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= The z-Transform
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* Properties of the z-Transform
= Some Common z-Transform Pairs

= Analysis & Characterization of LTI Systems
Using the z-Transforms

= System Function Algebra and
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Brief History of the z-Transform NTUEE-SS10-7-5

The z-transform was known to Laplace, and
re-introduced in 1947 by W. Hurewicz
as a tractable way to solve linear, constant-coefficient difference eqgns.

It was later dubbed "the z-transform" by Ragazzini and Zadeh
In the sampled-data control group at Columbia University in 1952

The name of “the z-transform”

* The letter "z" being a sampled/digitized version of
the letter "s" in Laplace transforms.

* Another possible source is the presence of the letter “z"

in the names of both Ragazzini and Zadeh

who published the seminal paper.
The modified or advanced z-transform was later developed and
popularized by E. I. Jury in 1958, 1973.

The idea contained within the z-transform is also known as
the method of generating functions around 1730
when it was introduced by DeMoivre with probability theory.

From a mathematical view

the z-transform can also be viewed as a Laurent series

where one views the sequence of numbers under consideration

as the (Laurent) expansion of an analytic function (the z-transform).
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= From the Fourier Transform of DT signhals x[n]:

From the Fourier Transform

z[n] = a"u[n] +o0
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= The z-Transform of a General Signal x|n]:

z = el" 2z = rel¥ r \
ZT w

FT N - :
X (™) 2 _Z z[n]e v" X(z2) 2 _Z x[n]z™" /
relV =
x[n] — X (e'%) x[n] = X(2)
X (") = .’F{:p[n]} X(z)=2Z2 {IE[’)’L]}

z[n] = F 1 {X(ejw)} zln] = 271 {X(Z)}

=7 {alnl} = X(e)

z—elW

X@)|_ =2 {m[n]}
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= z-Transform & Fourier Transform:
Z {:U[n]} = X (re'™)

z=relW
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= Z z[n](re/¥)™"
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= Example 10.1:

oln] = a"uln] [Tree. full
1

. —|_m . m .
= X (V) = a" uln] e 7" = - Le— .
@)= % ot uln S =t
“+ o0 00
S X()= Y s =3 el <1
Nn=——0o0 n=0
. 2 14> ol
= = .|z a
1 —az1 —

A A

o For |a| > 1,

ROC does not
include the unit circle,

F{a”u[n]} does not converge
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Laplace Transform and The z-Transform NTUEE-SS10-7-10
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= Example 10.2: —ryr el
zln] = —a"u[l—n—1] l ll 1
1
oo
= X(z) = — Z a® uw|l—n— 1] 2™ |4
-1 B o0 - o0 . n
=_Za’n2’n :—Za”’z” = 1-— (a, z)
Nn=——0oco n=1 n=0
1
o lzj<1 =1-
1—a 1z

A

C1—az"l  z—a /A /\H
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= Region of Convergence (ROCQC):

z
a" u[n] =y ,|z| > |af

z
—a"u[—-n—-1] +— © , |z| < |a

where Fourier transform of z[n]r " converges
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The z-Transform

= Example 10.3:

|
M-I-
8
——
——
'\
:

|

Feng-Li Lian © 2015
NTUEE-SS10-Z-13



Feng-Li Lian © 2015

The z-Transform NTUEE-SS10.7.14

= Example 10.3:
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The z-Transform

= Example 10.4:

(;)n sin(7n) uln]

sin(%n) =
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= Example 10.4: ahuln] e —— 2| > |l
—a
| n
(_ €J7T/4) u[n] < “ > ) |Z|
3
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= The z-Transform

* The Region of Convergence for z-Transforms

= The Inverse z-Transform

= Geometric Evaluation of the Fourier Transform
* Properties of the z-Transform
= Some Common z-Transform Pairs

= Analysis & Characterization of LTI Systems
Using the z-Transforms

= System Function Algebra and
Block Diagram Representations

= The Unilateral z-Transform
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= Properties of ROC:
1. The ROC of X(z) consists of a ring in the z-plane
centered about the origin

2. The ROC does not contain any poles
2(z — %) 1
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The Region of Convergence for z-Transform iyl
= Properties of ROC: .

%[
3. If X[n] is of finite duration, “ ﬂ””“‘h m
then the ROC is the entire z-plane, **** m—
except possibly z = 0 and/or z = oo

+oc0 ‘H””TTImmnm.,.,,,,,,-~
X (z) = > z[n]z"

n=——oco

- ---,....."nnnTTTTTTT”H””“

= Y z[n]z™" s bounded

?’L:Nl

oot 2[-3]zT 4+ -+ 2[5]z7°

a3 sl (L)

o However, |2 =0 = |2|¥ — oo if N is negative

2] w00 = |2|V — 0o if N is positive



The Region of Convergence for z-Transform

= Properties of ROC:

4. 1f x[n] is right-sided sequence, and
If the circle |z| =1, is in the ROC,
then all finite values of z

for which |z| > 1,
will also be in the ROC

X(roe?”) = ) {m[n]ron} e I < oo
TLZN]_
X(re?) = > {a:[n]rl_n} e=Iwn
?’L:Nl
r1 > 10 ?“1_1 < 'ral

< i {x[n]fran} eIV < 0o

TLZN]_
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= Properties of ROC: ?
. 4

5. If x[n] is left-sided sequence, and \\\
it H

If the circle |z| =1, is in the ROC,
then all values of z for which

0<|z| <1y
will also be in the ROC n ﬂlm
X(r1e’) = nzz_oo {x[”]rl_n} o -n--mmmmnIHHHHH]I”‘

O<r1<rg r*<ry, m>0

—jwn { sl
< Z {CB[TL }8 < @ "'QQQQQQHQT?YTT"TITTTI I
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The Region of Convergence for z-Transform

= Properties of ROC:

6. If x[n] is two-sided, and

il
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Mt

?

If the circle |z| = r, is in the ROC, |
then the ROC will consist of a ring

In the z-plane that includes the circle |z| = r,

I9m

I9m

z-plane

(@)

(c)



The Region of Convergence for z-Transform

= Example 10.7:

x[n]= bl
x[n] = bl

o W

(@) [n] = b|n|, b> 0
= b"u[n] + b "u[-—n — 1]
+o0
X(z) = Z x[n]z"

n=——oo

= , 2]
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= Example 10.7:
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= Properties of ROC:

7. If the z-transform X(z) of x[n] is rational,
then its ROC is bounded by poles or extends to oo

gm Unit ci Im
nit circle
/ -F~ S, Z'plane z-plane
' AEEP N L b o
\‘ 5 A\ b}k :,\(Re % Re
()
(e)
3
X(2) -1 © b‘<||<1 (2~ 3) ||>l
z) = , z —
b ) (z—b)(z—b-1) b (z—2)(z—3) 2
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= Properties of ROC:

8. If the z-transform X(z) of x[n] is rational

— If X[n] is right sided,
then the ROC is the region in the z-plane
outside the outermost pole ---
l.e., outside the circle of radius equal to
the largest magnitude of the poles of X(z)

— Furthermore, if X[n] is causal,
then the ROC also includes z =

X(z) = 45:0 x[n]z™" = —Iioa:[n] (Eyl
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= Properties of ROC:

9. If the z-transform X(z) of x[n] is rational
and If X[n] is left sided,
then the ROC is the region in the z-plane
Inside the innermost pole ---
l.e., inside the circle of radius equal to
the smallest magnitude of the poles of X(z)
otherthananyatz=0

and extending inward and +o0

possibly including z = 0 X(z) = n;ma:[n]z”

- In particular, if x[n] is anti-causal, _ EO: N
(l.e., if it is left sided and = 0 for n > 0), n=—00

then the ROC also includes z = 0 _ i o[om] 2

m=0



The Region of Convergence for z-Transform

= Examp

le 10.8:

X(z) =

(1—2z"1)(1—2271)

Im
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= The z-Transform

= The Region of Convergence for z-Transforms

= The Inverse z-Transform

= Geometric Evaluation of the Fourier Transform
* Properties of the z-Transform
= Some Common z-Transform Pairs

= Analysis & Characterization of LTI Systems
Using the z-Transforms

= System Function Algebra and
Block Diagram Representations

= The Unilateral z-Transform



The Inverse z-Transform

= The Inverse z-Transform:

« By the use of contour integration

X(re") = ]:{:U[n]rn}

x[n]r " = F 1 {X(rejw)}

= " F 1 {X(Tejw)}

1

rn—/ X (re?¥)e’"dw
2

2m

1
27

1
219

/% X (re?*) (rejw)ndw

%X(z)z”_ldz
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“+ o0

X(z) = Z x[n]z™"

n=——oo

Vz = re’” in the ROC

\
N
NI

2z = rel¥?

dz = jre!dw = jzdw

1
dw = —dz
Jz
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= The Inverse z-Transform:

Z z 1

a" u[n] A e |z| > |a
fufon—1] s L el <l
—a —n — < - = a
e zZ—a 1 —az1 ©
« By the technique of partial fraction expansion
A B M
() 1 —az! T 1 —bz1 T T 1 —mz1
zln] = Aad"uln] — BbL'ul-n—-1] +---+ xm[n]

(if ROC outside z =a) (if ROC inside z = b)



The Inverse z-Transform

= Example 10.9:
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32,71 1
X — 6 -
(2) (1_%,2_1)(1_% 1y’ | |>3
_ (- )
(2 ) (2 )
S C s R R
z 1
u[n] (1 Z_l), |Z|
Z 1
uln] a =yt 2|

= z[n] =




The Inverse z-Transform

= Examples 10.9, 10.10, 10.11:
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2] < & 1< |z t
1
s | C el 1| O )"l Wﬁ
(1—z271)
ol < 1 1<l & J
1
(1- L) C )'ul ] ( )lu[ ]
2] < % 7 <lz] <3 3 <z
oo | (o Orul ] Coul 1 |C )"l )
1 n n n
Ao | Comul ] C )mul 1 |C ul ]
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= The z-Transform

= The Region of Convergence for z-Transforms

= The Inverse z-Transform

= Geometric Evaluation of the Fourier Transform
* Properties of the z-Transform
= Some Common z-Transform Pairs

= Analysis & Characterization of LTI Systems
Using the z-Transforms

= System Function Algebra and
Block Diagram Representations

= The Unilateral z-Transform
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= First-Order Systems:

h[n] = a"uln]

1 z
H(z) = - — = , |z > a
— az” zZ—a
e For |a| < 1, ROC includes |z| =1 A -t
= H(V) = f
(') = 1 —ae v “
& z-plane

Unit circle

a=0895




Geometric Evaluation of the Fourier Transform

= Second-Order Systems:

1
H(z) =
(2) 1 — (2rcosf)z—1 4+ (r2)z—2
& 2] > |
= , |z r
(z —p1)(z —p2)
poles : P1 = reja. : = =0
. po = re—if Zeros | z1 = 29 =
e
Im
Unit circle ‘ s
N _
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Laplace Transform and The z-Transform

CT

s = o 4+ jw

Im

s-plane

I Hjw) |

—a

I
I
I
I
I
I
|
!
i
!
I
!
!
!
|
|
|

=01

LH{jw)

DT
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z = rel¥
I9Im

[H(e)|

LH(EY)

w2 -

{b)

(b)

—n/2
(c)
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= The z-Transform

= The Region of Convergence for z-Transforms

= The Inverse z-Transform

= Geometric Evaluation of the Fourier Transform
* Properties of the z-Transform
= Some Common z-Transform Pairs

= Analysis & Characterization of LTI Systems
Using the z-Transforms

= System Function Algebra and
Block Diagram Representations

= The Unilateral z-Transform
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Property CTES | DTFS CTFT DTFT LT zT

Linearity 3.5.1 4.3.1 5.3.2 951 10.5.1

Time Shifting 3.5.2 4.3.2 5.3.3 9.5.2 10.5.2

Frequency Shifting (in s, z) 4.3.6 5.3.3 9.5.3 10.5.3

Conjugation 3.5.6 4.3.3 5.34 9.55 10.5.6

Time Reversal 3.5.3 4.3.5 5.3.6 10.5.4

Time & Frequency Scaling 3.54 4.3.5 5.3.7 9.54 10.5.5

(Periodic) Convolution 4.4 54 9.5.6 10.5.7
Multiplication 3.5.5 3.7.2 4.5 55

Differentiation/First Difference 3.7.2 4.3.4, 5.3.5, 9.5.7, 10.5.7,

4.3.6 5.3.8 9.5.8 10.5.8

Integration/Running Sum (Accumulation) 4.3.4 5.3.5 9.5.9 10.5.7
Conjugate Symmetry for Real Signals 3.5.6 4.3.3 5.3.4
Symmetry for Real and Even Signals 3.5.6 4.3.3 5.3.4
Symmetry for Real and Odd Signals 3.5.6 4.3.3 5.34
Even-Odd Decomposition for Real Signals 4.3.3 5.34
Parseval's Relation for (A)Periodic Signals 3.5.7 3.7.3 4.3.7 5.3.9

Initial- and Final-Value Theorems 9.5.10 10.5.9
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“+ o0

" Linearity of the z-Transform: .y _ S afn]s "
Z 'n,——oo
r1[n] +— X1(2), ROC = R; x|n] = 5 j{X(z)z’”’ ldz
]
2o[n] s Xo(2), ROC = R»
Z
axy[n]+bxo[n] — aX1(2)+bXo(2),
with ROC containing R1 N Ro
+oo +co
) >
+oo +occ
DD D
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Properties of the z-Transform NTUEE.SS10.2.41
. . ] “+ o0
= Time Shifting: X(2) = Z o[n]e"
x[n] = j{X(Z)z” ldz
~ 2719

x[n] «— X(z), ROC =R

Z
x[n—ng] — z "X (z), ROC=R
except for the possible
Jio [ ] o, ) addition or deletion of
=00 the origin or infinity
+oc

Z x| ] = )

()
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+oo

= Scaling in the z-Domain: X()= S afn]
z n=—-—o0
z[n] +— X(z), ROC =R z[n] = %j{X(z)z"’ldz
]
Z 2
zox[n] — X (—), ROC = |zg|R
<0
T 1 2z
n —n T X | = n—ld
Z zpx[n]z Qﬂjj{ (Zo)z ~

n—-—0ocC

o0

o) ()0 )
SR =/ ()0) ()

T %%x g
() 0 x[ng -
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Properties of the z-Transform

= Scaling in the z-Domain:

z z
a"uln] +— X(z) = ,|z] > al
z—a
. z 2 — 2
(bl <25 X(C) =y [

e/W0" ] —

] U}O Unit circle z-plane
(a

Re

) (b}



Properties of the z-Transform

= Time Reversal:

Z

x[n] +—
x[—n] PN
S afm] ()
m=-oc
—+o0
_Z_ zfm] ()™

()

X(z), ROC =R

X

1

z

), ROC =
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+oo

X(z)= > =z[n]z™"

n—=——oo

x[n] = %jj{)((z)znldz

1
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+oo

= Time Expansion: XG)= 35 afn]e

n—=——oo

1 n—1
z[n] é X(z), ROC =R x[n] = gj}g}((z)z dz

2o [n] = rln/k], ifn=k-m k is a constant
(k) 0, otherwise m is a new time variable

ST \

Yoz ]z—() \
%Cx ](Z)—() X():::::::::::::
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= Conjugation: XG)= 35 afn]e
g o
x[n] +— X(z), ROC =R z[n] = ?jj{)((z)z”—ldz

2*[n] = X*(z%), ROC = R

—+o00

X(z) = _z: x|n] z7"
+o0
= _Z x [n] 27"
+oo
= _Z z [n] (2 )™
+oc
X(z) = > z[n] (z)"

n——acC
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. . “+o0
= Convolution Property: X)) =Y eln]z"
z1[n] <= X,(2), ROC = R; n=roo
= x[n] = j{X(z)z” ldz
z5[n] +— X-(z), ROC = Ry 2m]
x1[n] * zo[n] =, X1(2)X5(z), with ROC containing Ry N Ry

R1 N Ry may be larger
iy I - if pole-zero cancellation
— Z Z ZU]_[m] :15‘2[?1—?71] z " :
occurs in the product

_—I—;o B o0

= _Z x1[m] ( _Z xz[n—m]z")
+o0 +o0

= _Z $1[m]( _Z zo[ 127 ))

(E =) (£t 0] s ()
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= Differentiation in the z-Domain:

2[n] «— X(2), ROC =R

d
nx[n] PN —zd—X(z), ROC = R
2

“+o00

X(z) = Z x|[n] z "

n=——oco

+oo

= Z x[n] z "

n——oC

o0

= Z x[n] z "

N==—00

o0

X(z) = > z[n] z "

Nn=——0C
“+oco

X(z) = Z x|[n] z "

n=——oco
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If z[n] =0 for n <O

= The Initial-Value Theorem:

= z[0] = Iim X (z)

Z—> 00

—+o0

X(z) = > z[n]z™" = 2[0] + z[1] 2 ' 4+ z[2] 22

n=——oo

The Final-Value Theorem:

= z[oo] = lim (1—2"HX(2) X(2) - (z HX(2)

X(2) = z[0] + z[1] 2t + z[2] 272

~z"HX(2) = —z[0] 27t — 2[1] 272 — z[2] 2
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TABLE 10.1 PROPERTIES OF THE z-TRANSFORM

Section Property Signal z=-Transform ROC
x[n] X(2) R
x1[n] Xi(2) R,
x2[n] X-(2) R
10.5.1 Linearity ax;[n] + bx;[n] aX,(z) + bX>(2) At least the intersection of R, and R
10.5.2 Time shifting x[n — ng) ZMX(2) R, except for the possible addition or
deletion of the origin
10.5.3 Scaling in the z-domain el x[n] X(e «0z) R
Zxin) x(z) R
a"x[n] X(@a'z) Scaled version of R (i.e., [a|R = the
set of points {|a|z} for z in R)
10.5.4 Time reversal x[—n] Xz Inverted R (i.e., R™' = the set of
points z ', where z is in R)
: - x[rl, n=rk : k vk (i : ik
10.5.5 Time expansion Xwlnl = for some integer r X(z") R"* (i.e., the set of points z'"*, where
0, n#rk o
zisin R)
10.5.6 Conjugation x*[n] X*(z") R
10.5.7 Convolution xy[n] = x;[n] X 1(2)X2(2) At least the intersection of R, and R,
10.5.7 First difference x[n] — x[n —1] (1-zNX(2) At least the intersection of R and
|z] >0
10.5.7 Accumulation > i X[K] = X(z) At least the intersection of R and
‘ |z =1
105.8 Differentiation nx[n] —% diﬁZ) R
in the z-domain
1059 Initial Value Theorem

If x[n] = 0 for n < 0, then
x[0] = !ijliX(Z)
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= The z-Transform

= The Region of Convergence for z-Transforms

= The Inverse z-Transform

= Geometric Evaluation of the Fourier Transform
* Properties of the z-Transform
= Some Common z-Transform Pairs

= Analysis & Characterization of LTI Systems
Using the z-Transforms

= System Function Algebra and
Block Diagram Representations

= The Unilateral z-Transform



Some z-Transform

Pairs
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TABLE 10.2 SOME COMMON z-TRANSFORM PAIRS

Signal Transform ROC
1. 8[n] | Allz
|
2. u[n) = |2 > 1
3, —u[-n-1] ] _lz~| lz] <1
4, 8[n — m)] " All z, except
0@Gfm=>0)or
@ (if m < 0)
| :
5. «"uln] T e 2| > la
1 .
6. —a"ul—n—1] T—az! |z| < la|
n az_l
7. nauln] d—az ) |z| > le|
-1
8 —na"ul—n—1] ﬁ?ﬁ? |z| < laf
1 = [coswp)z™!
) >
9. [cos won)uln] [ Geoswrlz T2 |z > 1
: [sinwy]z™"
; >
10. [sinwon]u[n) [ Boswde T T2 |z > 1
, . 1 = [rcoswplz!
11. [r" cos wyn]uln) T~ oreosans ) F 72 |lz| > r
: =
12 [+ sin wonluln] [ sin o)z 2| > r

1 — [2rcoswyplz™! + r2z2
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= The z-Transform

= The Region of Convergence for z-Transforms

= The Inverse z-Transform

= Geometric Evaluation of the Fourier Transform
* Properties of the z-Transform
= Some Common z-Transform Pairs

= Analysis & Characterization of LTI Systems
Using the z-Transforms

= System Function Algebra and
Block Diagram Representations

= The Unilateral z-Transform
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= Analysis & Characterization of LTl Systems:

z[n] e yln] = hln] x z[n]

X(z) —b-—b Y(z) = H(z) X(2)

H(z) = Z{h[n]} H(z) : system function
or transfer function

h[n] H(z)
= Causality

z[ ] yln] hln] =

= Stability t

>
S,

z[n] yln]




Feng-Li Lian © 2015

Analysis & Characterization of LTI Systems NTUEE-SS10-7-55

» ity: To°
Causality: S hlnle

n=0

e For acausal LTI system,
N[n]=0forn<0, and thus isright-sided

« ADT LTI system is causal
If and only if
the ROC of the system function H(z)
IS the exterior of a circle in the z-plane, including Iinfinity

« ADT LTI system with a rational H(z) is causal
If and only if
(a) ROC is exterior of a circle outside outermost pole;
and infinity must be in the ROC,; and
(b) order of numerator <= order of denominator

boz™ +b12M by Y(2)

H(z) = -
(Z) aOZN—FOleN_l_I_"'_{—O’N X(Z)

yln+ N1+ = zln+ M] +--.



Analysis & Characterization of LTI Systems

= Example 10.21:
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H(z) = 11 I ! — 2] >2
1— 5271 1—2z1
& =a-"=DHa- =9 TGe- G- )
= ROC: the .......... of a circle of outside the outermost pole
= the impulse response is ......... -sided
— deg of num of H(z) ..... deg of den of H(z)

= the system is .............

= hln] =

= h[n] =0,n
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= Stability: ]

. AnDT LTl systemisstable % N/ 7
If and only if
the ROC of H(z) includes the unit circle [i.e., |z| = 1]

* A causal LTI system with rational H(z) is stable
If and only if
all of the poles of H(z) lie in the inside the unit circle,
l.e., all of the poles have magnitude < 1
A

LA L]
“‘ .,.
* L 4
*
* ‘0
Q .
L4 .
] .
) [
n -
3 =P
- L]
.

. :
A Q
" 'y
* Q‘

. .

* R
“wagfunt
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Analysis & Characterization of LTI Systems

= Example 10.22:

1 1
12,71 " 1271

z| > 2

— | include the unit circle =

= i.e., h[n] = K%)n e 2”] uln] — , AS N — o0

o If ROC = |z| < 1/2 = h[n] =

= the system is ........ causal ........ stable

o If ROC=1/2<|2|<2 = h[n] =

= the system is ........ causal ........ stable
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= Example 10.24:

H() 1 22
z) = =
1 —(2rcosf)z—t 4 r2z=2 2?2 — (2rcos @)z + r?
=z = Zo =
If it is causal, |z| |r|
A A

//

g / \\
/ ‘\ / \
4 ] > y r
\ \
S~NL“7 \ ]
/
> /
—/

r <1, .... stable r>1, .... stable
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= LTI Systems by Linear Constant-Coef Difference Equations:

Analysis & Characterization of LTI Systems

apy[n] + a1yln — 1] + -+ + ay_1y[n — N + 1] + any[n — N]

= box[n] + b1z[n — 1]+ -+ byy_1z[n — M 4+ 1] + bpjx[n — M]

S awyln—k = 3 braln — k]
k=0 k=0

o1 — [

Y (2)
X{(z)

Y(z) = X(2)H(z2) H(z) =



Systems Characterized by Linear Constant-Coefficient Difference Eifiiatibis >

N
Z{Z ary[n — k]}
k=0

k=0

-61
z
x[n —ngl «—— 270X (2)

M
Z{Z brr[n —k]}
k=0

iakZ{y[n—k]} = ﬂ_/lka{x[n—k]}

k=0

N M
>y a,kz_kY(z) = ) bkz_kX(z)
k=0 k=0

= H(z) =

M
bkz_k
Y(z) _ k;) _ bo+ brz 4 by M
X(2) al L ao—l—a,lz_l —|—---—I—aNz_N
Z ALz
k=0
bozN 4+ by 2N 4 by NM Zeros




Analysis & Characterization of LTI Systems o 10005
= Example 10.25:

il = ~yln — 1] = aln] + Joln — 1

N = Y (2) 21V (2)

|
>~
~
N
N
Nl
H
>~
~
N
~—

<> >= Hiz) = = 1- 1ti= o1

A
— = +
A b <
o If ROC ={|2| > 1/2}, = hln] is ........ ~sided
= h[n] =
o If ROC ={|2| <1/2}, = h[n]is ........ ~sided

= h[n] =
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= The z-Transform

= The Region of Convergence for z-Transforms

= The Inverse z-Transform

= Geometric Evaluation of the Fourier Transform
* Properties of the z-Transform
= Some Common z-Transform Pairs

= Analysis & Characterization of LTI Systems
Using the z-Transforms

= System Function Algebra and
Block Diagram Representations

= The Unilateral z-Transform



System Function Algebra & Block Diagram Representation
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= System Function Blocks:

X[1] —

h L]

e parallel interconnection
h[n] = hi[n]+ho[n]

Hy(z)
?)_Lylnl H(z) = H1(2)+H>(2)
i

e series interconnection

hin] = hiln]xholn]

) ——| 11 | 20 eyt H(z) = H1(z) Ha(z)
e feedback interconnection
X[n] __:@$ :;'11[(51) e r=Mb
- Z =H>Y
E=X-Z
il [ H(z) = Hy(z)

1+H;1(z)H2(2)
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= Example 10.28:
e Consider a causal LTI system with system function

1
H(z) =
(2) - %z—l

_ 1 1
= yln] = - %zlaﬁ[n] = y[n] — Zy[n 1] = z[n]

1
= y[n] = Zy[n — 1] 4+ x[n]

] ——(*)- >yl X[l --—:_—G} vl

w[n] = y[n — 1]
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= Example 10.29:

X =" == I )
Y (2) = ( WV Ve =( )X ()
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= Example 10.29:

1 —22"1 i
H(z) = i — (1—221_1)
_ 1. 1 - 1.-
4 4
o P vinl . > H— Il
g Vo g
; - 4l | B :
5 T win 1 Lao . |

<[] - ) ~(+) > y[n]

A
NS

BN
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= Example 10.30:

_ 1 1
H(=) = (14 %z—l)(l — %z_l) 1 z—1 272
= y[n] y[n — 1] y[n — 2] = z[n]
= y[n] = y[n — 1] y[n — 2] 4+ z[n]
x[n] o >y [N]

N {y[n— 1] = f[n] | t
yln — 2] = e[n] = fln — 1]

e[n]



System Function Algebra & Block Diagram Representation

= Example 10.30:
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X[N] e -

H(2) :
~) =
1= %z—l — %z—Q
1 1
H(z) = T T
]
Hi{z) =
(143271  (1-Z2Y)
x[n] :@
- —-—-)-@ l |
S e g’ (O—yini

3

* > y[n]
51
—1——__1-4— f(n]
N Y
e
= e[n]
>( + ‘ly > y[n]
7~1
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= The z-Transform

= The Region of Convergence for z-Transforms

= The Inverse z-Transform

= Geometric Evaluation of the Fourier Transform
* Properties of the z-Transform
= Some Common z-Transform Pairs

= Analysis & Characterization of LTI Systems
Using the z-Transforms

= System Function Algebra and
Block Diagram Representations

= The Unilateral z-Transform
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= The Unilateral z-Transform of x(t):

bilateral zT unilateral z T
for causal system &
with nonzero init. cond.

X(z2) 2 if z[n]z" X(2) 2 fm[n]z‘”
o .
= > alle" 4 ;O z[n]z ™"
z[n] —— X (2) 2[n] 2 X(2)
X(2) = 2{z[nl} X(2) = UZ{z[n]}
2[n] = 27X (2)) 2ln] = UZ X (2))

ROC' : exterior of a circle
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= Time-Shifting Property

x[n] Ml X (z2)

o0
X(z) = Z z[n]z™" = «[0] + r[1]z7t + 2[2]z72 + - -

n=0

2[n—1] s 21 X(2) 4+ 2[—1]

+oc
> xln—1]z" = z[-1] + 2[0]z ' + 2[1]z 2 + 2[2]2 > + - -
n=0

z_lX(z) = z[0]z~t + z[1]z %2 + z[2]z 2 + - -

2[n—2] s 22 X(2) + 2[—1]2" 1 + 2[—2]

x[n—+1] PN X(z) — zz[0]




The Unilateral z-Transform

= Example 10.33:

e since x[—1] =1 # 0,

= bilateral transform :

= unilateral transform :
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z[n] = o™ luln + 1]

X(z) # X(7)
X(2) = 7 5. |z >al
+oo
X(z) = Z_::,C[n]z_”

—+o0
Z an+1z—n
n=0

a

= % 2>l
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= Example 10.33:

r1[n] = a"uln] X1(z) = — = : |z| > |a|
l—az zZ—a
ro[n] = x1[n + 1] Xo(z) = Zzia — 2z x1[0]
= an+1U[n+ 1] = 2 — =z -1
Z—a




The Unilateral z-Transform

TABLE 10.3 PROPERTIES OF THE UNILATERAL z-TRANSFORM
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Property Signal Unilateral z-Transform
- x[n] X(2)
— xi[#] Xi(2)
o x2[n] X2 (2)
Linearity ax,[n] + bx;[n] adl,(z) + bAs(2) -1
Time delay x[n — 1] 27 190(z) + x[—1] < X (Z) + X [_ 1]
Timt?, ad.vance | xp: + 1] zfl"(z)'— zx[0] > X (Z) — o [O]
Scaling in the z-domain el@a x[n) X(e fongz)
zyx[n] X(/z0)
a"x[n] X(a'z)
Tim ansion vi[n] [ bty Lok C(z*)
e [ X — »
cxP ¥ 0, n # mk for any m <
Conjugation x*[n) X(2")

Convolution (assuming
that x,[n] and x»[n]
are identically zero for
n < 0)

First difference

Accumulation

Differentiation in the
z-domain

xiln] = xa[n)

x1[n] = x2[n] =0, n<O

X1 (2) Xa(2)

x[n] = x[n — 1]

(1-2"Hx(2) —z[-1]
(1 -2zY%(@) - x[-1] I
o
_der(z)
dz

Initial Value Theorem
x[0] = lm} X(2)
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1 o
x[n] = —f X(e?)e! " "dw
2m Jor
Xig?) = Z z|nje™ %"
x[n] = j{X(z)z” Ldz
2719
40
X(z)= Y aln]e

X(z) = X((rev) = Z{:c[n]} = F{w[n]r”}

= X{(z)

X (&) = F{x[n]} — Z{x[n]}

z—elW z—elW
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[T

z[n] =a" uln], |a| <1 ;) X (%) = 1 ,
1l —ae W
n L 1 Z
xz[n] = a"un] PEEREEN X(z) = - =
1l —az— zZ—a
|z > [al
Im
i /Unitcircle
definition Causality z-plane
theorem ROC -

property Stability
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Chapter 10: The z-Transform

= The z-Transform
= The ROC for z-T

*= The Inverse z-T

= Geometric Evaluation of the FT
= Properties of the z-T

e Linearity Time Shifting Shifting in the z-Domain
 Time Reversal Time Expansion Conjugation

« Convolution First Difference Accumulation
 Differentiation in the z-Domain Initial-Value Theorems

= Some Common z-T Pairs

= Analysis & Charac. of LTI Systems Using the z-T
= System Function Algebra, Block Diagram Repre.
* The Unilateral z-T
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