- The Laplace Transform
- The Region of Convergence (ROC) for Laplace Transforms
- The Inverse Laplace Transform
- Geometric Evaluation of the Fourier Transform
- Properties of the Laplace Transform
- Some Laplace Transform Pairs
- Analysis & Characterization of LTI Systems
 Using the Laplace Transform
- System Function Algebra and Block Diagram Representations
- The Unilateral Laplace Transform

9.9. Given that

$$e^{-at}u(t) \stackrel{\mathcal{L}}{\longleftrightarrow} \frac{1}{s+a}, \qquad \Re\{s\} > \Re\{-a\},$$

determine the inverse Laplace transform of

$$X(s) = \frac{2(s+2)}{s^2 + 7s + 12},$$
 $\Re \{s\} > -3.$

Problem 9.26: Time-Shifting, Time-Scaling

9.26. Consider a signal y(t) which is related to two signals $x_1(t)$ and $x_2(t)$ by

$$y(t) = x_1(t-2) * x_2(-t+3)$$

where

$$x_1(t) = e^{-2t}u(t)$$
 and $x_2(t) = e^{-3t}u(t)$.

Given that

$$e^{-at}u(t) \stackrel{\mathcal{L}}{\longleftrightarrow} \frac{1}{s+a}, \quad \Re e\{s\} > a,$$

use properties of the Laplace transform to determine the Laplace transform Y(s) of y(t).

Problem 9.29: Convolution

- **9.29.** Consider an LTI system with input $x(t) = e^{-t}u(t)$ and impulse response $h(t) = e^{-2t}u(t)$.
 - (a) Determine the Laplace transforms of x(t) and h(t).
 - (b) Using the convolution property, determine the Laplace transform Y(s) of the output y(t).
 - (c) From the Laplace transform of y(t) as obtained in part (b), determine y(t).
 - (d) Verify your result in part (c) by explicitly convolving x(t) and h(t).

9.22. Determine the function of time, x(t), for each of the following Laplace transforms and their associated regions of convergence:

(a)
$$\frac{1}{s^2+9}$$
, $\Re e\{s\} > 0$

(b)
$$\frac{s}{s^2+9}$$
, $\Re e\{s\} < 0$

(c)
$$\frac{s+1}{(s+1)^2+9}$$
, $\Re \mathscr{L}\{s\} < -1$

(d)
$$\frac{s+2}{s^2+7s+12}$$
, $-4 < \Re e\{s\} < -3$

(d)
$$\frac{s+2}{s^2+7s+12}$$
, $-4 < \Re\{s\} < -3$
(e) $\frac{s+1}{s^2+5s+6}$, $-3 < \Re\{s\} < -2$

(f)
$$\frac{(s+1)^2}{s^2-s+1}$$
, $\Re e\{s\} > \frac{1}{2}$

(g)
$$\frac{s^2-s+1}{(s+1)^2}$$
, $\Re \mathscr{L}\{s\} > -1$

Problem 9.28: ROC, Pole-Zero, Stable-Causal

- **9.28.** Consider an LTI system for which the system function H(s) has the pole-zero pattern shown in Figure P9.28.
 - (a) Indicate all possible ROCs that can be associated with this pole-zero pattern.
 - (b) For each ROC identified in part (a), specify whether the associated system is stable and/or causal.

