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 The z-transform was known to Laplace, and 
re-introduced in 1947 by W. Hurewicz
as a tractable way to solve linear, constant-coefficient difference eqns. 

 It was later dubbed "the z-transform" by Ragazzini and Zadeh
in the sampled-data control group at Columbia University in 1952

 The name of “the z-transform”
• The letter "z" being a sampled/digitized version of 

the letter "s" in Laplace transforms.
• Another possible source is the presence of the letter “z"

in the names of both Ragazzini and Zadeh
who published the seminal paper.

 The modified or advanced z-transform was later developed and 
popularized by E. I. Jury in 1958, 1973.

 The idea contained within the z-transform is also known as 
the method of generating functions around 1730 
when it was introduced by DeMoivre with probability theory.

 From a mathematical view 
the z-transform can also be viewed as a Laurent series
where one views the sequence of numbers under consideration 
as the (Laurent) expansion of an analytic function (the z-transform).
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 From the Fourier Transform of DT signals x[n]:
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 The z-Transform of a General Signal x[n]:

FT zT
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 z-Transform & Fourier Transform:
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 Example 10.1:

X X
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 Example 10.2:

X X
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 Region of Convergence (ROC):
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 Example 10.3:
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 Example 10.3:

X X X X
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 Example 10.4:
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 Example 10.4:
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 Properties of ROC:
1. The ROC of X(z) consists of a ring in the z-plane

centered about the origin

2. The ROC does not contain any poles
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 Properties of ROC:
3. If x[n] is of finite duration, 

then the ROC is  the entire z-plane, 
except possibly z = 0 and/or z = ∞
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 Properties of ROC:
4. If x[n] is right-sided sequence, and 

if the circle |z| = r0 is in the ROC, 
then all finite values of z 

for which |z| > r0

will also be in the ROC



Feng-Li Lian © 2015
NTUEE-SS10-Z-21The Region of Convergence for z-Transform

 Properties of ROC:
5. If x[n] is left-sided sequence, and 

if the circle |z| = r0 is in the ROC, 
then all values of z for which
0 < |z| < r0

will also be in the ROC
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 Properties of ROC:
6. If x[n] is two-sided, and 

if the circle |z| = r0 is in the ROC, 
then the ROC will consist of a ring 

in the z-plane that includes the circle |z| = r0
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 Example 10.7:
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 Example 10.7:

X X XX

X XX X
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 Properties of ROC:
7. If the z-transform X(z) of x[n] is rational, 

then its ROC is bounded by poles or extends to ∞
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 Properties of ROC:
8. If the z-transform X(z) of x[n] is rational

– If x[n] is right sided, 
then the ROC is the region in the z-plane 

outside the outermost pole ---
i.e., outside the circle of radius equal to 

the largest magnitude of the poles of X(z)

– Furthermore, if x[n] is causal, 
then the ROC also includes z = ∞
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 Properties of ROC:
9. If the z-transform X(z) of x[n] is rational 

and if x[n] is left sided, 
then the ROC is the region in the z-plane 

inside the innermost pole ---
i.e., inside the circle of radius equal to 

the smallest magnitude of the poles of X(z)
other than any at z = 0

and extending inward and 
possibly including z = 0

- In particular, if x[n] is anti-causal, 
(i.e., if it is left sided and = 0 for n > 0), 
then the ROC also includes z = 0
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 Example 10.8:
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 The Inverse z-Transform:
• By the use of contour integration
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 The Inverse z-Transform:

• By the technique of partial fraction expansion
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 Example 10.9:
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 Examples 10.9, 10.10, 10.11:
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 First-Order Systems:
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 Second-Order Systems:
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CT DT
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Property CTFS DTFS CTFT DTFT LT zT

Linearity 3.5.1 4.3.1 5.3.2 9.5.1 10.5.1

Time Shifting 3.5.2 4.3.2 5.3.3 9.5.2 10.5.2

Frequency Shifting (in s, z) 4.3.6 5.3.3 9.5.3 10.5.3

Conjugation 3.5.6 4.3.3 5.3.4 9.5.5 10.5.6

Time Reversal 3.5.3 4.3.5 5.3.6 10.5.4

Time & Frequency Scaling 3.5.4 4.3.5 5.3.7 9.5.4 10.5.5

(Periodic) Convolution 4.4 5.4 9.5.6 10.5.7

Multiplication 3.5.5 3.7.2 4.5 5.5

Differentiation/First Difference 3.7.2 4.3.4, 
4.3.6

5.3.5, 
5.3.8

9.5.7, 
9.5.8

10.5.7, 
10.5.8

Integration/Running Sum (Accumulation) 4.3.4 5.3.5 9.5.9 10.5.7

Conjugate Symmetry for Real Signals 3.5.6 4.3.3 5.3.4

Symmetry for Real and Even Signals 3.5.6 4.3.3 5.3.4

Symmetry for Real and Odd Signals 3.5.6 4.3.3 5.3.4

Even-Odd Decomposition for Real Signals 4.3.3 5.3.4

Parseval’s Relation for (A)Periodic Signals 3.5.7 3.7.3 4.3.7 5.3.9

Initial- and Final-Value Theorems 9.5.10 10.5.9
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 Linearity of the z-Transform:
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 Time Shifting:
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 Scaling in the z-Domain:
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 Scaling in the z-Domain:
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 Time Reversal:
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 Time Expansion:
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 Conjugation:
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 Convolution Property:



Feng-Li Lian © 2015
NTUEE-SS10-Z-48Properties of the z-Transform

 Differentiation in the z-Domain:
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 The Initial-Value Theorem:

 The Final-Value Theorem:
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 Analysis & Characterization of LTI Systems:

 Causality

 Stability

LTI System
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 Causality:

• For a causal LTI system, 
h[n] = 0 for n < 0, and thus is right-sided

• A DT LTI system is causal 
if and only if
the ROC of the system function H(z)
is    the exterior of a circle in the z-plane, including infinity

• A DT LTI system with a rational H(z) is causal
if and only if
(a) ROC is exterior of a circle outside outermost pole; 

and infinity must be in the ROC; and
(b) order of numerator <= order of denominator
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 Example 10.21:
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 Stability:

• An DT LTI system is stable
if and only if
the ROC of H(z) includes the unit circle [i.e., |z| = 1]

• A causal LTI system with rational H(z) is stable
if and only if
all of the poles of H(z) lie in the inside the unit circle, 
i.e., all of the poles have magnitude < 1
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 Example 10.22:
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 Example 10.24:
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 LTI Systems by Linear Constant-Coef Difference Equations:

LTI System
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 Example 10.25:
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 System Function Blocks:
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 Example 10.28:
• Consider a causal LTI system with system function



Feng-Li Lian © 2015
NTUEE-SS10-Z-66System Function Algebra & Block Diagram Representation

 Example 10.29:
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 Example 10.29:
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 Example 10.30:
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 Example 10.30:
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 The Unilateral z-Transform of x(t):
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 Time-Shifting Property
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 Example 10.33:
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 Example 10.33:
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 The z-Transform
 The ROC for z-T
 The Inverse z-T
Geometric Evaluation of the FT
Properties of the z-T

• Linearity Time Shifting Shifting in the z-Domain

• Time Reversal Time Expansion Conjugation

• Convolution First Difference Accumulation

• Differentiation in the z-Domain Initial-Value Theorems

Some Common z-T Pairs
Analysis & Charac. of LTI Systems Using the z-T
System Function Algebra, Block Diagram Repre.
 The Unilateral z-T
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