- The Magnitude-Phase Representation of the Fourier Transform
- (p.423)
- The Magnitude-Phase Representation of Frequency Response of LTI Systems

(p.427)

- Time-Domain Properties of Ideal Frequency-Selective Filters
- Time-Domain and Frequency-Domain Aspects of Non-ideal Filters
- 1st-Order & 2nd-Order Continuous-Time Systems
- p.461 1st-Order & 2nd-Order Discrete-Time Systems
 - Time- & Frequency-Domain Analysis of Systems

- **6.17.** For each of the following second-order difference equations for causal and stable LTI systems, determine whether or not the step response of the system is oscillatory:
 - (a) $y[n] + y[n-1] + \frac{1}{4}y[n-2] = x[n]$
 - **(b)** $y[n] y[n-1] + \frac{1}{4}y[n-2] = x[n]$

6.3: Group Delay

Feng-Li Lian © 2015 NTUEE-SS6-TimeFreq-9

6.3. Consider the following frequency response for a causal and stable LTI system:

$$H(j\omega) = \frac{1 - j\omega}{1 + j\omega}.$$

- (a) Show that $|H(j\omega)| = A$, and determine the value of A.
- (b) Determine which of the following statements is true about $\tau(\omega)$, the group delay of the system. (Note: $\tau(\omega) = -d(\not \prec H(j\omega))/d\omega$, where $\not \prec H(j\omega)$ is expressed in a form that does not contain any discontinuities.)
 - 1. $\tau(\omega) = 0$ for $\omega > 0$
 - **2.** $\tau(\omega) > 0$ for $\omega > 0$
 - 3. $\tau(\omega) < 0$ for $\omega > 0$

6.4: Group Delay, Linear Phase

Feng-Li Lian © 2015 NTUEE-SS6-TimeFreq-10

6.4: Consider a linear-phase discrete-time LTI system with frequency response $H(e^{j\omega})$ and real impulse response h[n]. The group delay function for such a system is defined as

$$\tau(\omega) = -\frac{d}{d\omega} \not\subset H(e^{j\omega}),$$

where $\langle H(e^{j\omega}) \rangle$ has no discontinuities. Suppose that, for this system,

$$|H(e^{j\pi/2})| = 2$$
, $\angle H(e^{j0}) = 0$, and $\tau(\frac{\pi}{2}) = 2$.

Determine the output of the system for each of the following inputs:

(a) $\cos(\frac{\pi}{2}n)$ (b) $\sin(\frac{7\pi}{2}n + \frac{\pi}{4})$

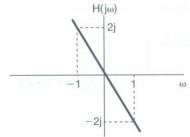
6.21. A causal LTI filter has the frequency response $H(j\omega)$ shown in Figure P6.21. For each of the input signals given below, determine the filtered output signal y(t).

(a)
$$x(t) = e^{jt}$$

(b)
$$x(t) = (\sin \omega_0 t) u(t)$$

(a)
$$x(t) = e^{jt}$$
 (b) $x(t) = (\sin \omega_0 t) u(t)$
(c) $X(j\omega) = \frac{1}{(j\omega)(6+j\omega)}$ (d) $X(j\omega) = \frac{1}{2+j\omega}$

(d)
$$X(j\omega) = \frac{1}{2+j\omega}$$



- 6.25. By computing the group delay at two selected frequencies, verify that each of the following frequency responses has nonlinear phase.

 (a) $H(j\omega) = \frac{1}{j\omega+1}$ (b) $H(j\omega) = \frac{1}{(j\omega+1)^2}$ (c) $H(j\omega) = \frac{1}{(j\omega+1)(j\omega+2)}$