.62

6.59
+0.47
−0.21

3
◦

17.11
+0.18
−0.14

3.94
+1.38
−0.94

18.12
+6.62
−3.37

6.61
+0.66
−0.56

0
◦

17.06
+0.21
−0.17

3.64
+0.85
−1.14

15.16
+3.58
−4.66

6.39
+0.41
−0.34
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the edge of the ‘active’ head is uplifted and engulfed by the ambient fluid, the ‘inactive’ 
body of the current moves more slowly. Our observation on the separation of the ‘active’ 
head from the body of the current is persistent at the later stage of propagation for all the 
gravity currents on a 12◦ slope and is reported in this study for the first time. Such an obser-
vation on the gravity current on a 12◦ unbounded uniform slope is qualitatively similar to 
the flow morphology of the planar gravity currents propagating on 6◦ and 9◦ slopes in the 
late deceleration phase. As reported by [8], for the planar gravity currents on 6◦ and 9◦ 
slopes, the edge of the gravity current head experiences a large upheaval and enrolment by 
the ambient fluid towards the end of the deceleration phase.

4.1.2  Quantitative results

From the top view images of the gravity current as shown in Fig. 2, the front location can 
be identified without ambiguity. Specifically, we put a grid on the top view images in post-
processing and the front location is defined as the furthest streamwise location reached by 
the gravity current. The front velocity can be calculated as the time rate of change of the 
front location. Although the detailed structure of the gravity currents between runs may 
differ due to different turbulent evolutions, the features as observed and reported for the 
front location history and front velocity history are persistent. Figure  4 shows the front 
location and front velocity histories for the gravity current propagating on a 12◦ slope. 
From the front velocity history, it is observed that the first acceleration phase begins when 
the heavy fluid is released from the lock and the first acceleration phase ends at t ≈ 1.0 s. 
The second acceleration phase, beginning at t ≈ 2.0  s, ends at t ≈ 6.83  s when a maxi-
mum front velocity Uf max

≈ 5.73 cm s−1 is reached. Our observation on the two consecutive 
acceleration phases following the release of heavy fluid on a 12◦ slope is persistent for all 
runs. Interestingly, [52] also reported the two consecutive acceleration phases for the grav-
ity currents on a range of slope angles between 5◦ and 20◦ , albeit with a lock configuration 
which is designed differently from our experimental setup.

Our focus in this study is on the deceleration phase of propagation. After t ≈ 6.83  s, 
the gravity current moves into the deceleration phase and we shall examine the front loca-
tion history in the deceleration phase in detail according to (9) and (11). We plot the front 

(a) (b)

Fig. 4  Experiment 12/21/16-1: front location history (a) and front velocity history (b) for the grav-
ity current propagating on a 12◦ unbounded uniform slope. The reduced gravity in this experiment was 
g�
0
= 17.10 cm s−2 . The maximum front velocity Uf max

≈ 5.73 cm s−1 occurs at t ≈ 6.83 s. The front location 
is in units of cm, front velocity is in units of cm s−1 and time is in units s
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location history in terms of (xf + x0)
2 versus t in Fig. 5a and (xf + x0)

8∕3 versus t in Fig. 5b. 
Here (xf + x0) represents the front location measured from the virtual origin, which can 
be identified by extrapolating the development of the width of the wedge in the upslope 
direction. In the early stage of the deceleration phase, Fig. 5a reveals that the front location 
history robustly follows the power-relationship (9) during 20 ≲ t ≲ 40  s. The application 
of the power-relationship (9) in the early stage of the deceleration phase suggests a bal-
ance between the buoyancy and inertia forces, as predicted by the integral model and by 
the scaling analysis. It is worth noting that in the early stage of the deceleration phase, the 
gravity current propagates downslope while still maintaining an integrated wedge shape. 
The straight line of best fit to the early deceleration phase is shown in Fig.  5a and the 
fitting equation is (xf + x0)

2 =
(

KIB
)1∕2

(t + tI) , where KI = 88.88 , B = 13680  cm4  s−2 , 
x0 = 45.83 cm and tI = −2.80  s. Here the experimental constant KI is calculated accord-
ing to (9) and based on the slope of the best fit to the early deceleration phase and the 
total buoyancy in the experiment. With the help of (10), we may also calculate the entrain-
ment coefficient � = 0.165 . The experimental constant KI along with other variables for 

(a) (b)

Fig. 5  Experiment 12/21/16-1: relationship between a (xf + x
0
)2 and t and b (xf + x

0
)8∕3 and t for the 

gravity current propagating on a 12◦ unbounded uniform slope. The reduced gravity in this experi-
ment was g�

0
= 17.10  cm  s−2 . The front location is in units of cm and time is in units of  s. The solid 

line in a represents the straight line of best fit to the early deceleration phase and the fitting equation is 
(xf + x

0
)2 =

(

KIB
)1∕2

(t + tI) , where KI = 88.88 , B = 13,680 cm4 s−2 , x
0
= 45.83 cm and tI = −2.80 s. The 

solid line in b represents the straight line of best fit to the late decelearation phase and the fitting equation is 
(xf + x

0
)8∕3 = KVSB

2∕3V
2∕9

0
�
−1∕3(t + tVS) , where KVS = 4.25 and tVS = −13.43 s. The maximum front veloc-

ity Uf max
≈ 5.73 cm s−1 occurs at t ≈ 6.83 s

Table 2  Table showing the dependent variables for the gravity currents propagating on 12◦ , 9◦ , 6◦ slopes, 
including the entrainment coefficient � , distance from the virtual origin to the lock gate x

0
 , experimental 

constant KI , t-intercept tI in (9), experimental constant KVS and t-intercept tVS in (11)

The subscripts I and VS represent the inertial phase and viscous phase for the gravity currents on 12◦ , 9◦ , 6◦ 
slopes, respectively

� � x
0
 (cm) KI tI (s) KVS tVS (s)

12
◦

0.164
+0.005
−0.017

45.44
+4.56
−5.44

92.99
+5.75
−5.02

−2.21+8.84
−5.67

4.43
+0.78
−1.01

−11.88+5.06
−2.95

9
◦

0.174
+0.003
−0.002

48.37
+3.27
−4.38

79.78
+2.41
−3.93

0.22
+0.89
−0.91

4.09
+0.08
−0.07

−11.39+5.01
−5.81

6
◦

0.204
+0.014
−0.007

50.31
+6.62
−3.82

57.52
+4.23
−8.03

2.75
+2.46
−2.01

2.99
+0.22
−0.23

−3.88+10.25
−7.39
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the gravity currents propagating on 12◦ , 9◦ and 6◦ slopes are listed in Table 2. However, as 
shown in Fig. 5a, the front location history follows (9) only for a limited period of time. 
When t ≳ 40 s, the front location history begins to deviate from the power-relationship (9) 
and, when the deviation occurs, the front Reynolds number based on the front velocity and 
front thickness, Ref = Uf h∕� , is about Ref ≈ 3000.

In the late stage of the deceleration phase, Fig 5b reveals that the front location history 
follows the power-relationship (11) during t ≳ 40 s. The application of the power-relation-
ship (11) in the late deceleration phase suggests a balance between the buoyancy and vis-
cous forces, as argued by the scaling analysis. It is worth noting that, in the late stage of 
the deceleration phase, the gravity current begins to disintegrate into an ‘active’ part which 
is engulfed by the ambient fluid and the ‘inactive’ body of the current which moves on the 
slope more slowly. The equation of the straight line of best fit to the late deceleration phase 
is (xf + x0)

8∕3 = KVSB
2∕3V

2∕9

0
�
−1∕3(t + tVS) , where KVS = 4.25 and tVS = −13.43  s. The 

experimental constant KVS , as listed in Table 2, is calculated according to (11) and based 
on the slope of the best fit to the late deceleration phase and other relevant parameters in 
(11).

4.2  Gravity currents propagating on 9◦ and 6◦ slopes

Gravity currents propagating on 9◦ and 6◦ slopes are qualitatively similar to the gravity cur-
rents propagating on a 12◦ slope. For a concise presentation, we show the gravity current on 
a 6◦ slope for illustrative purposes and the readers are referred to Tables 1 and 2 for other 
quantitative measures.

Figure  6 shows the top view images for the gravity current on a 6◦ slope. The front 
velocity history, computed based on the front location history, is shown in Fig.  7. After 
released from the lock, the heavy fluid initially spreads outward and the gravity current 
takes the wedge shape. According to the front velocity history, the gravity current propa-
gating on 9◦ (not shown) and 6◦ slopes also exhibit two consecutive acceleration phases. As 
listed in Table 2, the maximum front velocities reached at the end of the second accelera-
tion phase on different slopes show significant scatter. The average maximum front veloci-
ties on 9◦ and 6◦ slopes are slightly greater than the average maximum front velocity on a 
12◦ slope but their difference is about on the same order as the error estimates. After the 
second acceleration phase, the gravity current moves into the early stage of the decelera-
tion phase while maintaining an integrated wedge shape. In the late stage of the decelera-
tion phase, the disintegration of an ‘active’ head from the body of the current occurs per-
sistently for the gravity currents on 9◦ and 6◦ slopes. We may examine the front location 
history for the gravity currents on 9◦ (not shown) and 6◦ slopes in the early and late stages 
of the deceleration phase according to (9) and (11), as shown in Fig. 8.

Based on the slope of the best fit line to the early deceleration phase in Fig. 8a, we may 
calculate the experimental constant KI = 56.29 and the entrainment coefficient � = 0.205 . 
[44] showed that the wedge integral model well describes the front location history and 
we may plot their front location history in terms of (9) and calculate the corresponding 
values of KI , as shown in Fig. 9. Our reported values of KI agree with those values based 
on the experiments of [44] and the experimental constant KI increases as the slope angle 
increases. The application of (9) in both the experiments of [44] and ours suggests that a 
balance between the buoyancy and inertia forces is reached in the early stage of the decel-
eration phase even though the lock configurations in the two experimental setups are differ-
ent. The entrainment coefficient � is found to weakly depend on the slope and is consistent 
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with the reported values given by [44] and [52], as shown in Fig. 10. In order to compare 
our results with [44], the experimental constant KI and the entrainment coefficient � are 
calculated using the total buoyancy in (9). As explained above, the gravity currents may 

Fig. 6  Experiment 08/30/16-1: top view images for the gravity current propagating on a 6◦ unbounded uni-
form slope. The reduced gravity in this experiment was g�

0
= 17.20 cm s−2 . Distances in the downslope and 

spanwise directions are in units of cm. Time instances are chosen at (a–h) t = 2 , 6, 10, 20, 30, 40, 50, 60 s
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Fig. 7  Experiment 08/30/16-1: 
front velocity history for the 
gravity current propagating on a 
6
◦ unbounded uniform slope. The 

reduced gravity in this experi-
ment was g�

0
= 17.20 cm s−2 . 

The maximum front velocity 
Uf max

≈ 6.56 cm s−1 occurs at 
t ≈ 5.0 s. The front velocity is 
in units of cm s−1 and time is in 
units of s

(a) (b)

Fig. 8  Experiment 08/30/16-1: relationship between a (xf + x
0
)2 and t and b (xf + x

0
)8∕3 and t for the 

gravity current propagating on a 6◦ unbounded uniform slope. The reduced gravity in this experi-
ment was g�

0
= 17.20  cm  s−2 . The front location is in units of cm and time is in units of  s. The solid 

line in a represents the straight line of best fit to the early deceleration phase and the fitting equation is 
(xf + x

0
)2 =

(

KIB
)1∕2

(t + tI) , where KI = 56.29 , B = 13760  cm4  s−2 , x
0
= 47.23  cm and tI = 0.74  s. The 

solid line in b represents the straight line of best fit to the late decelearation phase and the fitting equation is 
(xf + x

0
)8∕3 = KVSB

2∕3V
2∕9

0
�
−1∕3(t + tVS) , where KVS = 2.97 and tVS = −7.00  s. The maximum front veloc-

ity Uf max
≈ 6.56 cm s−1 occurs at t ≈ 5.0 s

Fig. 9  Experimental constant KI 
as a function of the slope angle 
� . Symbols: filled square, present 
experiments; opened square, KI 
values based on the front location 
histories reported by [44]
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not take the full charge of the total buoyancy into the deceleration phase, but currently we 
do not have sufficient density field information to quantify the fraction of the total buoy-
ancy carried into the deceleration phase by the gravity currents on unbounded uniform 
slopes. As assumed by the wedge integral model, the gravity currents propagating on 6◦ , 
9◦ , 12◦ slopes maintain a wedge shape in the early stage of the deceleration phase and, con-
sequently, we may use (10) to calculate the entrainment coefficient. As will be shown later, 
the gravity currents propagating on a 3◦ slope and on a horizontal boundary do not take 
the wedge shape neither in the early stage nor in the late stage of the deceleration phase. 
Although the front location history similarly follows (9) in the early deceleration phase, it 
is not appropriate to use (10) to calculate the entrainment coefficient for the gravity cur-
rents on a 3◦ slope and on a horizontal boundary.

In the late stage of the deceleration phase, the front location history begins to devi-
ate from the power-relationship (9) at t ≈ 40  s and the power-relationship (11) applies. 
When the front location history begins to deviate from the power-relationship (9), the front 
Reynolds number is about Ref ≈ 2000 . Based on the slope of the best fit line in Fig. 8b 
and (11), we may calculate the experimental constant KVS = 2.97 . As listed in Table 2, the 
experimental constant KVS decreases as the slope angle decreases. When compared with 
the gravity current on a 12◦ slope, the area of white spots is reduced for the gravity current 
propagating on a 6◦ slope in the late deceleration phase, as shown in Fig. 6 for t ≳ 40  s. 
Such an observation suggests that, when the slope angle decreases, the flow morphology 
approaches towards that of the gravity currents on a 3◦ slope and on a horizontal boundary.

4.3  Gravity currents on a 3◦ slope

Gravity currents propagating on a 3◦ slope are qualitatively different from the gravity cur-
rents on the 12◦ , 9◦ and 6◦ unbounded uniform slopes, from a number of perspectives. After 
released from the lock, the heavy fluid spreads outward continuously, as shown by the top 
view images in Fig. 11. Furthermore, for the gravity current on a 3◦ slope, there is no bare 
region appearing inside the heavy fluid, even in the late deceleration phase for t ≳ 40  s. 
As also shown by the side view images in Fig. 12, the gravity current thickness is more 
uniform in the streamwise direction. Contrary to the gravity currents on the 12◦ , 9◦ and 
6◦ unbounded uniform slopes taking a wedge shape in the early deceleration phase and 
an ‘active’ head separated from the body of the current in the late deceleration phase, the 
gravity current on a 3◦ slope maintains an integrated shape, which is more akin to a circular 
disk, throughout the motion. Our observation on the flow morphology of the gravity cur-
rent on a 3◦ slope is qualitatively similar to the planar gravity currents on 0◦ and 2◦ slopes 

Fig. 10  Entrainment coefficient 
� as a function of the slope angle 
� . Symbols: filled square, present 
experiments; opened square, val-
ues reported by [44]; diamond, 
values reported by [52]
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in the late deceleration phase. As reported by [8], for the planar gravity currents on 0◦ 
and 2◦ slopes, the gravity current head maintains a more streamlined shape without violent 
mixing with the ambient fluid throughout the course of propagation.

Figure 13 shows the front velocity history for the gravity current propagating on a 3◦ 
slope and there is only one acceleration phase in this case. Such an observation on the 

Fig. 11  Experiment 11/28/16-4: top view images for the gravity current propagating on a 3◦ unbounded uni-
form slope. The reduced gravity in this experiment was g�

0
= 17.03 cm s−2 . Distances in the downslope and 

spanwise directions are in units of cm. Time instances are chosen at a–f t = 4 , 6, 10, 20, 40, 60 s
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single acceleration phase is similar to that for the gravity current propagating on a hori-
zontal boundary. Following the maximum front velocity, the gravity current moves into 
the deceleration phase and we may examine the front location history in the early and late 
stages of the deceleration phase according to (9) and (12).

Figure  14a shows (xf + x0)
2 versus t and Fig.  14b shows (xf + x0)

4 versus t. In the 
early stage of the deceleration phase, Fig.  14a shows that the front location history 
follows the power-relationship (9) during 10 ≲ t ≲ 25  s. Although the flow morphol-
ogy of the gravity currents on a 3◦ unbounded uniform slope is different from that of 
the gravity currents on the 12◦ , 9◦ and 6◦ unbounded uniform slopes, it is still desir-
able that there is a balance between the buoyancy and inertia forces and the power-
relationship (9) applies in the early stage of the deceleration phase. The straight line 
of best fit to the early deceleration phase is shown in Fig. 14a and the fitting equation 
is (xf + x0)

2 =
(

KIB
)1∕2

(t + tI) , where KI = 16.41 , B = 13624 cm4 s−2 , x0 = 9.62 cm and 
tI = −1.84  s. As explained above, for the gravity currents on a 3◦ unbounded uniform 

Fig. 12  Experiment 11/28/16-4: side view images for the gravity current propagating on a 3◦ unbounded 
uniform slope as shown in Fig. 11. Distances in the downslope and wall-normal directions are in units of 
cm. Time instances are chosen at a–f t = 4 , 6, 10, 20, 40, 60 s
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slope and on an unbounded horizontal boundary, the flow morphology is different and 
it is not appropriate to compute the entrainment coefficient using (10). Again, the front 
location history for the gravity currents propagating on a 3◦ unbounded uniform slope 
follows (9) only for a limited period of time, as shown in Fig. 14a. When t ≳ 25 s, the 
front location history begins to deviate from the power-relationship (9) and, when the 
deviation occurs, the front Reynolds number is about Ref ≈ 1000.

In the late stage of the deceleration phase, Fig.  14b shows that the front location 
history follows the power-relationship (12) during t ≳ 30  s. It is worth noting that in 
the late deceleration phase, the gravity current on a 3◦ slope maintains an integrated, 
circular disk shape throughout the motion without the disintegration process observed 

Fig. 13  Experiment 11/28/16-
4: front velocity history for the 
gravity current propagating on a 
3
◦ unbounded uniform slope. The 

reduced gravity in this experi-
ment was g�

0
= 17.03 cm s−2 . 

The maximum front velocity 
Uf max

≈ 6.67 cm s−1 occurs at 
t ≈ 3.17 s. The front velocity is 
in units of cm s−1 and time is in 
units of s

(a) (b)

Fig. 14  Experiment 11/28/16-4: relationship between a (xf + x
0
)2 and t and b (xf + x

0
)4 and t for the 

gravity current propagating on a 3◦ unbounded uniform slope. The reduced gravity in this experi-
ment was g�

0
= 17.03  cm  s−2 . The front location is in units of cm and time is in units of  s. The solid 

line in a represents the straight line of best fit to the early deceleration phase and the fitting equation is 
(xf + x

0
)2 =

(

KIB
)1∕2

(t + tI) , where KI = 16.41 , B = 13624  cm4  s−2 , x
0
= 9.62  cm and tI = −1.84  s. The 

solid line in b represents the straight line of best fit to the late decelearation phase and the fitting equation 
is (xf + x

0
)4 = KVMB

2∕3V
2∕3

0
�
−1∕3(t + tVM) , where KVM = 54.52 and tVM = −17.29  s. The maximum front 

velocity Uf max
≈ 6.67 cm s−1 occurs at t ≈ 3.17 s
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for the gravity currents on the 12◦ , 9◦ and 6◦ unbounded uniform slopes. Therefore, the 
power-relationship (12) applies in the late stage of the deceleration phase and the appli-
cation of the power-relationship (12) suggests a balance between the buoyancy and vis-
cous forces. The equation of the straight line of best fit to the late deceleration phase 
is (xf + x0)

4 = KVMB
2∕3V

2∕3

0
�
−1∕3(t + tVM) , where KVM = 54.52 and tVM = −17.29  s. The 

experimental constant KVM , as listed in Table  3, is calculated according to (12) and 
based on the slope of the best fit line to the late deceleration phase and other relevant 
parameters in (12).

Fig. 15  Experiment 01/17/17-4: top view images for the gravity current propagating on an unbounded hori-
zontal boundary. The reduced gravity in this experiment was g�

0
= 17.12 cm s−2 . Distances in the downslope 

and spanwise directions are in units of cm. Time instances are chosen at a–f t = 4 , 6, 10, 20, 40, 60 s

Table 3  Table showing the dependent variables for the gravity currents propagating on 3◦ , 0◦ slopes, includ-
ing the distance from the virtual origin to the lock gate x

0
 , experimental constants KI , t-intercept tI in (9), 

experimental constant KVM and t-intercept tVM in (12)

The subscripts I and VM represent the inertial phase and viscous phase for the gravity currents on a 3◦ 
unbounded uniform slope and on an unbounded horizontal boundary, respectively

� x
0
 (cm) KI tI (s) KVM tVM (s)

3
◦

12.23
+4.23
−7.23

14.36
+3.12
−2.27

−0.96+1.85
−2.52

63.21
+16.91
−15.77

−23.06+5.77
−7.93

0
◦

6.84
+3.15
−3.83

6.59
+1.63
−2.02

0.77
+1.48
−1.64

7.52
+5.03
−3.45

20.43
+30.67
−28.77
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4.4  Gravity currents on a horizontal boundary

In order to compare with the gravity currents propagating on a 3◦ slope and on other slopes, 
we also performed the experiments on the gravity currents propagating on a horizontal 
boundary. The top view images of the gravity current on a horizontal boundary are shown 
in Fig. 15. Overall, the flow morphology is qualitatively similar to the gravity current on 
a 3◦ slope but different from the gravity currents on the 12◦ , 9◦ and 6◦ unbounded uniform 
slopes. After released from the lock, the heavy fluid spreads outward continuously through-
out the motion. The gravity current on a horizontal boundary maintains an integrated shape 
which is more akin to a circular disk expanding on the plane rather than a wedge shape 
as the gravity currents propagating on the 12◦ , 9◦ and 6◦ unbounded uniform slopes. We 
should note that a shape similar to a circular disk was also observed for the unconfined 
gravity currents on a horizontal boundary in the studies of [19, 26].

Figure 16 shows the front velocity history for the gravity current propagating on a hori-
zontal boundary. As can be expected based on the knowledge of the propagation of cylin-
drical gravity currents on a horizontal boundary [5, 14], one acceleration phase is observed 
in this case. After reaching the maximum front velocity, the gravity current moves into the 
deceleration phase. In the early stage of the deceleration phase when the buoyancy and 
inertia forces are in balance, the power-relationship (9) applies for the gravity current prop-
agating on a horizontal boundary as do the gravity currents on other slopes in our study. 
In the late stage of the deceleration phase, as the gravity current on a horizontal boundary 
maintains a circular disk shape, the power-relationship (12) applies when the buoyancy and 
viscous forces are in balance.

Figure  17a shows (xf + x0)
2 versus t and the fitting equation for the straight line of 

best fit in the early deceleration phase is (xf + x0)
2 =

(

KIB
)1∕2

(t + tI) , where KI = 7.57 , 
B = 13696 cm4 s−2 , x0 = 5.23 cm and tI = 0.13 s. Our reported values of KI for the grav-
ity current on a horizontal boundary, as listed in Table 3, are consistent with but slightly 
greater than the estimates of 5.71 and 3.62 based on the experiments of [17, 18]. Such a 
slight difference may be attributed to the fact that, while the gravity currents spread radi-
ally outward in [17, 18], the gravity currents produced in our lock configuration propa-
gate preferentially in the direction towards the gate when the gate is removed. The front 

Fig. 16  Experiment 01/17/17-
4: front velocity history for the 
gravity current propagating 
on an unbounded horizon-
tal boundary. The reduced 
gravity in this experiment 
was g�

0
= 17.12 cm s−2 . The 

maximum front velocity 
Uf max

≈ 6.36 cm s−1 occurs at 
t ≈ 3.50 s. The front velocity is 
in units of cm s−1 and time is in 
units of s



1659Environmental Fluid Mechanics (2020) 20:1637–1662 

1 3

location history robustly follows the power-relationship (9) during 10 ≲ t ≲ 20  s. After-
wards, the front location history begins to deviate from the power-relationship (9) when 
the front Reynolds number is about Ref ≈ 500 . Figure  17b shows (xf + x0)

4 versus 
t and the fitting equation for the straight line of best fit in the late deceleration phase is 
(xf + x0)

4 = KVMB
2∕3V

2∕3

0
�
−1∕3(t + tVM) , where KVM = 4.17 and tVM = 51.10  s. Again, 

our reported values of KVM for the gravity current on a horizontal boundary, as listed in 
Table 3, are consistent with but slightly greater than the estimate based on [17].

In summary, we reported the gravity currents propagating on 12◦ , 9◦ , 6◦ , 3◦ unbounded 
uniform slopes and on an unbounded horizontal boundary. After the initial acceleration 
phase, the gravity currents move into the early and late stage of the deceleration phase. In 
the early stage of the deceleration phase, the front location history follows the power-rela-
tionship (9). In the late stage of the deceleration phase for the gravity currents on 12◦ , 9◦ , 
6◦ unbounded uniform slopes, the front location history follows (11) while in the late stage 
of the deceleration phase for the gravity currents on a 3◦ unbounded uniform slope and 
on an unbounded horizontal boundary, the front location history follows (12). We should 
remark that the gravity currents on 12◦ , 9◦ , 6◦ unbounded uniform slopes maintain a wedge 
shape in the early deceleration phase an ‘active’ head separates from the body of the cur-
rent in the late deceleration phase. The gravity currents on a 3◦ unbounded uniform slope 
and on an unbounded horizontal boundary maintain an integrated shape throughout the 
propagation.

5  Conclusions

Gravity currents produced from a finite volume of heavy fluid propagating on 12◦ , 9◦ , 6◦ , 
3◦ unbounded uniform slopes and on an unbounded horizontal boundary are presented. 
The novel contribution of this work is that, while the heavy fluid is released from the 
lock with a quiescent condition, there are two stages of the deceleration phase for the 

(a) (b)

Fig. 17  Experiment 01/17/17-4: relationship between a (xf + x
0
)2 and t and b (xf + x

0
)4 and t for the 

gravity current propagating on an unbounded horizontal boundary. The reduced gravity in this exper-
iment was g�

0
= 17.12  cm  s −2 . The front location is in units of cm and time is in units of  s. The solid 

line in a represents the straight line of best fit to the early deceleration phase and the fitting equation is 
(xf + x

0
)2 =

(

KIB
)1∕2

(t + tI) , where KI = 7.57 , B = 13696 cm4 s−2 , x
0
= 5.23 cm and tI = 0.13 s. The solid 

line in b represents the straight line of best fit to the late decelearation phase and the fitting equation is 
(xf + x

0
)4 = KVMB

2∕3V
2∕3

0
�
−1∕3(t + tVM) , where KVM = 4.17 and tVM = 51.10 s. The maximum front veloc-

ity Uf max
≈ 6.36 cm s−1 occurs at t ≈ 3.50 s
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gravity currents on unbounded uniform slopes. The flow morphologies in the early stage 
and late stage of the deceleration phase for the gravity currents propagating on 12◦ , 9◦ 
and 6◦ unbounded uniform slopes are qualitatively different from those for the gravity 
currents propagating on a 3◦ unbounded uniform slope and on an unbounded horizontal 
boundary.

For the gravity currents propagating on 12◦ , 9◦ , 6◦ unbounded uniform slopes in the 
early stage of the deceleration phase, the buoyancy force and the inertia force are in bal-
ance and the front location history follows the power-relationship (9). The experimental 
constant KI monotonically increases with the slope angle from KI = 57.52+4.23

−8.03
 at � = 6◦ to 

KI = 79.78+2.41
−3.93

 at � = 9◦ and KI = 92.99+5.75
−5.02

 at � = 12◦ . Furthermore, the front location 
history begins to deviate from the power-relationship in the early deceleration phase when 
the front Reynolds number falls to Ref ≈ 2000 ∼ 3000 and the viscous force becomes more 
important. In the late stage of the deceleration phase, an ‘active’ head separates from the 
body of the current and the front location history follows the power-relationship (11). The 
experimental constant KVS increases with the slope angle from KVS = 2.99+2.22

−2.26
 at � = 6◦ to 

KVS = 4.09+0.08
−0.07

 at � = 9◦ and KVS = 4.43+0.78
−1.01

 at � = 12◦ . As a general belief in the study 
of gravity currents [46], the viscous effects are thought to be negligible compared with 
inertial effects in the propagation of gravity currents for the Reynolds number greater than 
1000, but the gravity currents propagating on 12◦ , 9◦ and 6◦ unbounded uniform slopes 
might be an exception to this general belief.

For the gravity currents propagating on a 3◦ unbounded uniform slope and on an 
unbounded horizontal boundary in the early stage of the deceleration phase, the front loca-
tion history also follows the power-relationship (9). The experimental constant KI increases 
with the slope angle from KI = 6.59+1.63

−2.02
 at � = 0◦ to KI = 14.36+3.12

−2.27
 at � = 3◦ . The front 

location history begins to deviate from the power-relationship in the early deceleration 
phase when the front Reynolds number falls to Ref ≈ 500 ∼ 1000 and the gravity currents 
move into the late stage of the deceleration phase. In the late stage of the deceleration 
phase, the gravity currents on a 3◦ unbounded uniform slope and on an unbounded hori-
zontal boundary maintain an integrated circular disk shape without violent mixing with 
the ambient fluid and the front location history follows the power-relationship (12). The 
experimental constant KVM increases with the slope angle from KVM = 7.52+5.03

−3.45
 at � = 0◦ 

to KVM = 63.21+16.91
−15.77

 at � = 3◦ . Our reported values of KI and KVM for the gravity currents 
on a horizontal boundary are also in reasonable agreement with the estimates based on pre-
viously published experiments [17, 18].

Our experiments show that the gravity currents on 12◦ , 9◦ , 6◦ unbounded uniform slopes 
in the late stage of the deceleration phase have an ‘active’ head which separates from the 
body of the current and the gravity currents on a 3◦ unbounded uniform slope and on an 
unbounded horizontal boundary in the late stage of the deceleration phase maintain an 
integrated shape. Our results indicate two possible routes to the final stage of the gravity 
currents on unbounded uniform slopes.
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