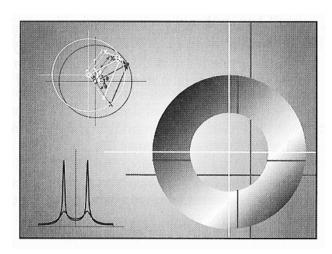
Spring 2015

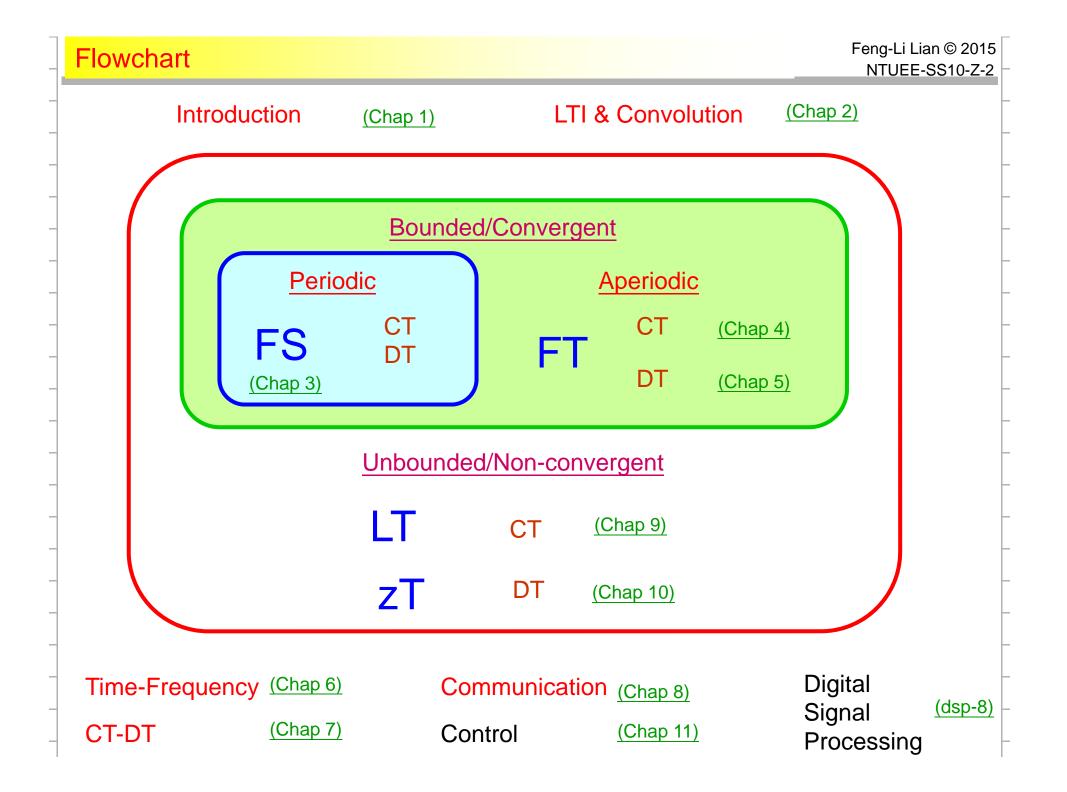
信號與系統 Signals and Systems

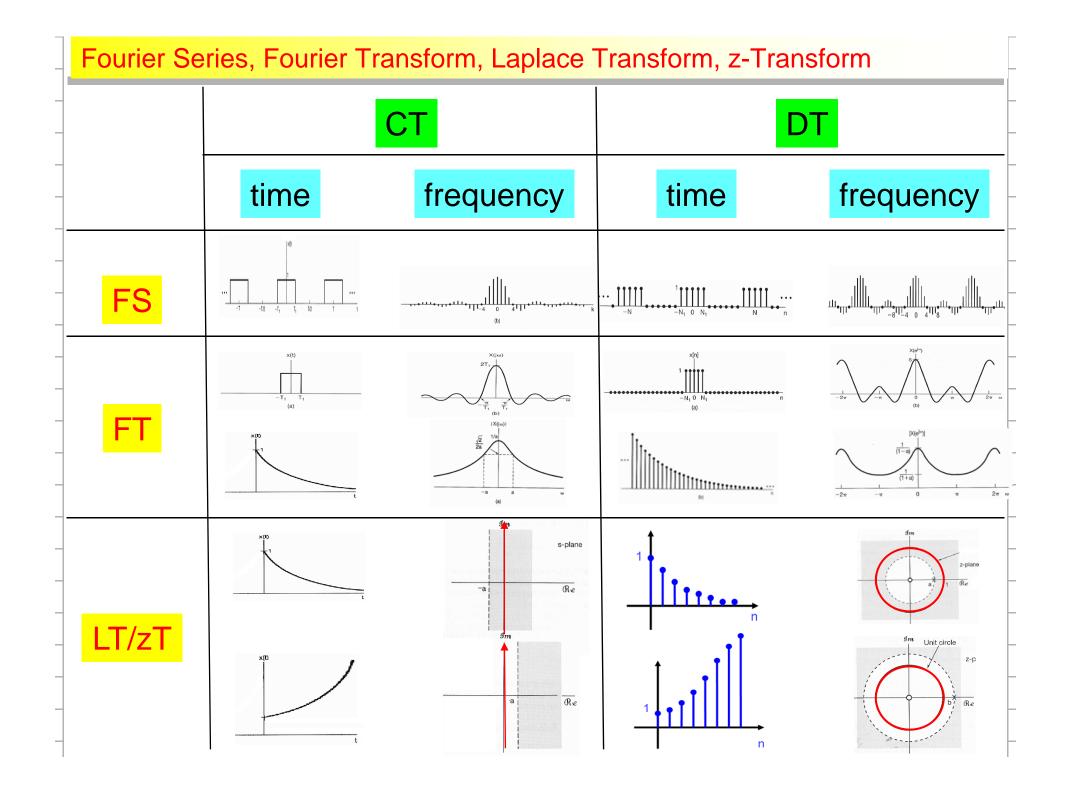
> Chapter SS-10 The z-Transform

> > Feng-Li Lian NTU-EE Feb15 – Jun15

Figures and images used in these lecture notes are adopted from "Signals & Systems" by Alan V. Oppenheim and Alan S. Willsky, 1997





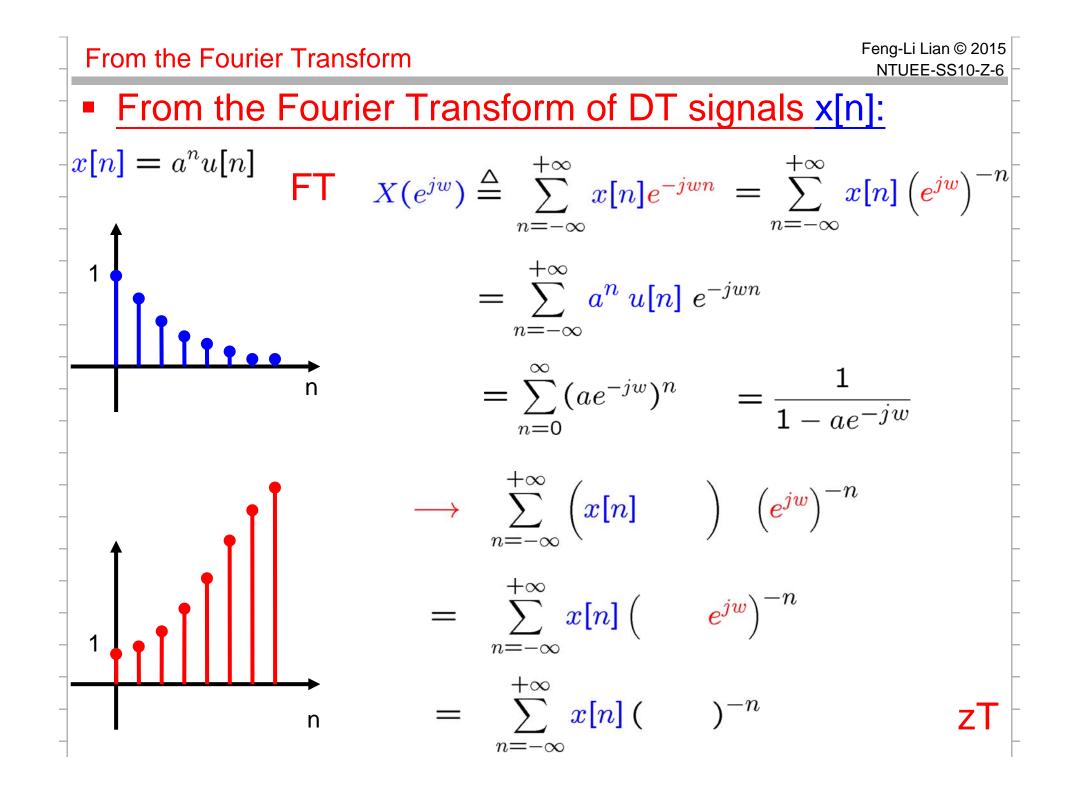


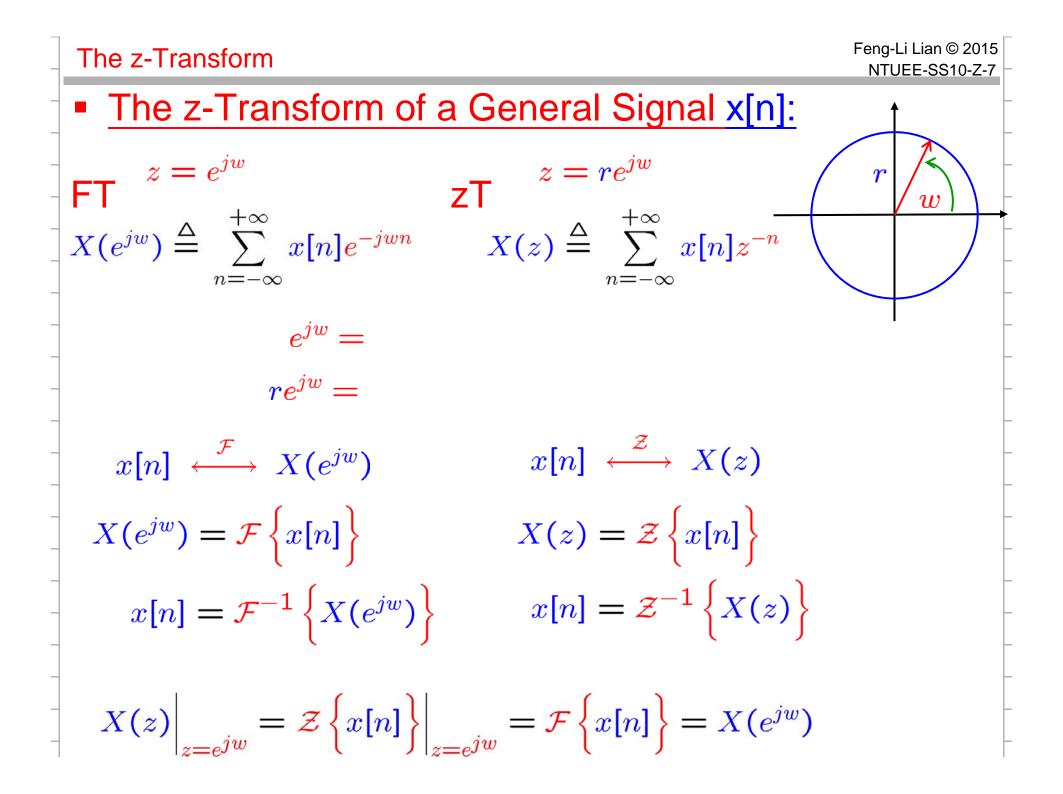
Outline

- The z-Transform
- The Region of Convergence for z-Transforms
- The Inverse z-Transform
- Geometric Evaluation of the Fourier Transform
- Properties of the z-Transform
- Some Common z-Transform Pairs
- Analysis & Characterization of LTI Systems Using the z-Transforms
- System Function Algebra and Block Diagram Representations
- The Unilateral z-Transform

Brief History of the z-Transform

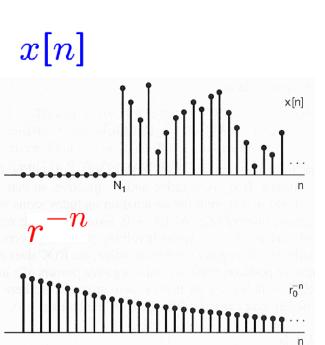
- The z-transform was known to Laplace, and re-introduced in 1947 by W. Hurewicz
 - as a tractable way to solve linear, constant-coefficient difference eqns.
- It was later dubbed "the z-transform" by Ragazzini and Zadeh in the sampled-data control group at Columbia University in 1952
- The name of "the z-transform"
 - The letter "z" being a sampled/digitized version of the letter "s" in Laplace transforms.
 - Another possible source is the presence of the letter "z" in the names of both Ragazzini and Zadeh who published the seminal paper.
- The modified or advanced z-transform was later developed and popularized by E. I. Jury in 1958, 1973.
- The idea contained within the z-transform is also known as the method of generating functions around 1730 when it was introduced by DeMoivre with probability theory.
- From a mathematical view the z-transform can also be viewed as a Laurent series where one views the sequence of numbers under consideration as the (Laurent) expansion of an analytic function (the z-transform).

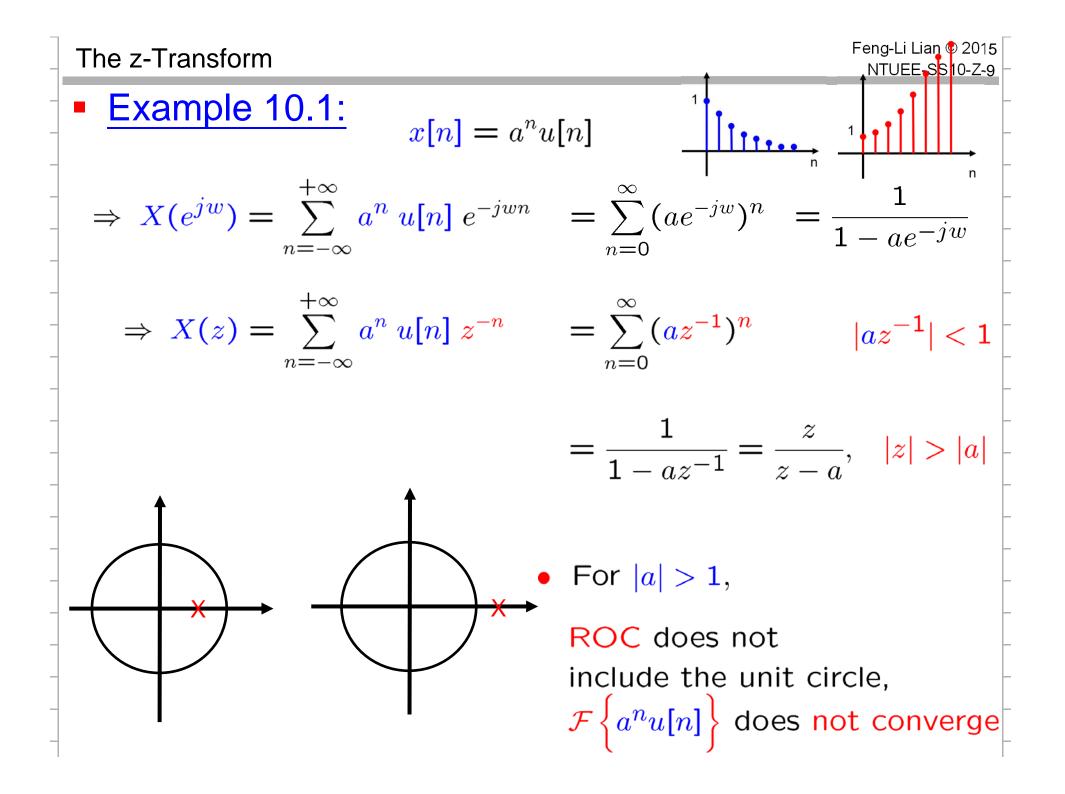




The z-Transform

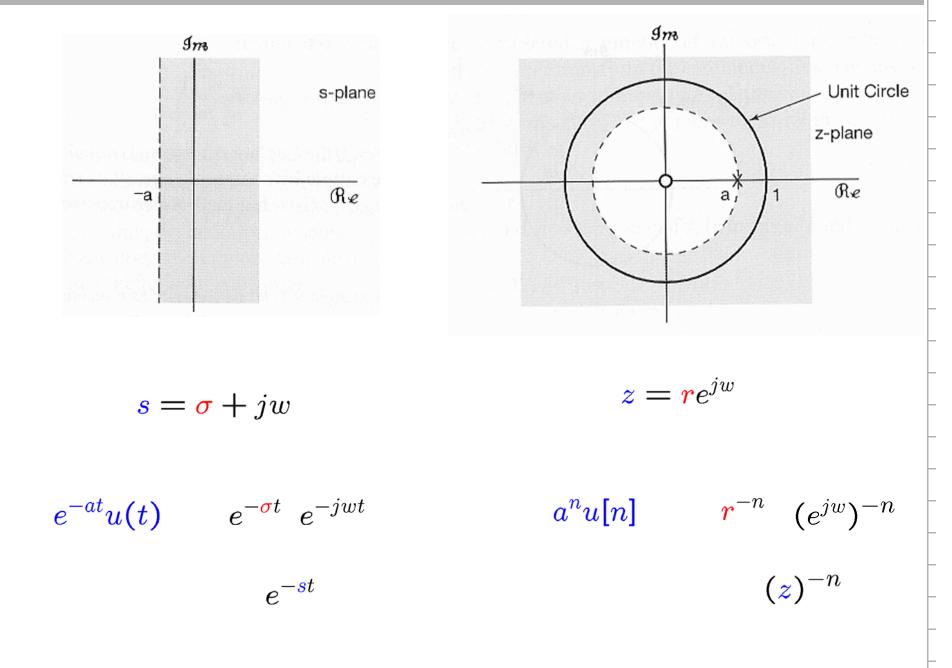
z-Transform & Fourier Transform: $=re^{jw} = X(re^{jw})$ $|x[n]\rangle$ \mathcal{Z} $=\sum_{k=1}^{+\infty} x[n](re^{jw})^{-n}$ $n = -\infty$ $= \sum^{+\infty} \{x[n]r^{-n}\}e^{-jwn}$ $n = -\infty$ $=\mathcal{F}\left\{x[n]r^{-n} ight\}$ Im $z{=}e^{j\omega}$ Unit circle z-plane $z = e^{jw}$,20 Re 1

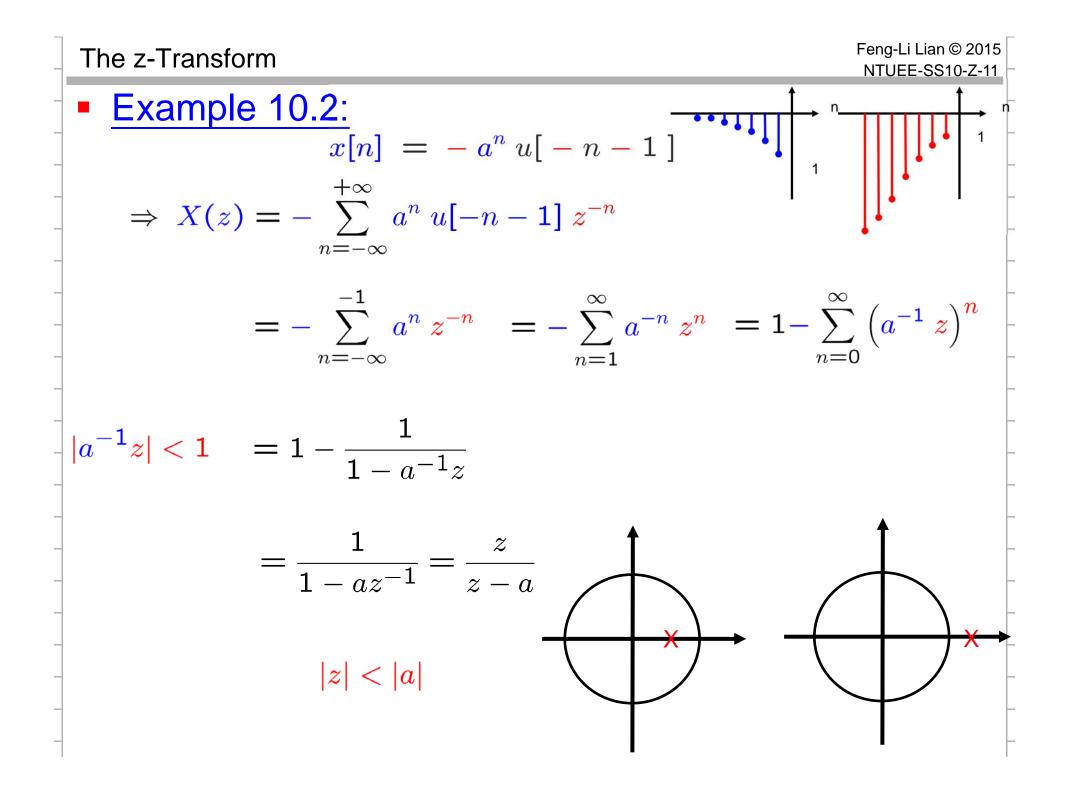




Laplace Transform and The z-Transform

Feng-Li Lian © 2015 NTUEE-SS10-Z-10





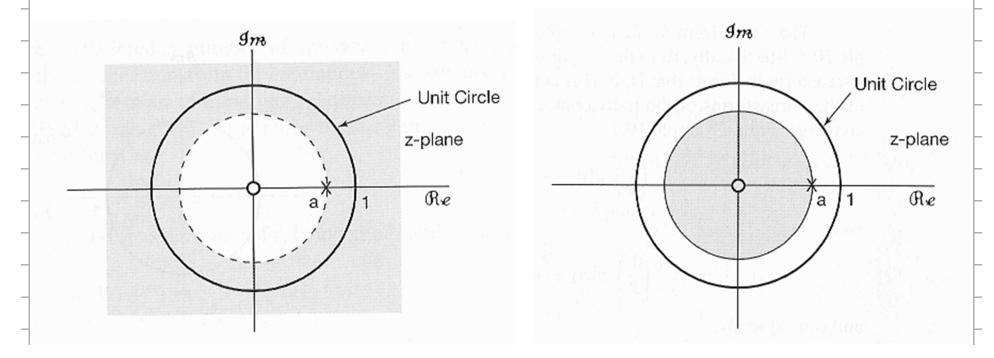
The z-Transform

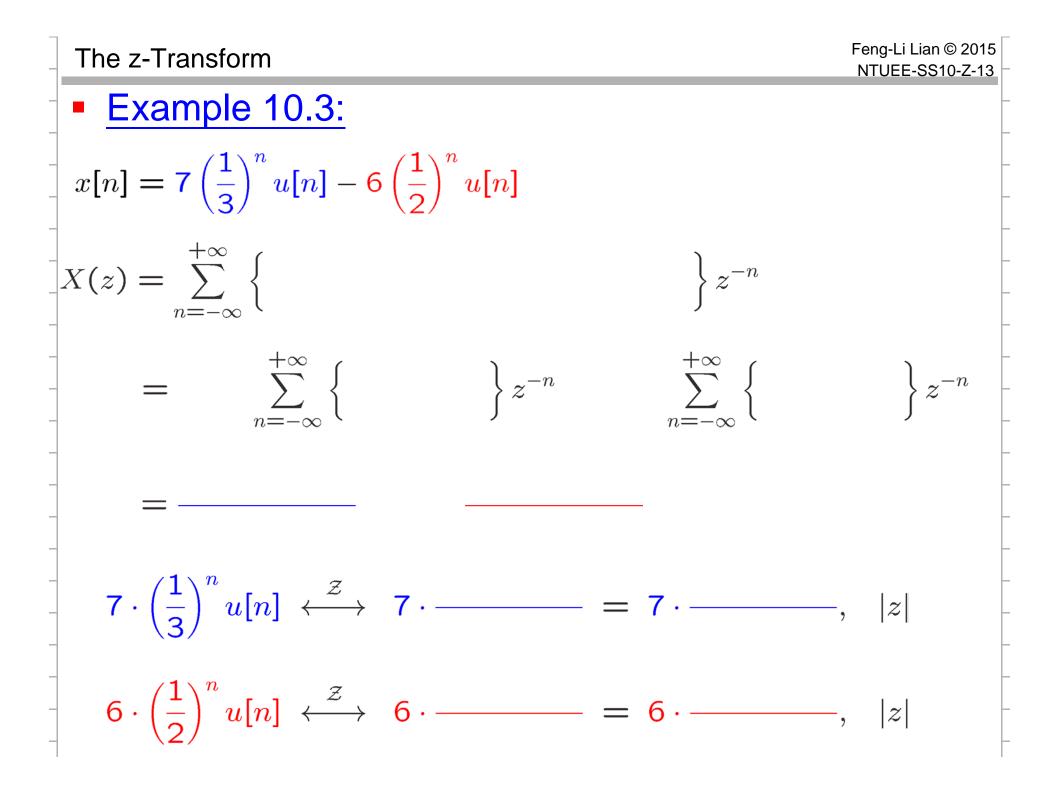
Region of Convergence (ROC):

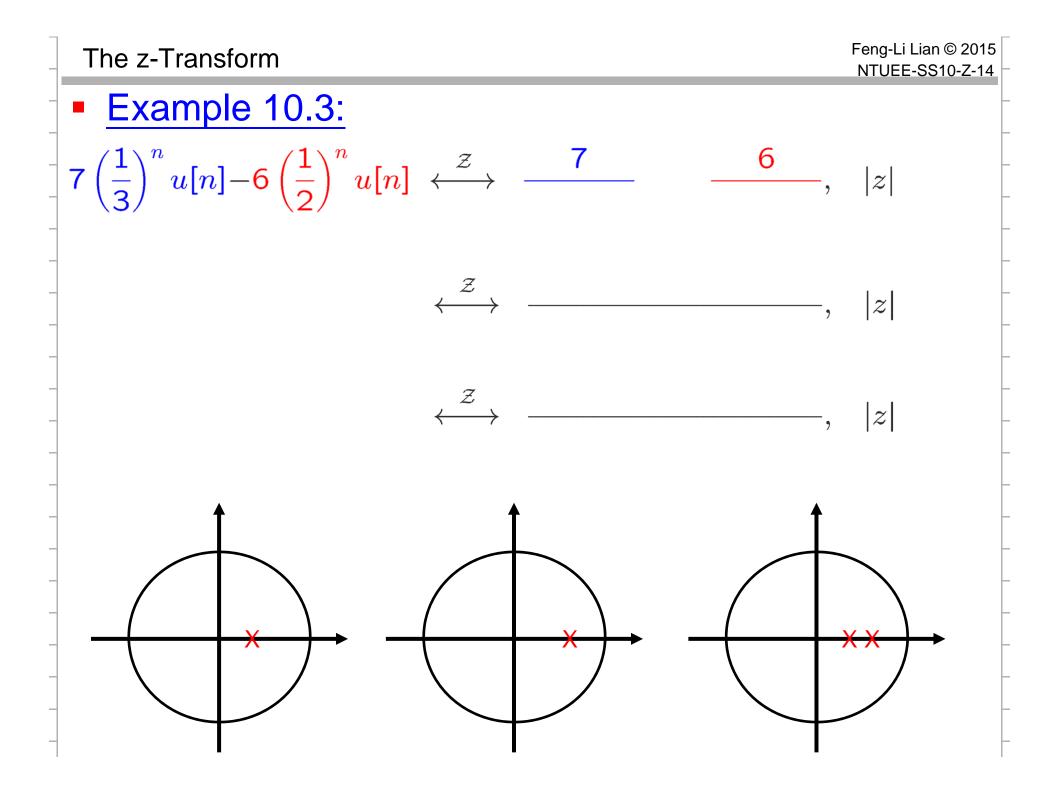
$$a^n u[n] \qquad \stackrel{\mathcal{Z}}{\longleftrightarrow} \frac{z}{z-a}, \quad |z| > |a|$$

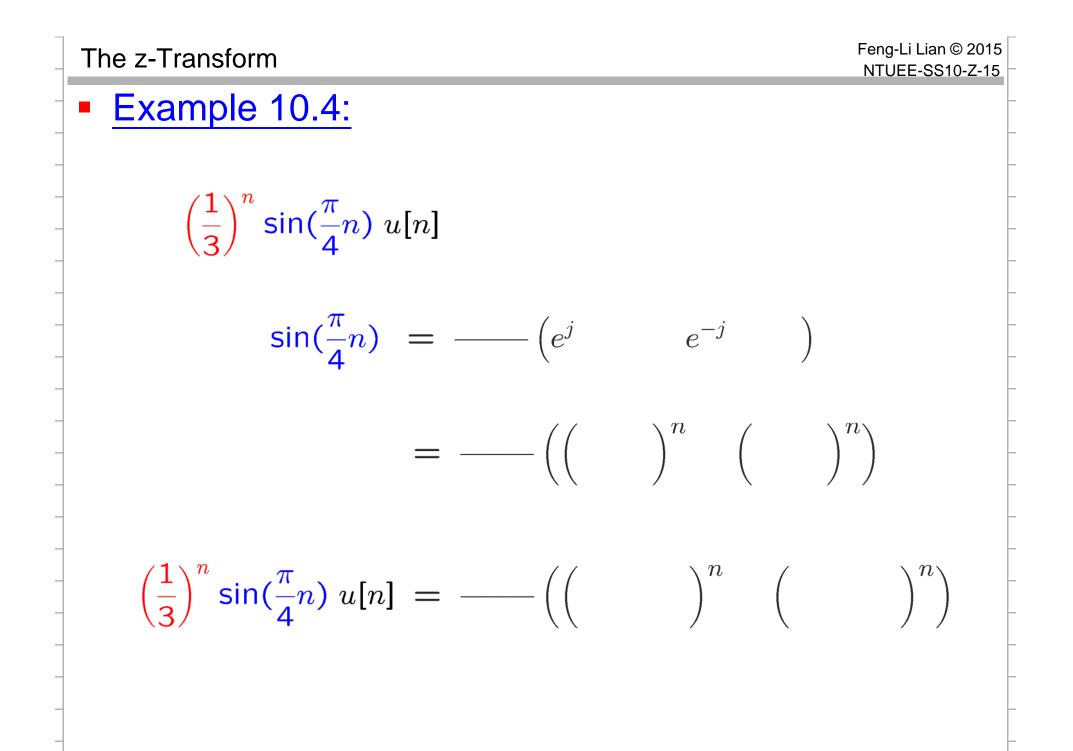
$$-a^n u[-n-1] \stackrel{\mathcal{Z}}{\longleftrightarrow} rac{z}{z-a}, \quad |z| < |a|$$

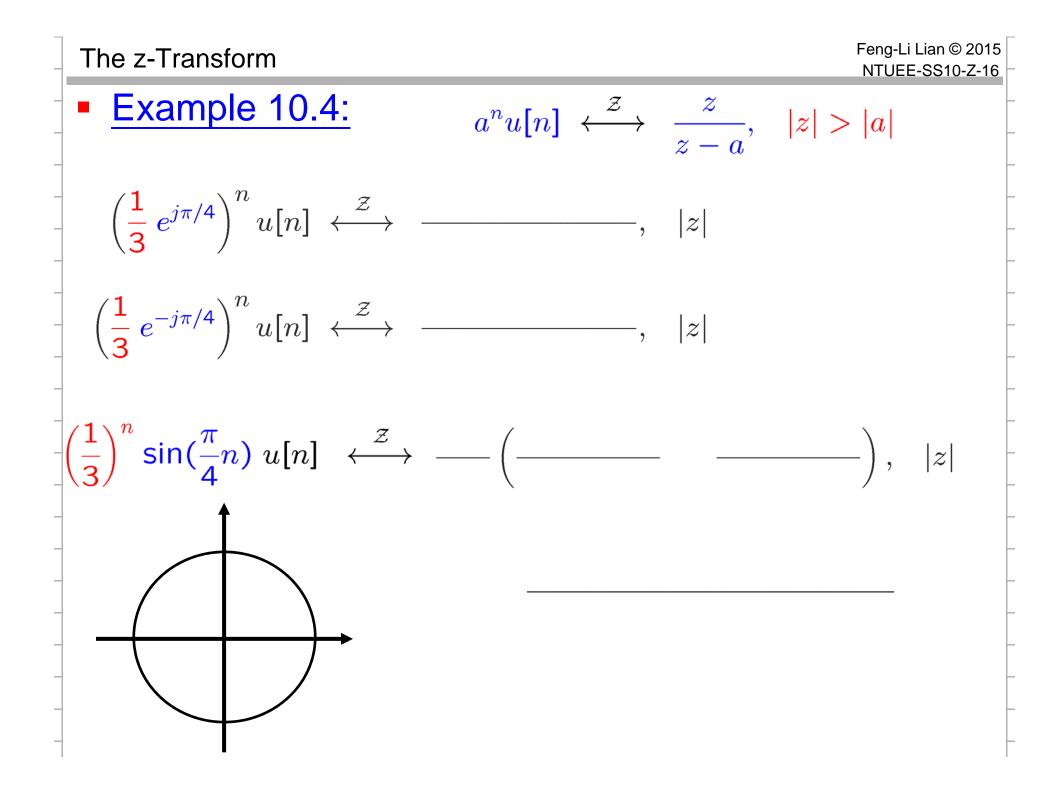
where Fourier transform of $x[n]r^{-n}$ converges











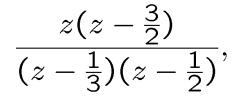
- The z-Transform
- The Region of Convergence for z-Transforms
- The Inverse z-Transform
- Geometric Evaluation of the Fourier Transform
- Properties of the z-Transform
- Some Common z-Transform Pairs
- Analysis & Characterization of LTI Systems Using the z-Transforms
- System Function Algebra and Block Diagram Representations
- The Unilateral z-Transform

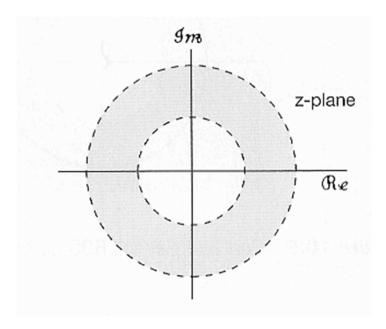
The Region of Convergence for z-Transform

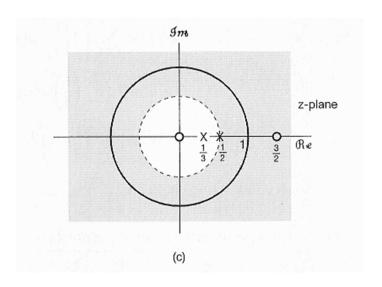
Properties of ROC:

 The ROC of X(z) consists of a ring in the z-plane centered about the origin

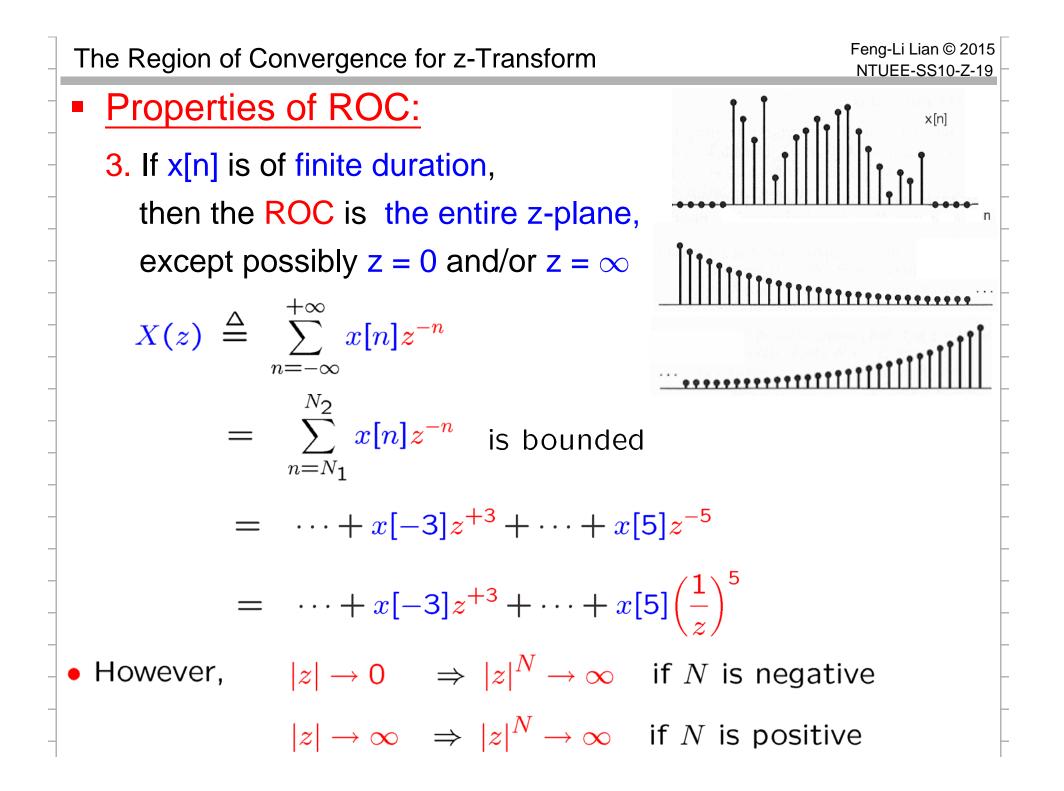
2. The ROC does not contain any poles

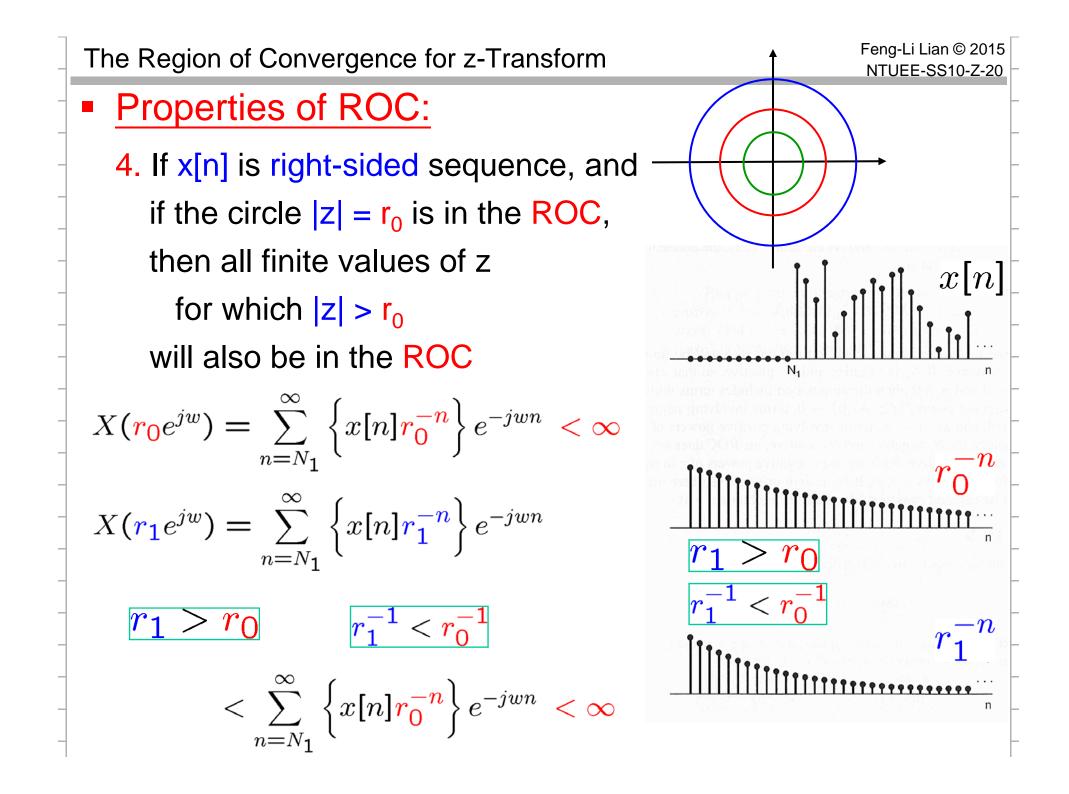


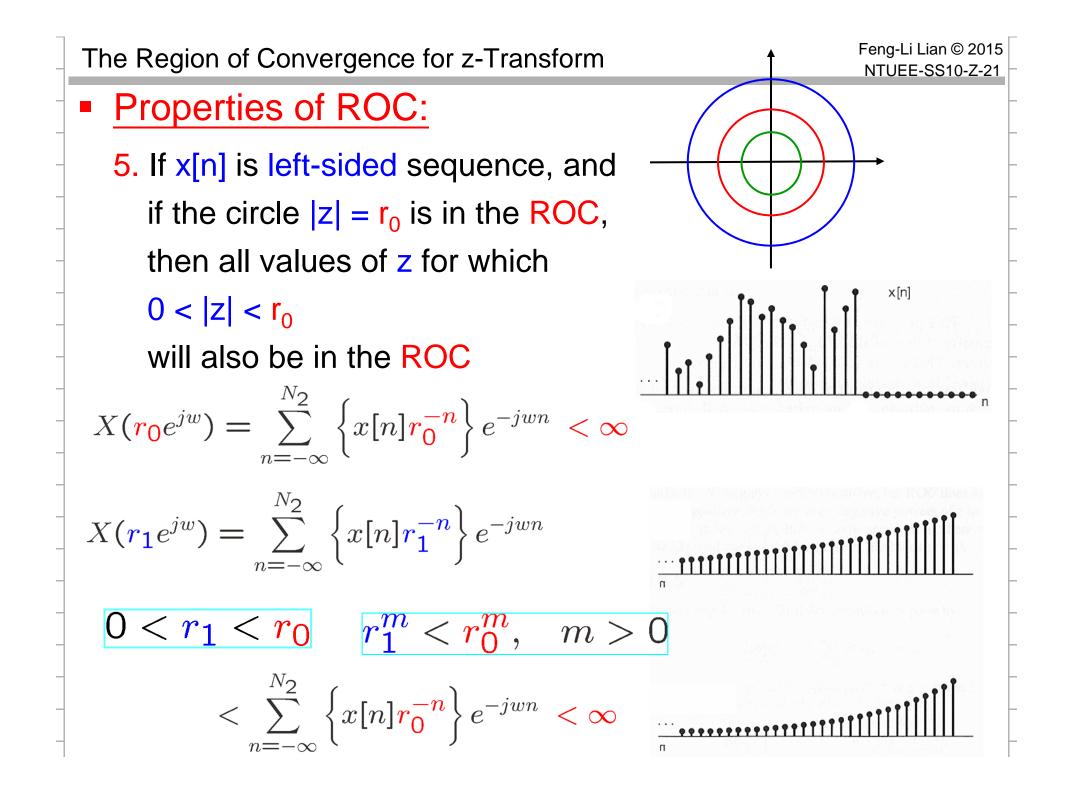


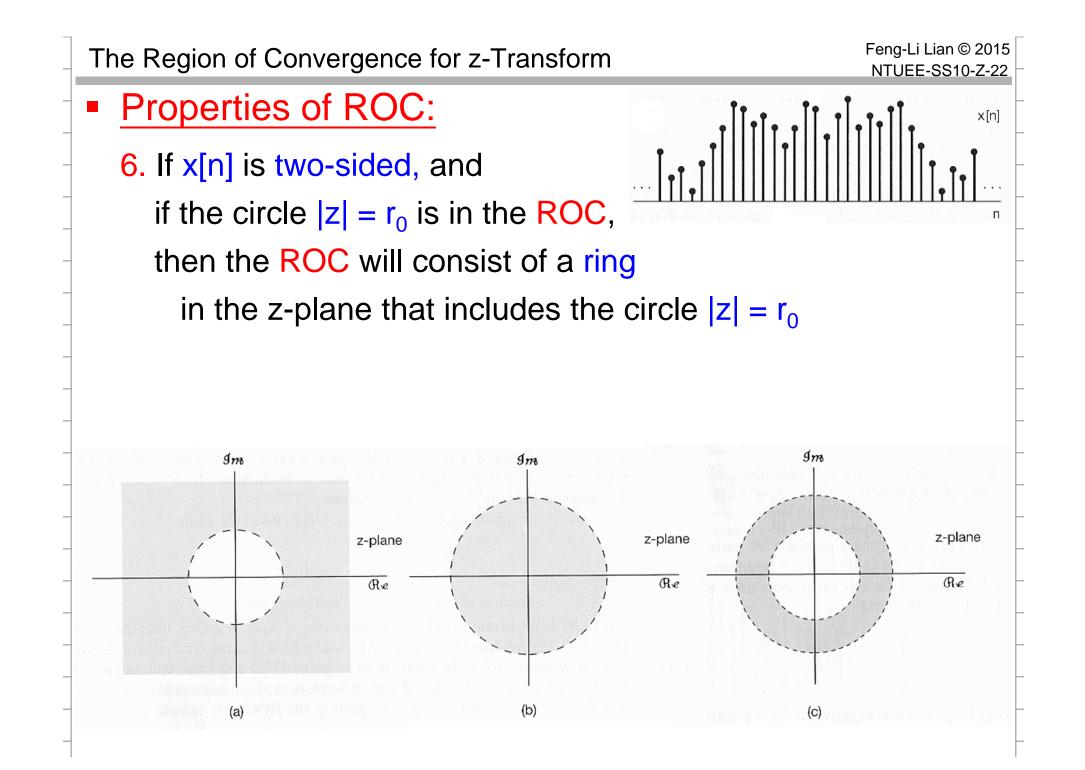


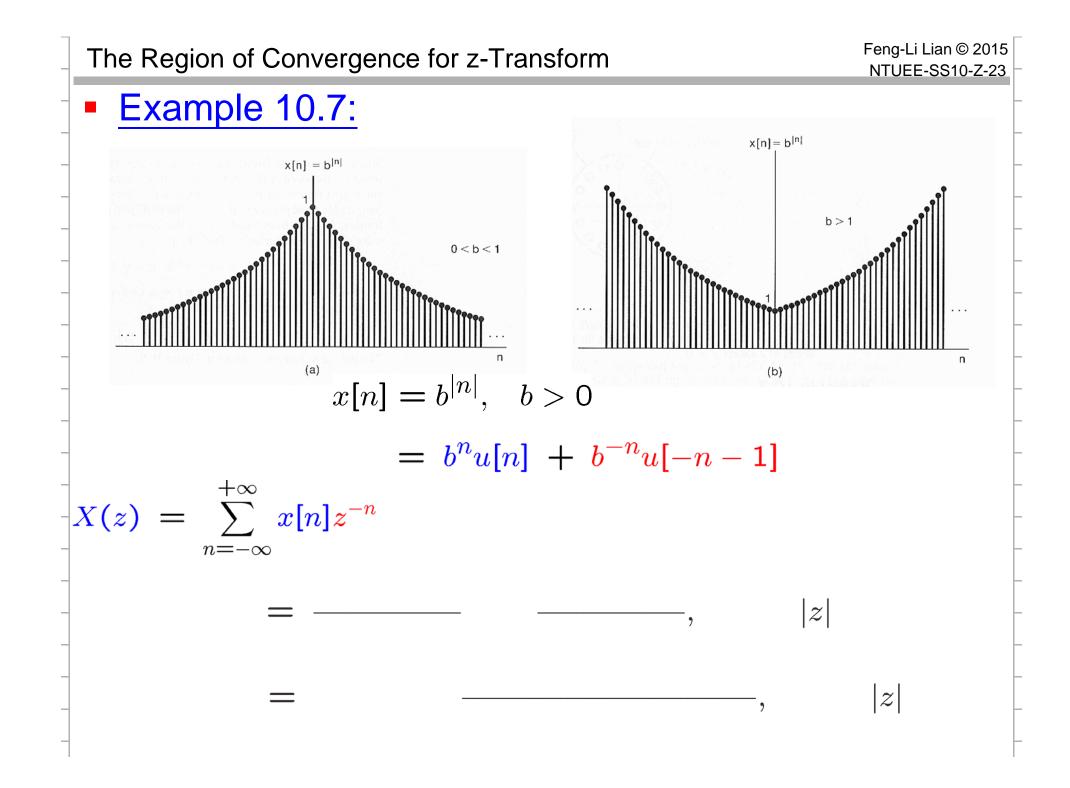
 $|z| > \frac{1}{2}$

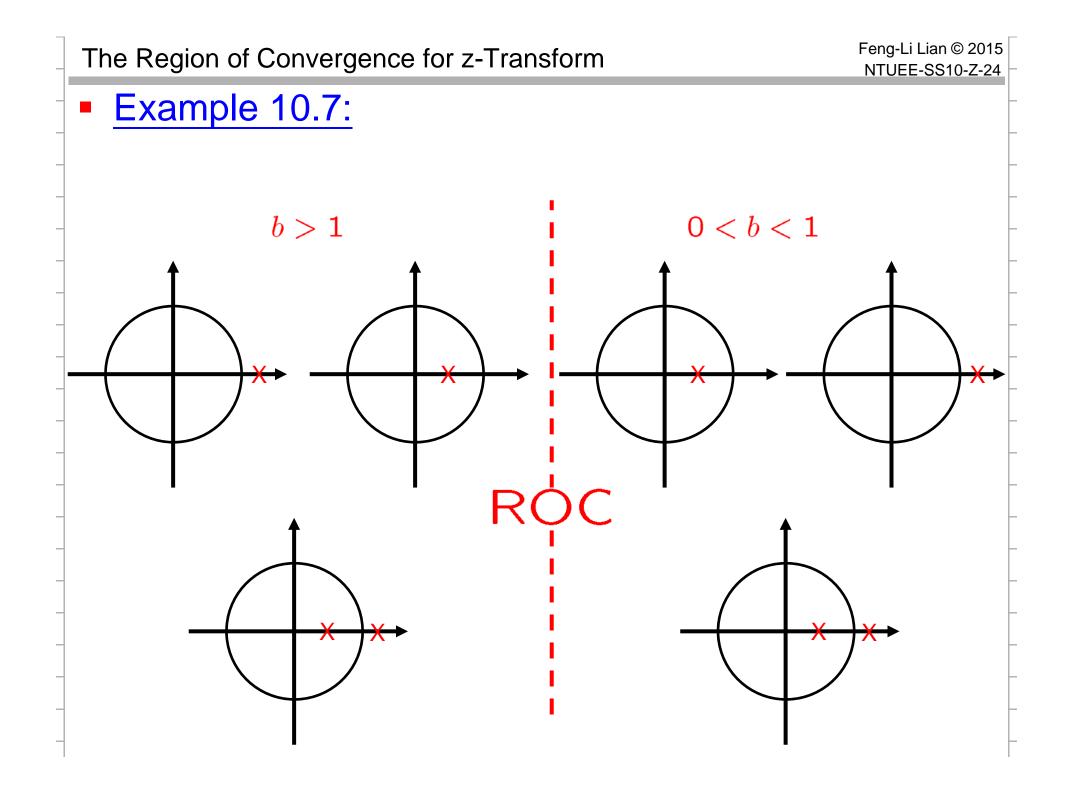


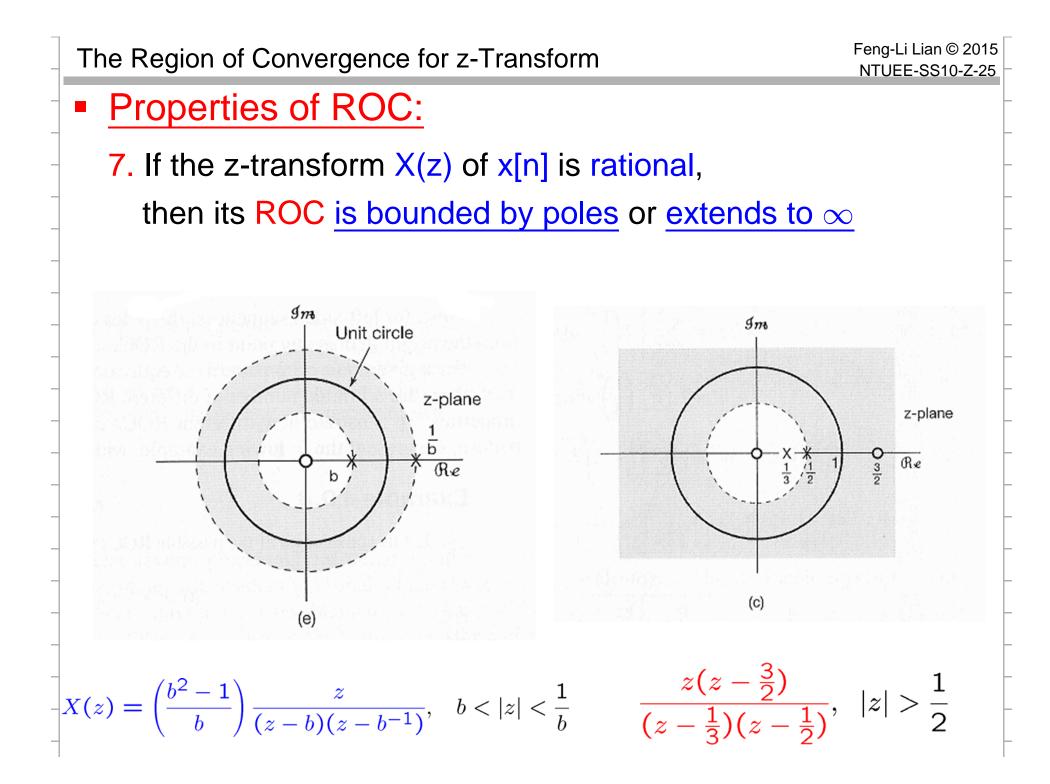


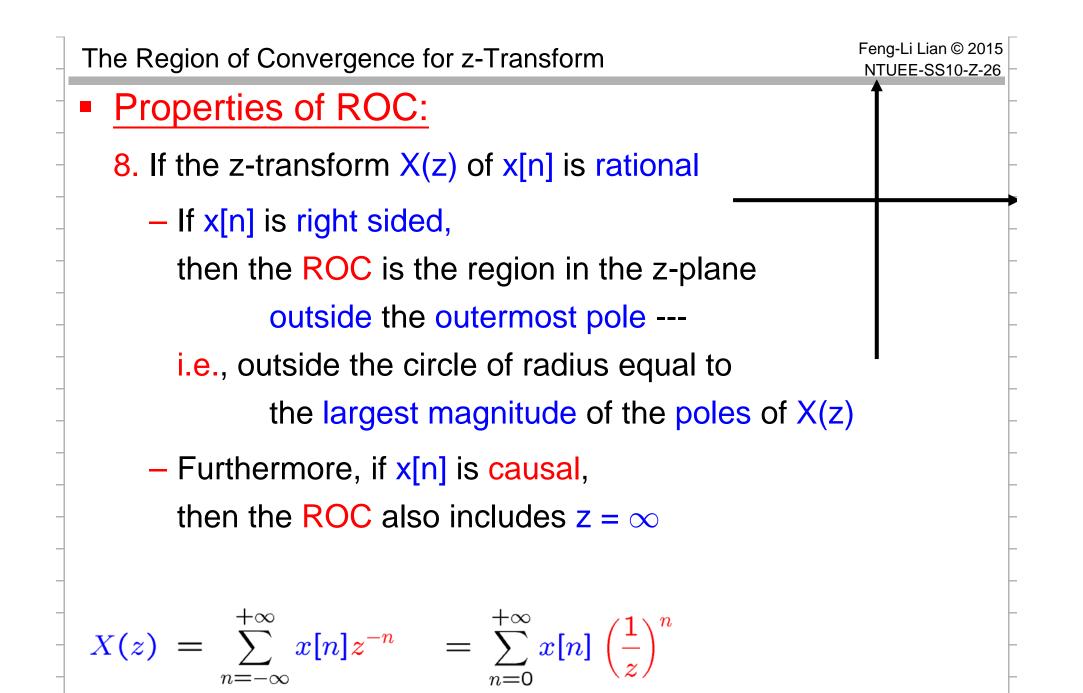




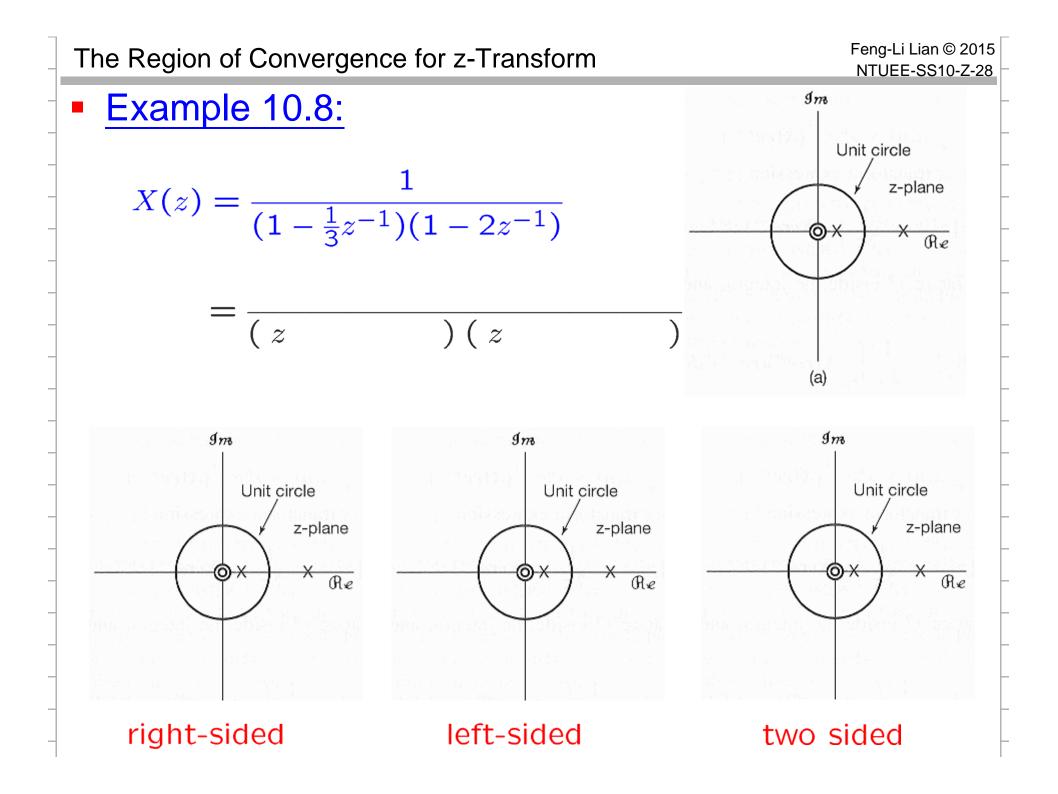








The Region of Convergence for z-Transform	Feng-Li Lian © 2015 NTUEE-SS10-Z-27
Properties of ROC:	1
9. If the z-transform X(z) of x[n] is rational	
and if x[n] is left sided,	
then the ROC is the region in the z-plane	
inside the innermost pole	
i.e., inside the circle of radius equal to	
the smallest magnitude of the poles of X(z)	
other than any at $z = 0$	
and extending inward and	$+\infty$
possibly including $z = 0$ $X(z) =$	$= \sum_{n=-\infty}^{\infty} x[n] z^{-n}$
- In particular, if x[n] is anti-causal,	$-\sum_{n=1}^{0} x^{n} x^{-n}$
(i.e., if it is left sided and $= 0$ for $n > 0$),	$= \sum_{n=-\infty} x[n] z^{-n}$
then the ROC also includes $z = 0$	$= \sum_{n=1}^{\infty} x[-m] z^{n}$
	$\sum_{m=0}^{\infty} x \left[-m\right] z$



The z-Transform

- The Region of Convergence for z-Transforms
- The Inverse z-Transform
- Geometric Evaluation of the Fourier Transform
- Properties of the z-Transform
- Some Common z-Transform Pairs
- Analysis & Characterization of LTI Systems Using the z-Transforms
- System Function Algebra and Block Diagram Representations
- The Unilateral z-Transform

The Inverse z-Transform
• The Inverse z-Transform:
• By the use of contour integration

$$X(z) = \sum_{n=-\infty}^{+\infty} x[n]z^{-n}$$

$$X(re^{jw}) = \mathcal{F}\left\{x[n]r^{-n}\right\} \quad \forall z = re^{jw} \text{ in the ROC}$$

$$x[n]r^{-n} = \mathcal{F}^{-1}\left\{X(re^{jw})\right\}$$

$$x[n] = r^{n}\mathcal{F}^{-1}\left\{X(re^{jw})\right\}$$

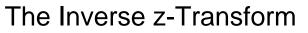
$$= r^{n}\frac{1}{2\pi}\int_{2\pi}X(re^{jw})e^{jwn}dw$$

$$= \frac{1}{2\pi}\int_{2\pi}X(re^{jw})(re^{jw})^{n}dw$$

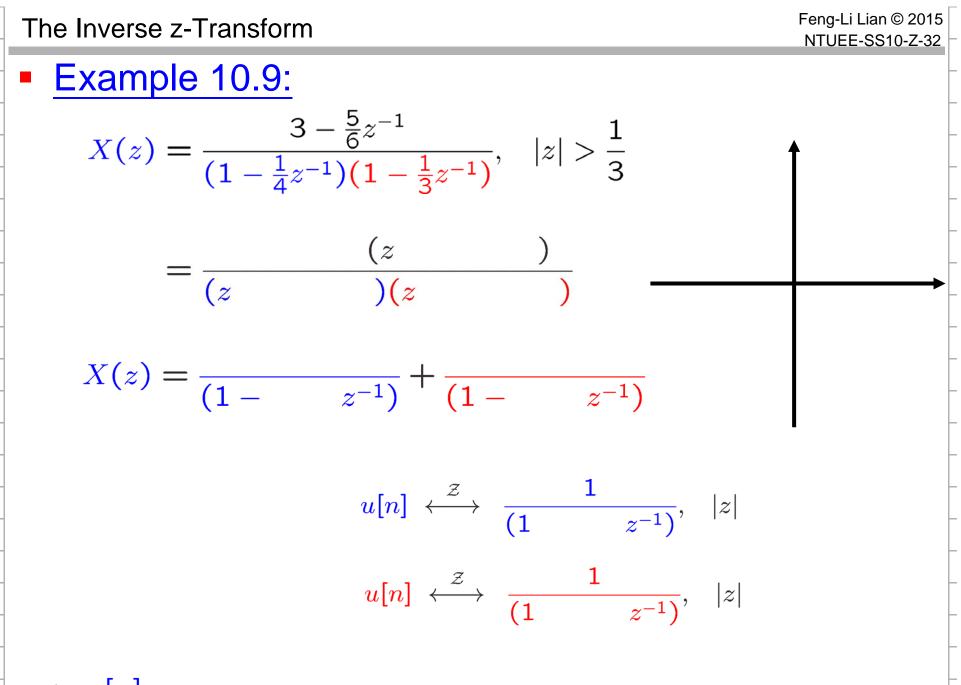
$$z = re^{jw}$$

$$dz = jre^{jw}dw = jzdw$$

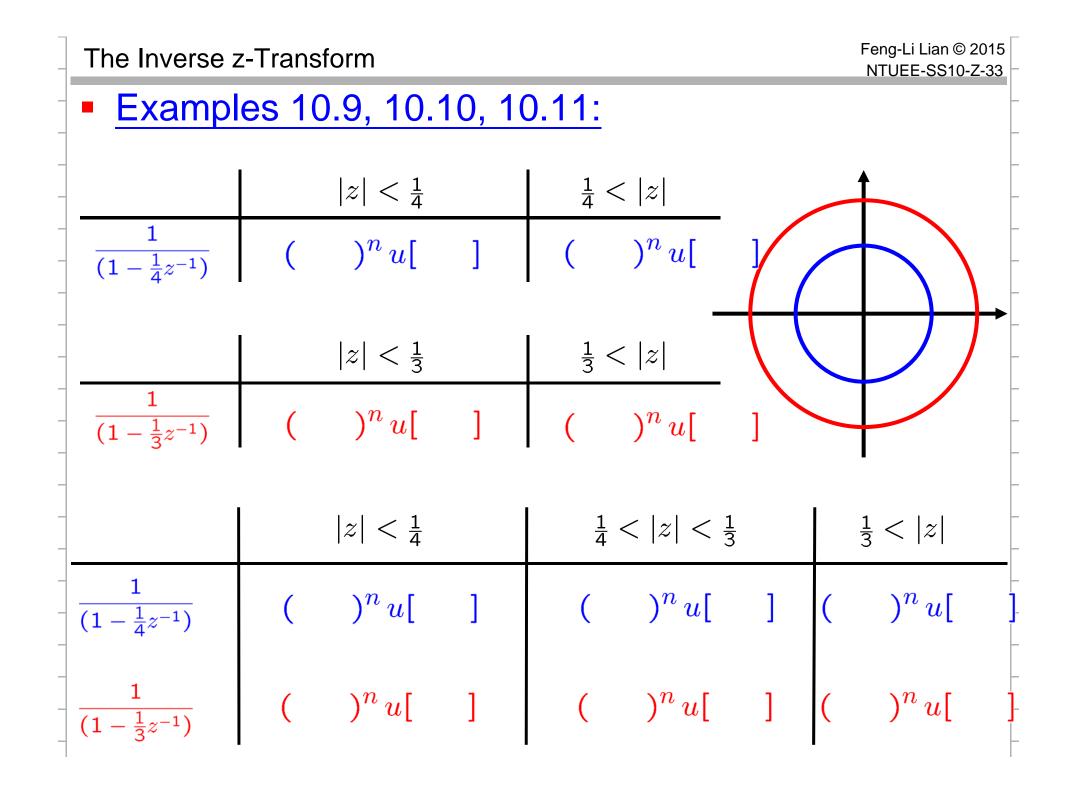
$$dz = jre^{jw}dw = jzdw$$



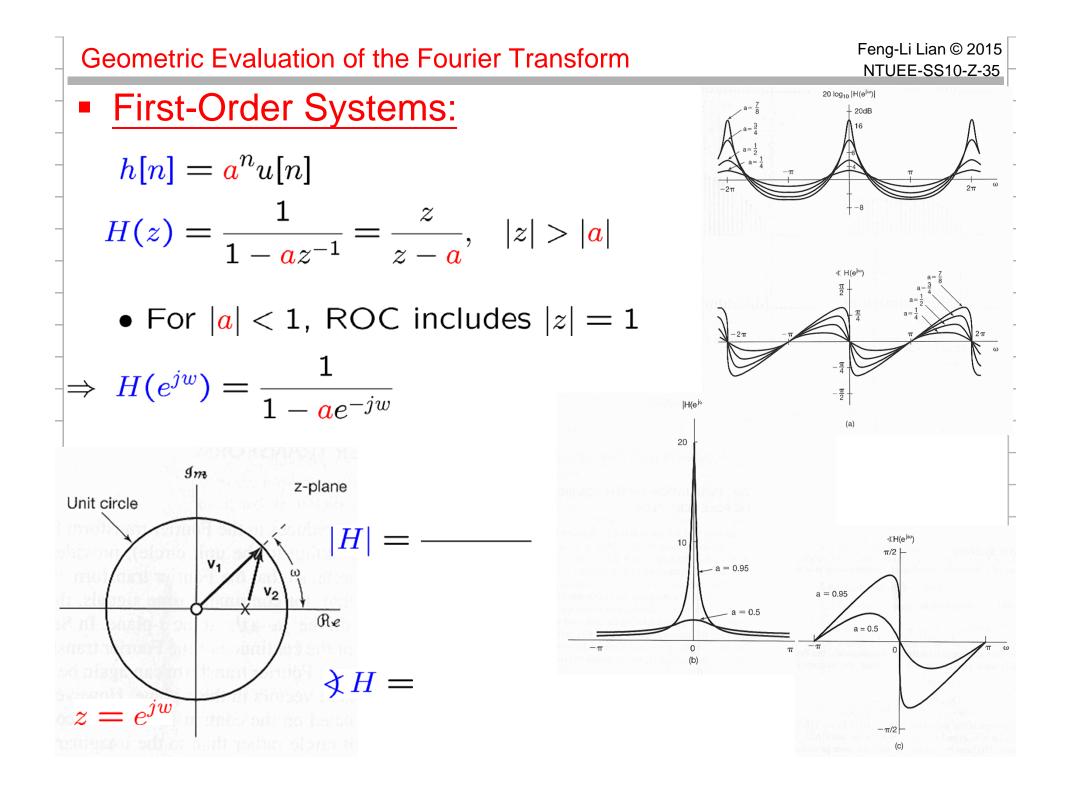
The Inverse z-Transform: $a^n u[n] \qquad \stackrel{\mathcal{Z}}{\longleftrightarrow} \ \frac{z}{z-a} = \frac{1}{1-az^{-1}} \quad |z| > |a|$ $-a^n u[-n-1] \stackrel{\mathcal{Z}}{\longleftrightarrow} \frac{z}{z-a} = \frac{1}{1-az^{-1}} |z| < |a|$ By the technique of partial fraction expansion $X(z) = \frac{A}{1-az^{-1}} + \frac{B}{1-bz^{-1}} + \dots + \frac{M}{1-mz^{-1}}$ $x[n] = A a^n u[n] - B b^n u[-n-1] + \cdots + x_m[n]$ (if ROC outside z = a) (if ROC inside z = b)

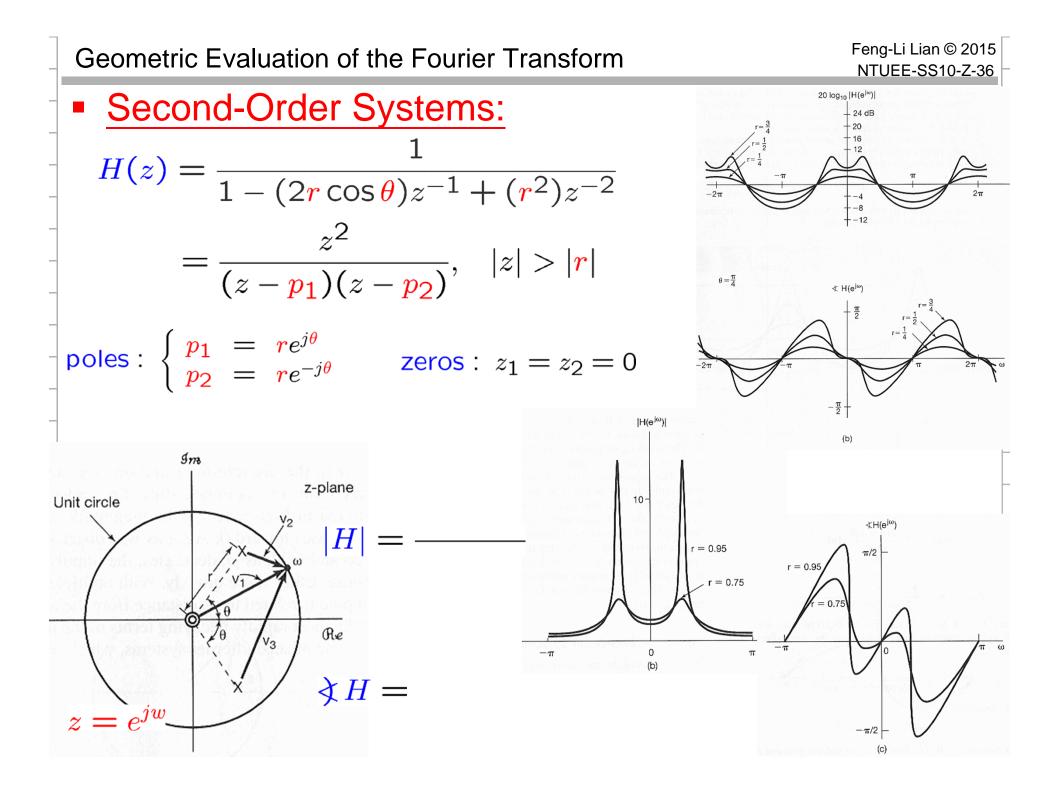


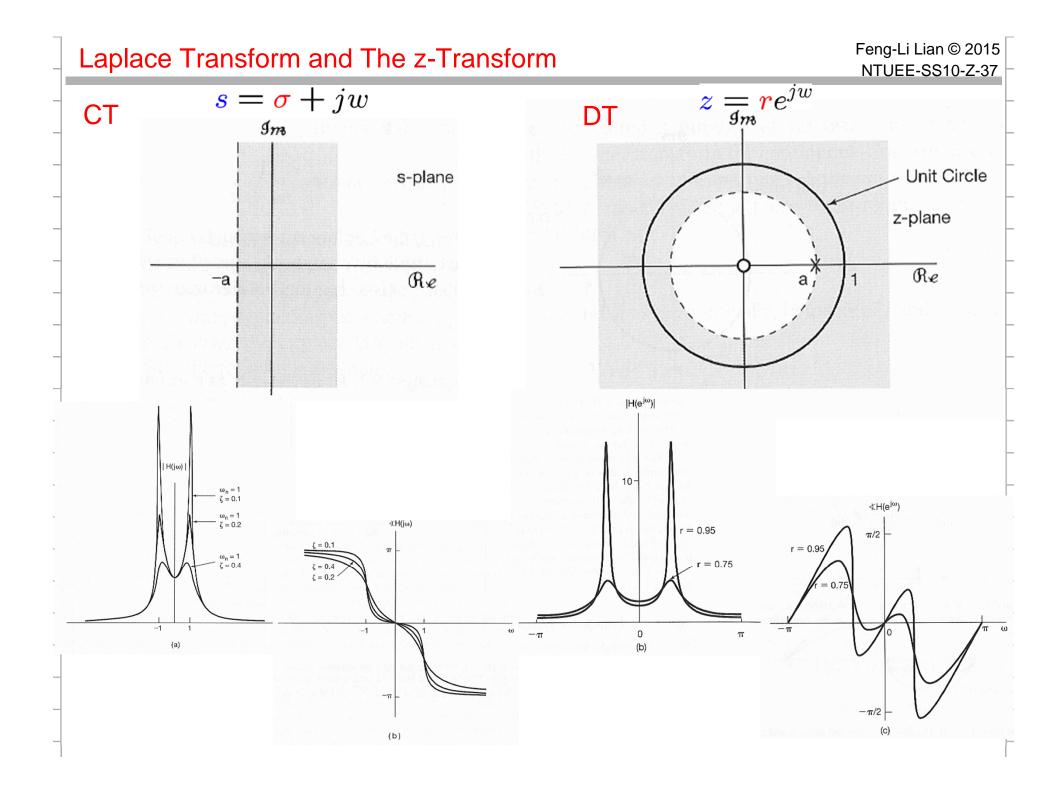
 $\Rightarrow x[n] =$



- The z-Transform
- The Region of Convergence for z-Transforms
- The Inverse z-Transform
- Geometric Evaluation of the Fourier Transform
- Properties of the z-Transform
- Some Common z-Transform Pairs
- Analysis & Characterization of LTI Systems Using the z-Transforms
- System Function Algebra and Block Diagram Representations
- The Unilateral z-Transform



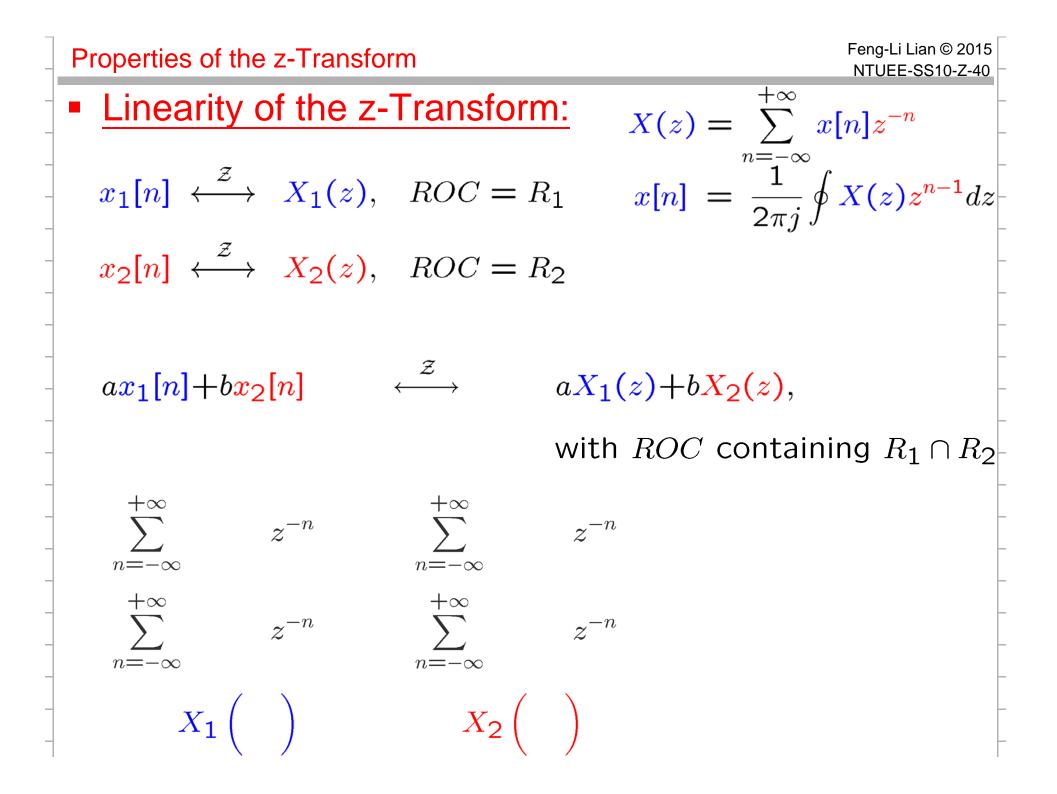


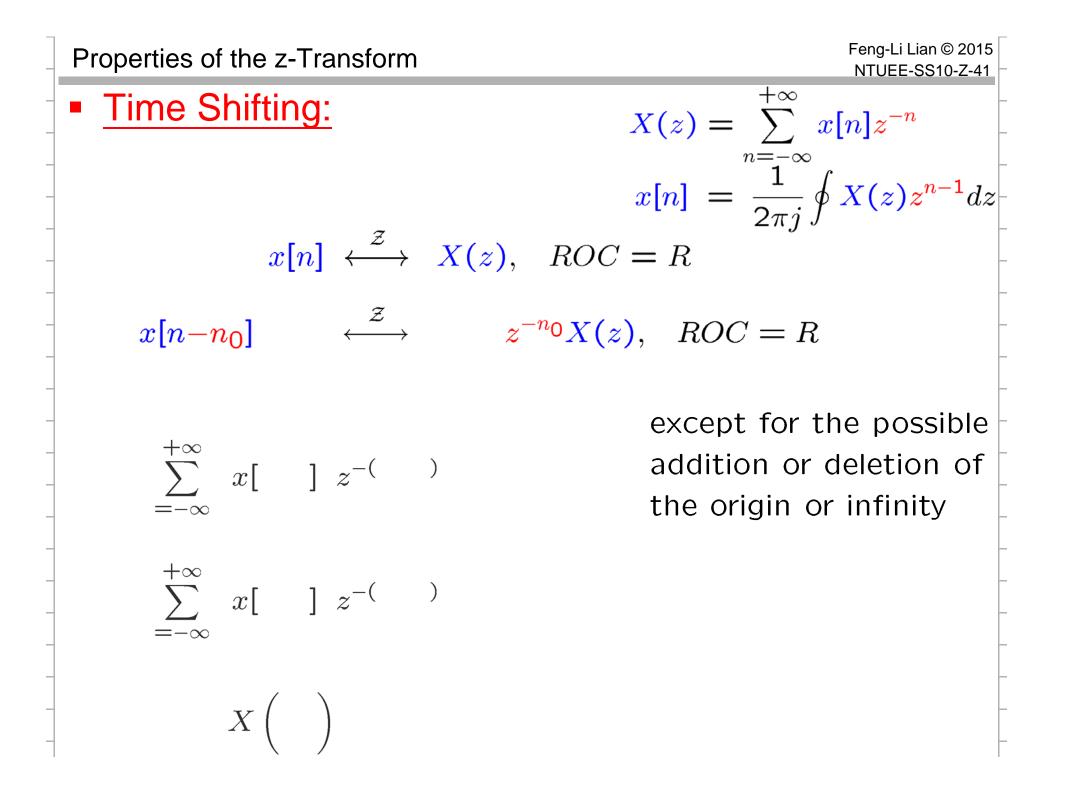


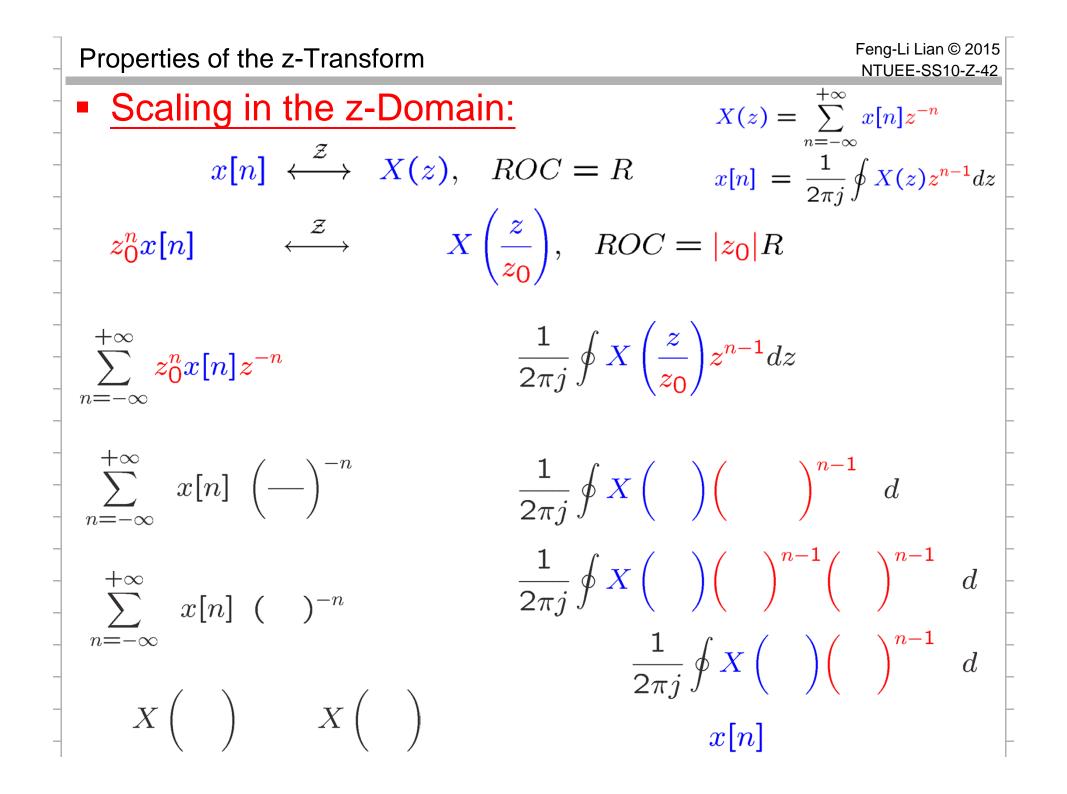
- The z-Transform
- The Region of Convergence for z-Transforms
- The Inverse z-Transform
- Geometric Evaluation of the Fourier Transform
- Properties of the z-Transform
- Some Common z-Transform Pairs
- Analysis & Characterization of LTI Systems Using the z-Transforms
- System Function Algebra and Block Diagram Representations
- The Unilateral z-Transform

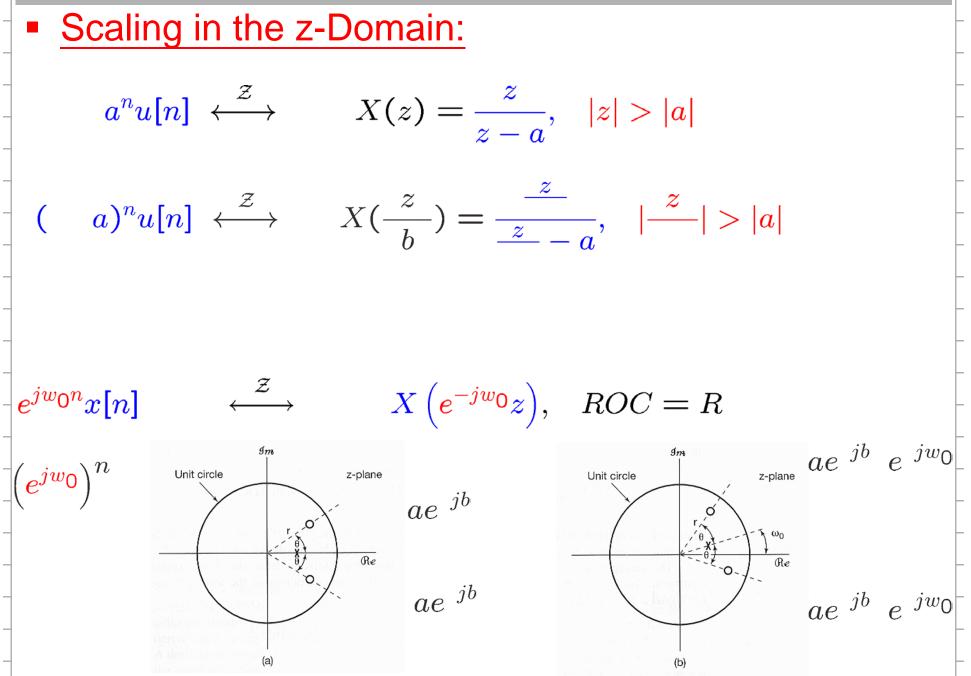
Outline

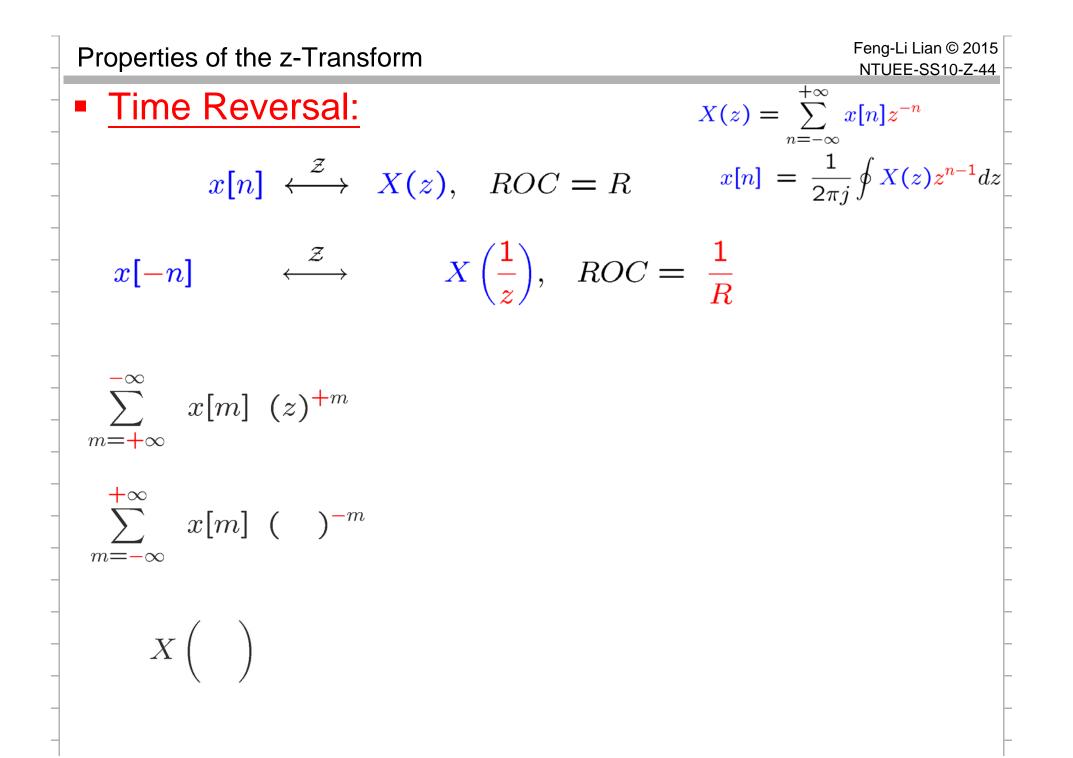
Property	CTFS	DTFS	CTFT	DTFT	LT	zT
Linearity	3.5.1		4.3.1	5.3.2	9.5.1	10.5.1
Time Shifting	3.5.2		4.3.2	5.3.3	9.5.2	10.5.2
Frequency Shifting (in s, z)			4.3.6	5.3.3	9.5.3	10.5.3
Conjugation	3.5.6		4.3.3	5.3.4	9.5.5	10.5.6
Time Reversal	3.5.3		4.3.5	5.3.6		10.5.4
Time & Frequency Scaling	3.5.4		4.3.5	5.3.7	9.5.4	10.5.5
(Periodic) Convolution			4.4	5.4	9.5.6	10.5.7
Multiplication	3.5.5	3.7.2	4.5	5.5		
Differentiation/First Difference		3.7.2	4.3.4,	5.3.5,	9.5.7,	10.5.7,
			4.3.6	5.3.8	9.5.8	10.5.8
Integration/Running Sum (Accumulation)			4.3.4	5.3.5	9.5.9	10.5.7
Conjugate Symmetry for Real Signals	3.5.6		4.3.3	5.3.4		
Symmetry for Real and Even Signals	3.5.6		4.3.3	5.3.4		
Symmetry for Real and Odd Signals	3.5.6		4.3.3	5.3.4		
Even-Odd Decomposition for Real Signals			4.3.3	5.3.4		
Parseval's Relation for (A)Periodic Signals	3.5.7	3.7.3	4.3.7	5.3.9		
Initial- and Final-Value Theorems					9.5.10	10.5.9

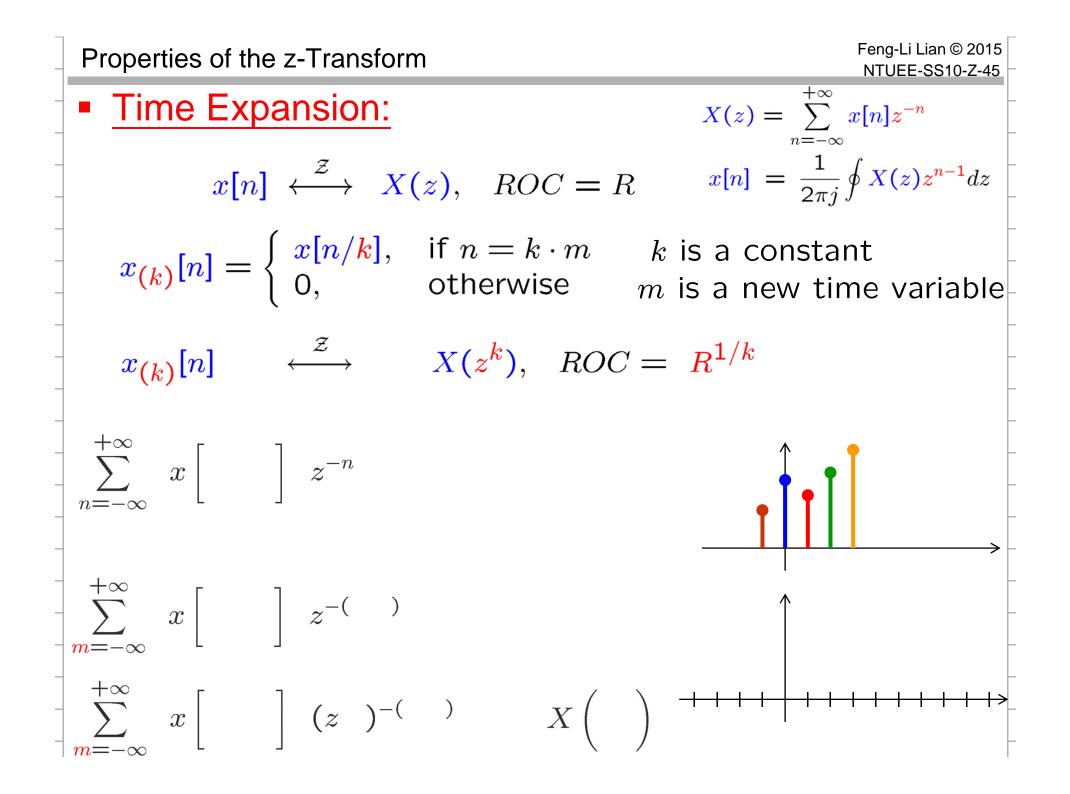












Properties of the z-Transform	Feng-Li Lian © 2015 NTUEE-SS10-Z-46
Conjugation:	$X(z) = \sum^{+\infty} x[n] z^{-n}$
$x[n] \stackrel{\mathcal{Z}}{\longleftrightarrow} X(z), ROC = R$	$x[n] = \frac{1}{2\pi j} \oint X(z) z^{n-1} dz$
$x^*[n] \stackrel{\mathcal{Z}}{\longleftrightarrow} X^*(z^*), ROC = R$	
$X(z) = \sum_{n=-\infty}^{+\infty} x[n] z^{-n}$	
$= \sum_{n=-\infty}^{+\infty} x [n] z^{-n}$	
$=$ $\sum_{n=-\infty}^{+\infty} x [n] (z)^{-n}$	
$X(z) = \sum_{n=-\infty}^{+\infty} x [n] (z)^{-n}$	

Properties of the z-Transform
$$\begin{array}{c}
\operatorname{Feng-Li Lian @ 2015}\\ \operatorname{NTUEE-SS10-Z-47}\\ \operatorname{NTUEE-SS10-Z-47}\\ x_1[n] \stackrel{z}{\longleftrightarrow} X_1(z), \quad ROC = R_1\\ x_2[n] \stackrel{z}{\longleftrightarrow} X_2(z), \quad ROC = R_2\\ \end{array}$$

$$\begin{array}{c}
X(z) = \sum_{n=-\infty}^{+\infty} x_n[n] z^{-n}\\ x[n] = \frac{1}{2\pi j} \oint X(z) z^{n-1} dz\\ \end{array}$$

$$\begin{array}{c}
= \sum_{n=-\infty}^{+\infty} x_1[n] \xrightarrow{z} X_1(z) X_2(z), \quad \text{with } ROC \text{ containing } R_1 \cap R_2\\ \text{if pole-zero cancellation}\\ \text{occurs in the product}\\ \end{array}$$

$$\begin{array}{c}
= \sum_{m=-\infty}^{+\infty} x_1[m] \left(\sum_{n=-\infty}^{+\infty} x_2[n-m] z^{-n}\right)\\ = \sum_{m=-\infty}^{+\infty} x_1[m] \left(\sum_{n=-\infty}^{+\infty} x_2[n-m] z^{-n}\right)\\ = \left(\sum_{m=-\infty}^{+\infty} x_1[m] z^{-(-)}\right) \left(\sum_{n=-\infty}^{+\infty} x_2[n-m] z^{-(-)}\right) \\ X_1(\cdot) X_2(\cdot) \end{array}$$

Differentiation in the z-Domain: $x[n] \stackrel{z}{\longleftrightarrow} X(z), \quad ROC = R$ $nx[n] \stackrel{z}{\longleftrightarrow} -z \frac{d}{dz} X(z), \quad ROC = R$ $+\infty$ X(z) = \sum x[n] z^{-n} $n = -\infty$ $+\infty$ x[n] z^{-n} $n = -\infty$ $+\infty$ x[n] z^{-n} $n = -\infty$ $+\infty$ X(z)x[n] z^{-n} $n = -\infty$ $+\infty$ X(z)x[n] z^{-n} $n = -\infty$

If
$$x[n] = 0$$
 for $n < 0$

The Initial-Value Theorem:

$$\Rightarrow x[0] = \lim_{z \to \infty} X(z)$$

 $n = -\infty$

$$X(z) = \sum_{n=-\infty}^{+\infty} x[n] z^{-n} = x[0] + x[1] z^{-1} + x[2] z^{-2}$$

$$\Rightarrow x[\infty] = \lim_{z \to 1} (1 - z^{-1}) X(z) \qquad X(z) - (z^{-1}) X(z)$$
$$X(z) = x[0] + x[1] z^{-1} + x[2] z^{-2}$$
$$-(z^{-1}) X(z) = -x[0] z^{-1} - x[1] z^{-2} - x[2] z^{-3}$$

Feng-Li Lian © 2015 NTUEE-SS10-Z-50

TABLE 10.1 PROPERTIES OF THE z-TRANSFORM

Section	Property	Si	gnal	z-Transform	ROC
al de E	이 이번 이번 물건물	<i>x</i> [<i>n</i>]		X(z)	R
		$x_1[n]$		$X_1(z)$	R_1
		$x_2[n]$		$X_2(z)$	R_2
10.5.1	Linearity	$ax_1[n] + bx_2[n]$		$aX_1(z) + bX_2(z)$	At least the intersection of R_1 and R_2
10.5.2	Time shifting	$x[n-n_0]$		$z^{-n_0}X(z)$	R, except for the possible addition of deletion of the origin
10.5.3	Scaling in the z-domain	$e^{j\omega_0 n} x[n]$		$X(e^{-j\omega_0}z)$	R
		$z_0^n x[n]$		$X\left(\frac{z}{z_0}\right)$	$z_0 R$
		$a^n x[n]$		$X(a^{-1}z)$	Scaled version of R (i.e., $ a R =$ the set of points { $ a z$ } for z in R)
10.5.4	Time reversal	x[-n]		$X(z^{-1})$	Inverted R (i.e., $R^{-1} =$ the set of points z^{-1} , where z is in R)
10.5.5	Time expansion	$x_{(k)}[n] = \begin{cases} x[r], & n \\ 0, & n \end{cases}$	= rk for some integer $r\neq rk$	$X(z^k)$	$R^{1/k}$ (i.e., the set of points $z^{1/k}$, when z is in R)
10.5.6	Conjugation	<i>x</i> *[<i>n</i>]		$X^*(z^*)$	R
10.5.7	Convolution	$x_1[n] * x_2[n]$		$X_1(z)X_2(z)$	At least the intersection of R_1 and R
10.5.7	First difference	x[n] - x[n-1]		$(1-z^{-1})X(z)$	At least the intersection of R and $ z > 0$
10.5.7	Accumulation	$\sum_{k=-\infty}^{n} x[k]$		$\frac{1}{1-z^{-1}}X(z)$	At least the intersection of R and $ z > 1$
10.5.8	Differentiation	nx[n]		$-z\frac{dX(z)}{dz}$	R

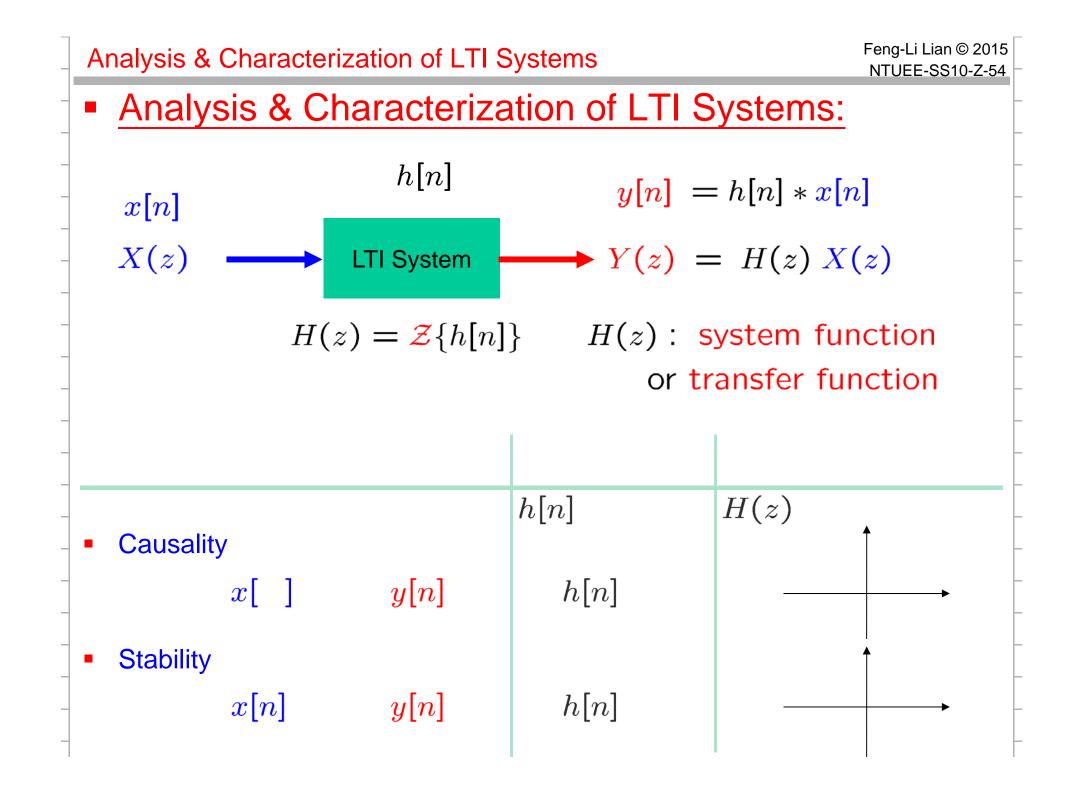
- The z-Transform
- The Region of Convergence for z-Transforms
- The Inverse z-Transform
- Geometric Evaluation of the Fourier Transform
- Properties of the z-Transform
- Some Common z-Transform Pairs
- Analysis & Characterization of LTI Systems Using the z-Transforms
- System Function Algebra and Block Diagram Representations
- The Unilateral z-Transform

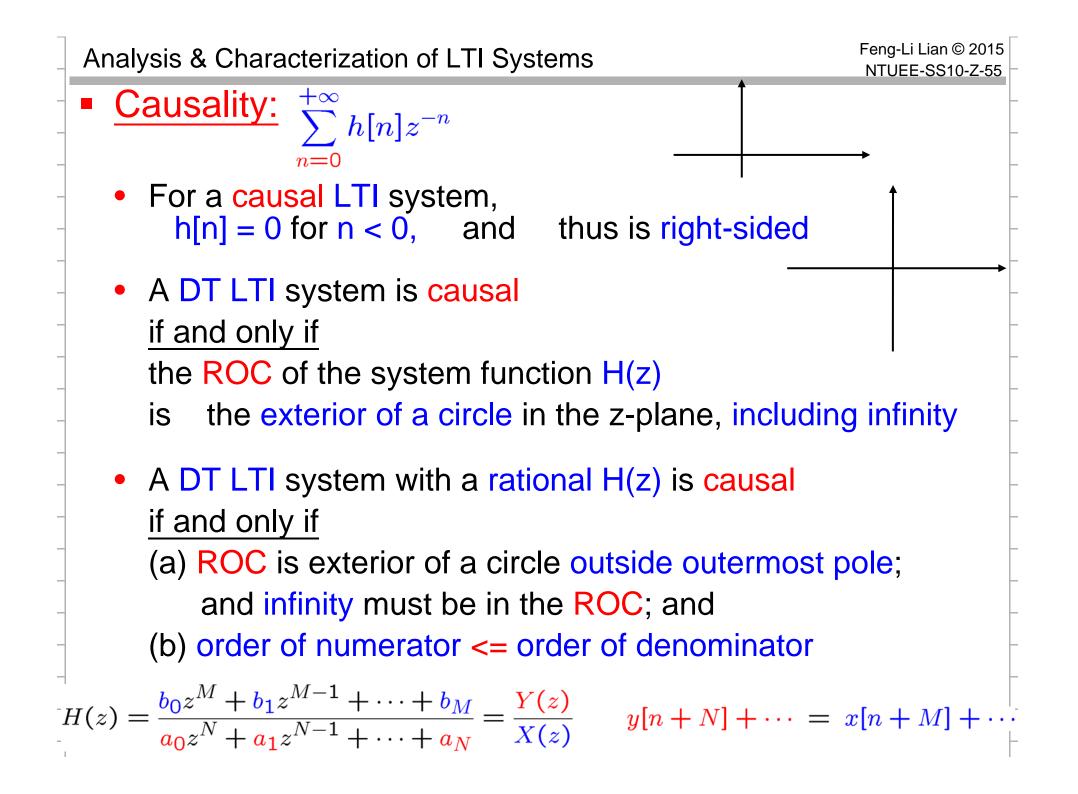
Some z-Transform Pairs

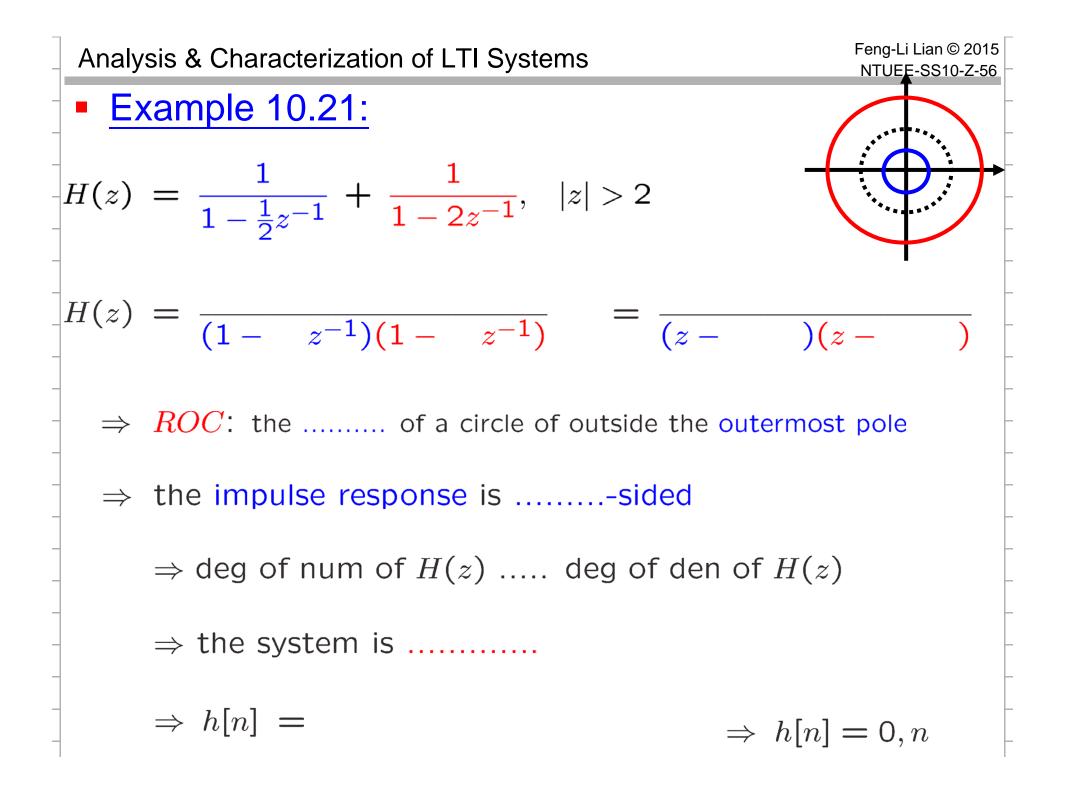
Feng-Li Lian © 2015 NTUEE-SS10-Z-52

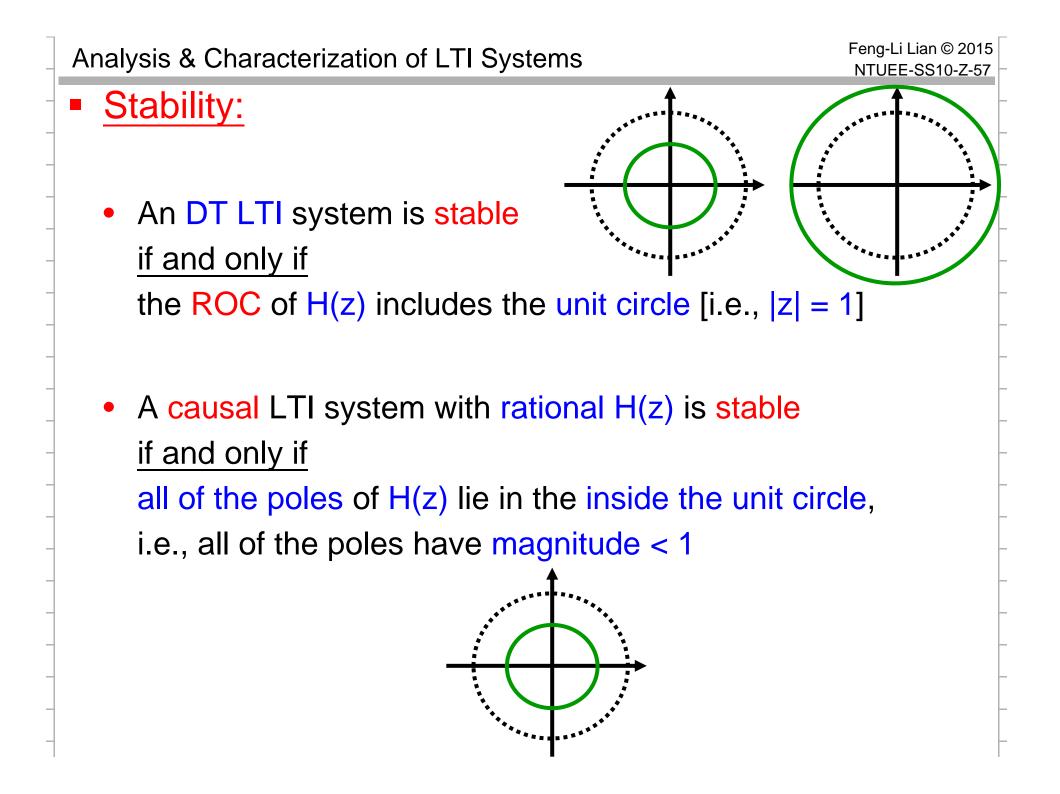
Signal	Transform	ROC
1. δ[<i>n</i>]	1	All z
2. <i>u</i> [<i>n</i>]	$\frac{1}{1-z^{-1}}$	z > 1
3. $-u[-n-1]$	$\frac{1}{1-z^{-1}}$	z < 1
4. δ[<i>n</i> − <i>m</i>]	z^{-m}	All z, except 0 (if $m > 0$) o ∞ (if $m < 0$)
5. $\alpha^n u[n]$	$\frac{1}{1-\alpha z^{-1}}$	z > lpha
6. $-\alpha^n u[-n-1]$	$\frac{1}{1-\alpha z^{-1}}$	z < lpha
7. $n\alpha^n u[n]$	$\frac{\alpha z^{-1}}{(1-\alpha z^{-1})^2}$	z > lpha
8. $-n\alpha^n u[-n-1]$	$\frac{\alpha z^{-1}}{(1-\alpha z^{-1})^2}$	z < lpha
9. $[\cos \omega_0 n] u[n]$	$\frac{1 - [\cos \omega_0] z^{-1}}{1 - [2 \cos \omega_0] z^{-1} + z^{-2}}$	z > 1
10. $[\sin \omega_0 n]u[n]$	$\frac{[\sin\omega_0]z^{-1}}{1-[2\cos\omega_0]z^{-1}+z^{-2}}$	z > 1
11. $[r^n \cos \omega_0 n]u[n]$	$\frac{1 - [r\cos\omega_0]z^{-1}}{1 - [2r\cos\omega_0]z^{-1} + r^2z^{-2}}$	$\frac{1}{2}$ $ z > r$
12. $[r^n \sin \omega_0 n] u[n]$	$\frac{[r\sin\omega_0]z^{-1}}{1-[2r\cos\omega_0]z^{-1}+r^2z^{-2}}$	z > r

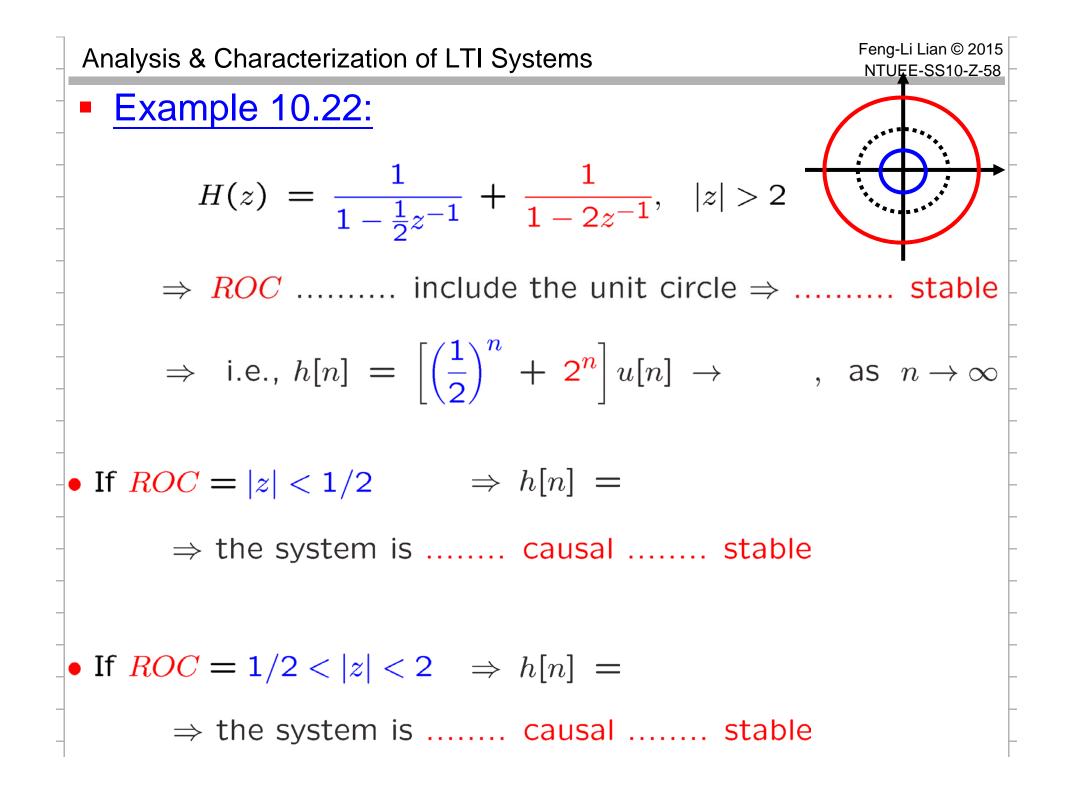
- The z-Transform
- The Region of Convergence for z-Transforms
- The Inverse z-Transform
- Geometric Evaluation of the Fourier Transform
- Properties of the z-Transform
- Some Common z-Transform Pairs
- Analysis & Characterization of LTI Systems Using the z-Transforms
- System Function Algebra and Block Diagram Representations
- The Unilateral z-Transform

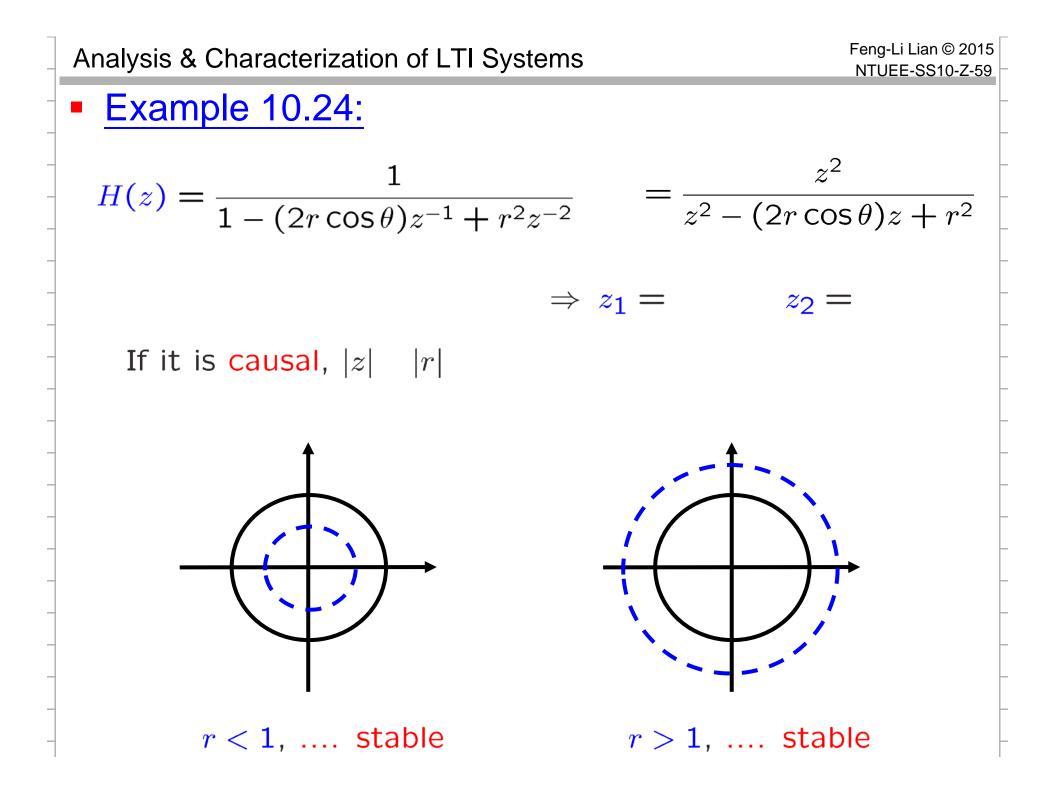












Analysis & Characterization of LTI Systems
• LTI Systems by Linear Constant-Coef Difference Equations:

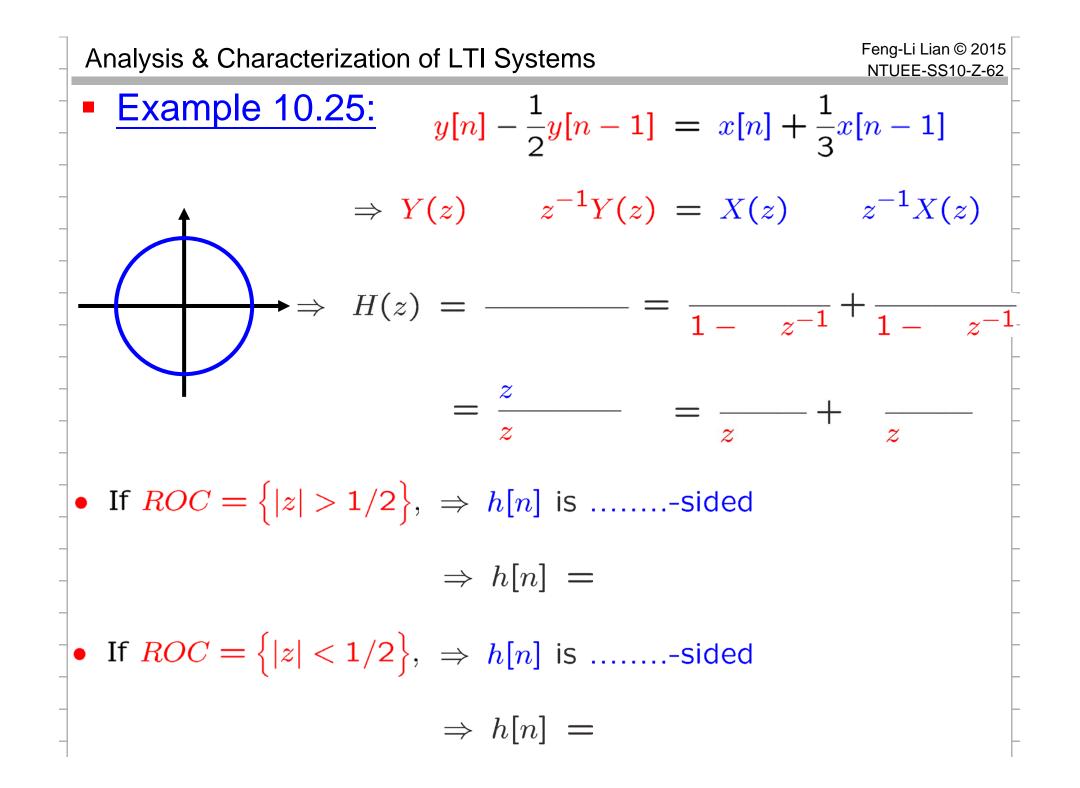
$$a_{0}y[n] + a_{1}y[n-1] + \dots + a_{N-1}y[n-N+1] + a_{N}y[n-N]$$

$$= b_{0}x[n] + b_{1}x[n-1] + \dots + b_{M-1}x[n-M+1] + b_{M}x[n-M]$$

$$\sum_{k=0}^{N} a_{k}y[n-k] = \sum_{k=0}^{M} b_{k}x[n-k]$$

$$x[n] \longrightarrow \text{LTI System} \qquad y[n]$$

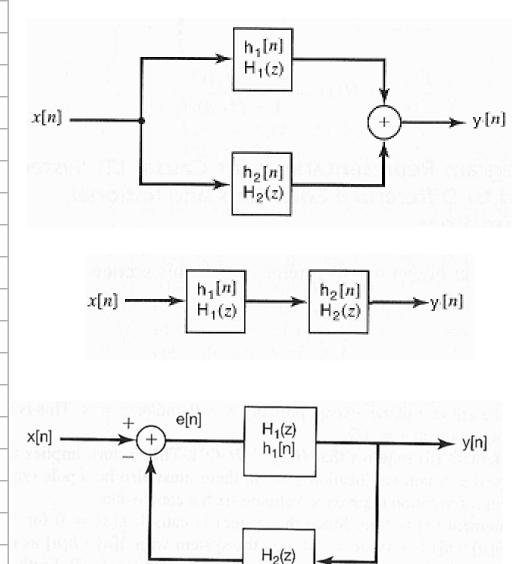
$$Y(z) = X(z)H(z) \qquad H(z) = \frac{Y(z)}{X(z)}$$



- The z-Transform
- The Region of Convergence for z-Transforms
- The Inverse z-Transform
- Geometric Evaluation of the Fourier Transform
- Properties of the z-Transform
- Some Common z-Transform Pairs
- Analysis & Characterization of LTI Systems Using the z-Transforms
- System Function Algebra and Block Diagram Representations
- The Unilateral z-Transform

System Function Algebra & Block Diagram Representation

System Function Blocks:



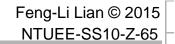
 $h_2[n]$

- parallel interconnection $h[n] = h_1[n] + h_2[n]$
 - $H(z) = H_1(z) + H_2(z)$
- series interconnection

 $h[n] = h_1[n] * h_2[n]$

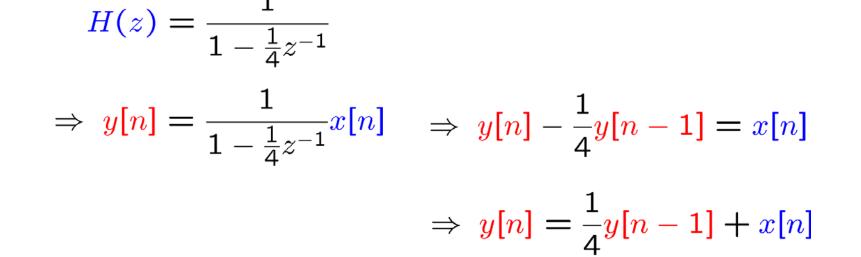
$$H(z) = H_1(z) H_2(z)$$

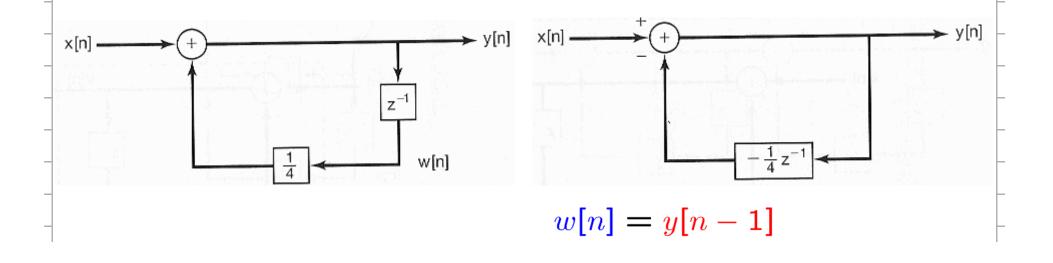
• feedback interconnection $Y = H_1 E$ $Z = H_2 Y$ E = X - Z $H(z) = \frac{H_1(z)}{1 + H_1(z)H_2(z)}$ System Function Algebra & Block Diagram Representation

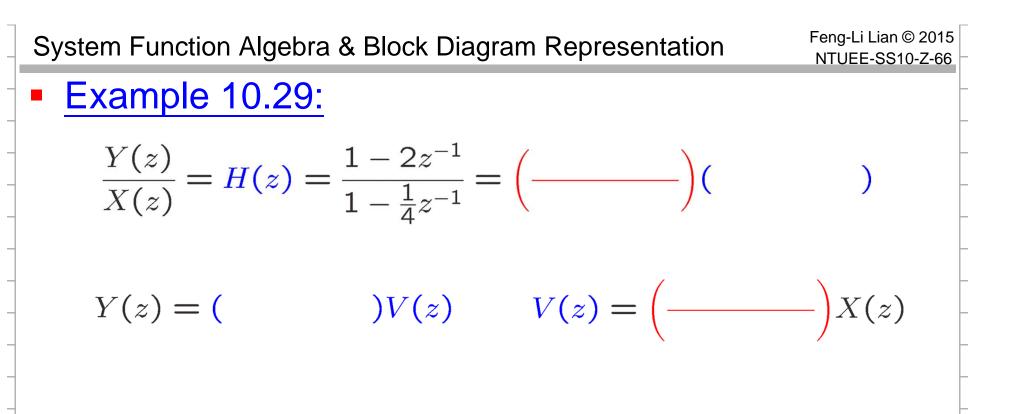


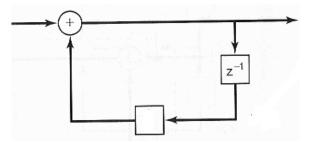
Example 10.28:

• Consider a causal LTI system with system function



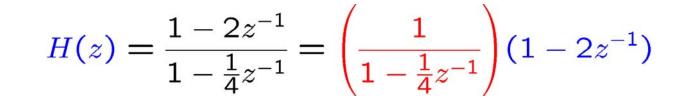


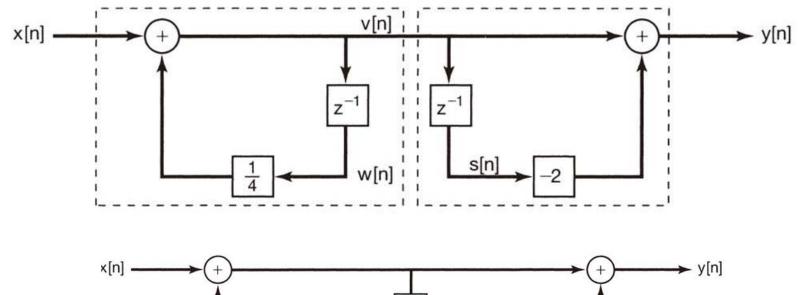


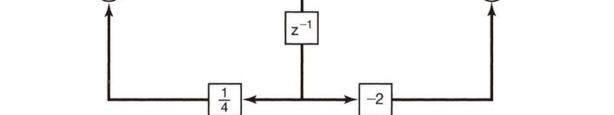


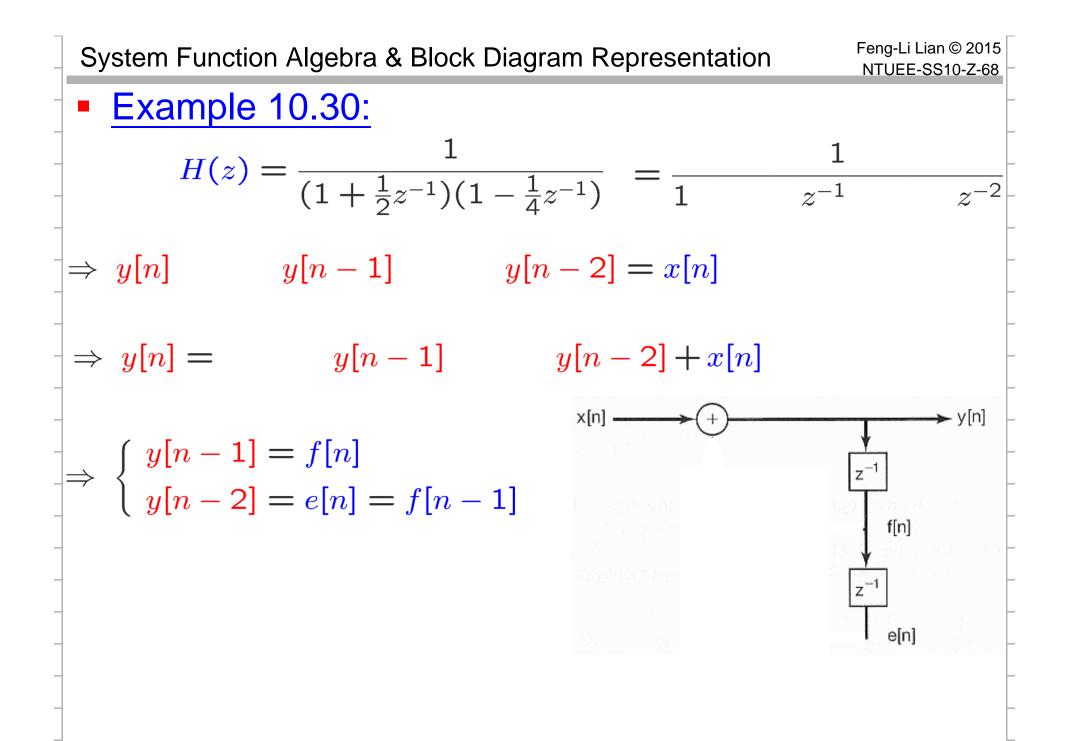
System Function Algebra & Block Diagram Representation

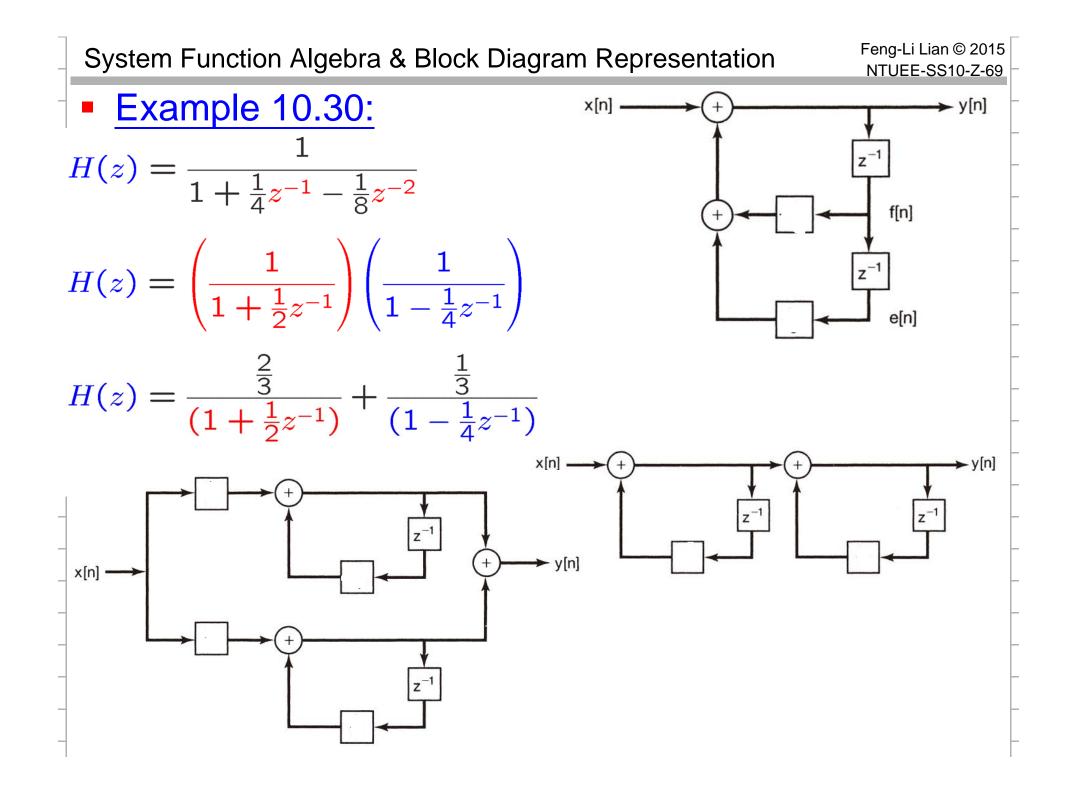
Feng-Li Lian © 2015 NTUEE-SS10-Z-67









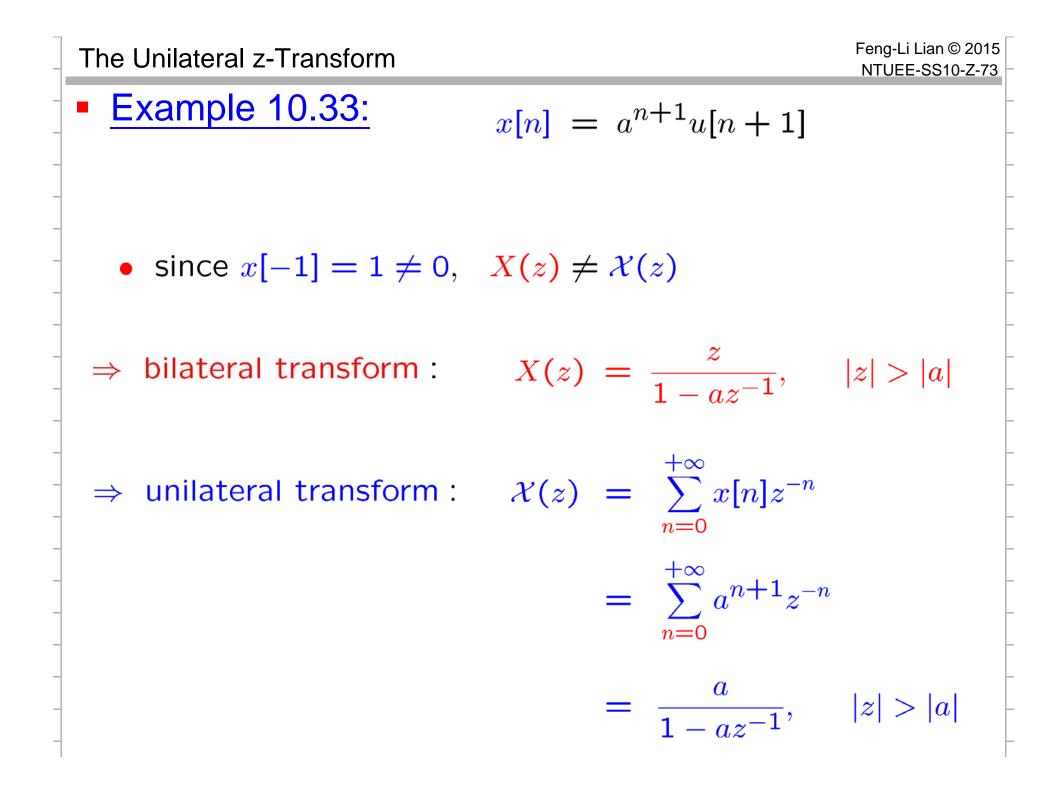


- The z-Transform
- The Region of Convergence for z-Transforms
- The Inverse z-Transform
- Geometric Evaluation of the Fourier Transform
- Properties of the z-Transform
- Some Common z-Transform Pairs
- Analysis & Characterization of LTI Systems Using the z-Transforms
- System Function Algebra and Block Diagram Representations
- The Unilateral z-Transform

The Unilateral z-Transform

The Unilateral z-Transform of x(t): unilateral zT bilateral zT for causal system & with nonzero init. cond. $\mathcal{X}(z) \stackrel{\Delta}{=} \sum^{+\infty} x[n] z^{-n}$ $X(z) \stackrel{\Delta}{=} \sum^{+\infty} x[n] z^{-n}$ $= \sum_{n=1}^{n} x[n]z^{n} + \sum_{n=1}^{+\infty} x[n]z^{n}$ $n \equiv -\infty$ $x[n] \xleftarrow{\mathcal{UZ}} \mathcal{X}(z)$ $x[n] \stackrel{\mathcal{Z}}{\longleftrightarrow} X(z)$ $\mathcal{X}(z) = \mathcal{UZ}\{x[n]\}$ $X(z) = \mathcal{Z}\{x[n]\}$ $x[n] = \mathcal{UZ}^{-1}\{\mathcal{X}(z)\}$ $x[n] = \mathcal{Z}^{-1}\{X(z)\}$ *ROC* : exterior of a circle

The Unilateral z-Transform	Feng-Li Lian © 2015 NTUEE-SS10-Z-72
Time-Shifting Property	-
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	
$\left[\mathcal{X}(z) = \sum_{n=0}^{+\infty} x[n] z^{-n} = x[0] + x[1] z^{-1} + x[2] z^{-2} + \cdots \right]$	
$ x[n-1] \xleftarrow{\mathcal{UZ}} z^{-1} \mathcal{X}(z) + x[-1] $	_
$\int_{n=0}^{+\infty} x[n-1]z^{-n} = x[-1] + x[0]z^{-1} + x[1]z^{-2} + x[1]z^$	$z[2]z^{-3}+\cdots$
$= z^{-1} \mathcal{X}(z) = x[0]z^{-1} + x[1]z^{-2} + x$	$z[2]z^{-3} + \cdots =$
$x[n-2] \xleftarrow{\mathcal{UZ}} z^{-2} \mathcal{X}(z) + x[-1]z^{-1} + x[-2]$	-
$x[n+1] \xleftarrow{\mathcal{UZ}} z \mathcal{X}(z) - zx[0]$	-



The Unilateral z-Transform
Feng-Li Lian @ 2015
NTUEE-SS10-2.74

• Example 10.33:
$$x_1[n] = a^n u[n] \qquad \mathcal{X}_1(z) = \frac{1}{1 - az^{-1}} = \frac{z}{z - a}, \qquad |z| > |a|$$

$$x_2[n] = x_1[n + 1] \qquad \mathcal{X}_2(z) = z \frac{z}{z - a} - z x_1[0]$$

$$= a^{n+1}u[n + 1] \qquad = \frac{z^2}{z - a} - z \cdot 1$$

$$= \frac{z^2 - z^2 + az}{z - a}$$

$$= \frac{az}{z - a}$$

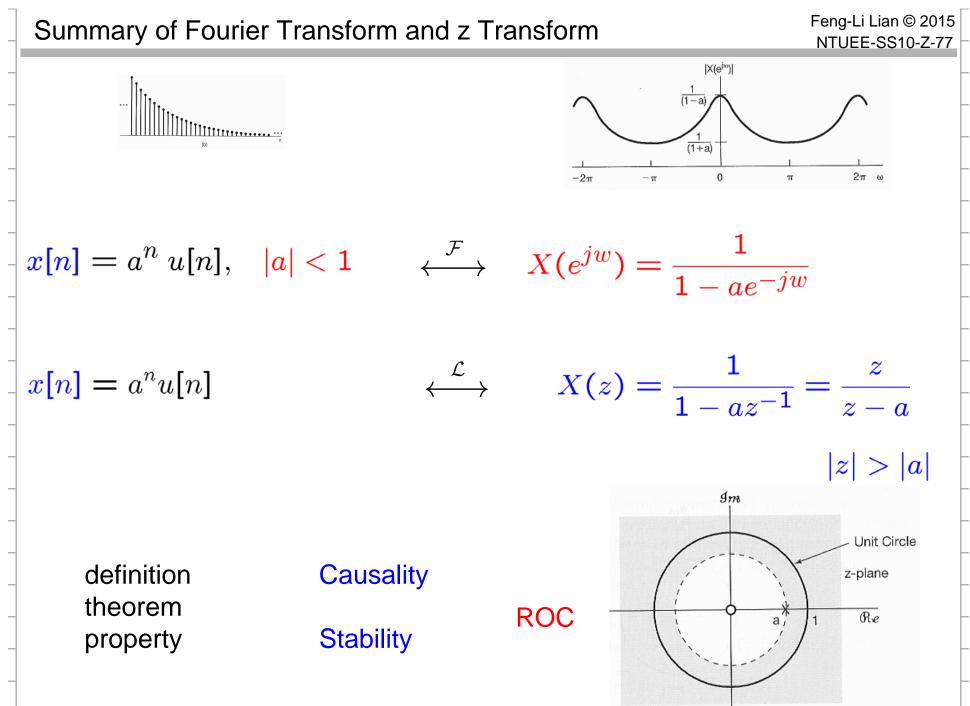
$$= \frac{a}{1 - z^{-1}a}$$

The Unilateral z-Transform

Feng-Li Lian © 2015 NTUEE-SS10-Z-75

Property	Signal	Unilateral z-Transform
vigens 14 mereisen 1. Photograficae (searcharg <u>16</u>	$ \begin{array}{c} x[n] \\ x_1[n] \\ x_2[n] \end{array} $	$\begin{split} \mathfrak{X}(z) \ \mathfrak{X}_1(z) \ \mathfrak{X}_2(z) \end{split}$
Linearity Time delay	$ax_1[n] + bx_2[n]$ $x[n-1]$	$\begin{array}{c} a\mathfrak{X}_{1}(z) + b\mathfrak{X}_{2}(z) \\ z^{-1}\mathfrak{X}(z) + x[-1] \\ z\mathfrak{X}(z) - zx[0] \end{array} z^{-1}\mathcal{X}(z) + x[-1] \\ z\mathcal{X}(z) - zx[0] \end{array}$
Time advance Scaling in the z-domain	$x[n+1]$ $e^{j\omega_0 n} x[n]$ $z_0^n x[n]$ $a^n x[n]$	$\begin{array}{l}z\mathfrak{X}(z) - zx[0] \\ \mathfrak{X}(e^{-j\omega_0}z) \\ \mathfrak{X}(z/z_0) \\ \mathfrak{X}(a^{-1}z)\end{array} \qquad \qquad$
Time expansion Conjugation	$x_k[n] = \begin{cases} x[m], & n = mk \\ 0, & n \neq mk & \text{for any } m \end{cases}$ $x^*[n]$	$\mathfrak{X}(z^k)$ $\mathfrak{X}^*(z^*)$
Convolution (assuming that $x_1[n]$ and $x_2[n]$ are identically zero for n < 0)	$x_1[n] * x_2[n]$ $x_1[n] = x_2[n] \equiv 0, \ n < 0$	$\mathfrak{X}_1(z)\mathfrak{X}_2(z)$
First difference	x[n] - x[n-1]	$(1-z^{-1})\mathfrak{X}(z) - x[-1]$
Accumulation	$\sum_{k=0}^{n} x[k]$	$\frac{1}{1-z^{-1}}\mathfrak{V}(z)$
Differentiation in the z-domain	nx[n]	$-z\frac{d\mathfrak{X}(z)}{dz}$
n e angele de la desirier Spare è de cere de al-	Initial Value Theorem $x[0] = \lim_{z \to \infty} \mathfrak{N}(z)$	

Feng-Li Lian © 2015 Summary of Fourier Transform and z Transform NTUEE-SS10-Z-76 $x[n] = \frac{1}{2\pi} \int_{2\pi} X(e^{jw}) e^{jwn} dw$ $X(e^{jw}) = \sum^{+\infty} x[n]e^{-jwn}$ $x[n] = \frac{1}{2\pi i} \oint X(z) z^{n-1} dz$ $X(z) = \sum^{+\infty} x[n] z^{-n}$ $X(z) = X(re^{jw}) = \mathcal{Z}\left\{x[n]\right\} = \mathcal{F}\left\{x[n]r^{-n}\right\}$ $X(e^{jw}) = \mathcal{F}\left\{x[n] ight\} = \mathcal{Z}\left\{x[n] ight\}\Big|_{z=e^{jw}} = \left.X(z) ight|_{z=e^{jw}}$



Chapter 10: The z-Transform

- The z-Transform
- The ROC for z-T
- The Inverse z-T
- Geometric Evaluation of the FT
- Properties of the z-T
 - Linearity

- Time Shifting
- Time Reversal
- Time Expansion
- Convolution First Difference
- Differentiation in the z-Domain

Shifting in the z-Domain

Conjugation

Accumulation

Initial-Value Theorems

- Some Common z-T Pairs
- Analysis & Charac. of LTI Systems Using the z-T
- System Function Algebra, Block Diagram Repre.
- The Unilateral z-T

