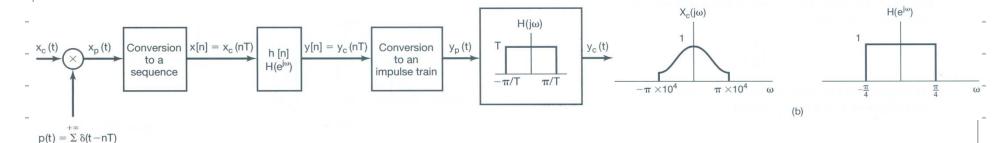
- Representation of of a CT Signal by Its Samples:
 - The Sampling Theorem
- Reconstruction of of a Signal from Its Samples
 - Using exact interpolation
 - Using zero-order hold
 - Using higher-order hold
- The Effect of Under-sampling
 - Overlapping in Frequency-Domain
 - Aliasing
- DT Processing of CT Signals
- Sampling of Discrete-Time Signals
 - Down-sampling
 - Up-sampling

7.29: Filtering CT Signal Using DT Filter

Feng-Li Lian © 2015 NTUEE-SS7-Sampling-9

7.29. Figure P7.29(a) shows the overall system for filtering a continuous-time signal using a discrete-time filter. If $X_c(j\omega)$ and $H(e^{j\omega})$ are as shown in Figure P7.29(b), with 1/T = 20 kHz, sketch $X_p(j\omega)$, $X(e^{j\omega})$, $Y(e^{j\omega})$, $Y_p(j\omega)$, and $Y_c(j\omega)$.



7.19: Zero-Insertion System, Decimation

7.19. Consider the system shown in Figure P7.19, with input x[n] and the corresponding output y[n]. The zero-insertion system inserts two points with zero amplitude between each of the sequence values in x[n]. The decimation is defined by

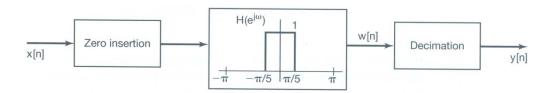
$$y[n] = w[5n],$$

where w[n] is the input sequence for the decimation system. If the input is of the form

$$x[n] = \frac{\sin \omega_1 n}{\pi n},$$

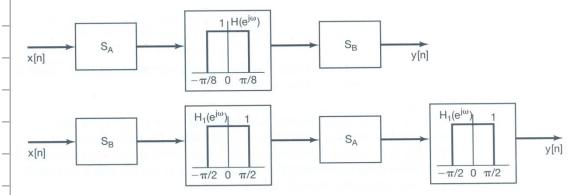
determine the output y[n] for the following values of ω_1 :

- (a) $\omega_1 \leq \frac{3\pi}{5}$
- **(b)** $\omega_1 > \frac{3\pi}{5}$



7.20: Zero-Insertion System, Lowpass Filter

- **7.20.** Two discrete-time systems S_1 and S_2 are proposed for implementing an ideal low-pass filter with cutoff frequency $\pi/4$. System S_1 is depicted in Figure P7.20(a). System S_2 is depicted in Figure P7.20(b). In these figures, S_A corresponds to a zero-insertion system that inserts one zero after every input sample, while S_B corresponds to a decimation system that extracts every second sample of its input.
 - (a) Does the proposed system S_1 correspond to the desired ideal lowpass filter?
 - (b) Does the proposed system S_2 correspond to the desired ideal lowpass filter?

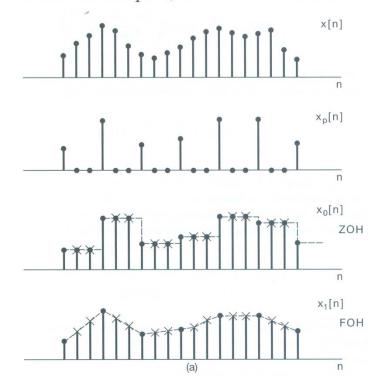


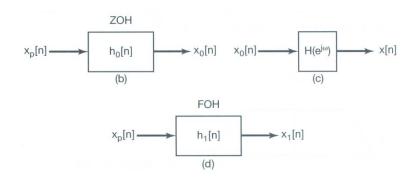
7.50: DT Zero-Order Hold First-Order Hold

7.50. In this problem, we consider the discrete-time counterparts of the zero-order hold and first-order hold, which were discussed for continuous time in Sections 7.1.2 and 7.2.

Let x[n] be a sequence to which discrete-time sampling, as illustrated in Figure 7.31, has been applied. Suppose the conditions of the discrete-time sampling theorem are satisfied; that is, $\omega_s > 2\omega_M$, where ω_s is the sampling frequency and $X(e^{j\omega}) = 0$, $\omega_M < |\omega| \le \pi$. The original signal x[n] is then exactly recoverable from $x_p[n]$ by ideal lowpass filtering, which, as discussed in Section 7.5, corresponds to band-limited interpolation.

The zero-order hold represents an approximate interpolation whereby every sample value is repeated (or held) N-1 successive times, as illustrated in Figure P7.50(a) for the case of N=3. The first-order hold represents a linear interpolation between samples, as illustrated in the same figure.





7.50: DT Zero-Order Hold First-Order Hold

- (a) The zero-order hold can be represented as an interpolation in the form of eq. (7.47) or, equivalently, the system in Figure P7.50(b). Determine and sketch $h_0[n]$ for the general case of a sampling period N.
- (b) x[n] can be exactly recovered from the zero-order-hold sequence $x_0[n]$ using an appropriate LTI filter $H(e^{j\omega})$, as indicated in Figure P7.50(c). Determine and sketch $H(e^{j\omega})$.
- (c) The first-order-hold (linear interpolation) can be represented as an interpolation in the form of eq. (7.47) or, equivalently, the system in Figure P7.50(d). Determine and sketch $h_1[n]$ for the general case of a sampling period N.
- (d) x[n] can be exactly recovered from the first-order-hold sequence $x_1[n]$ using an appropriate LTI filter with frequency response $H(e^{j\omega})$. Determine and sketch $H(e^{j\omega})$.