- Representation of Aperiodic Signals:
 the <u>Discrete-Time Fourier Transform</u>
- The Fourier Transform for Periodic Signals
- Properties of Discrete-Time Fourier Transform
- The Convolution Property
- The Multiplication Property
- Duality
- Systems Characterized by
 Linear Constant-Coefficient Difference Equations

Problem 5.12 (p.401) – Convolution, Multiplication [SS5:41]

5.12. Let

$$y[n] = \left(\frac{\sin\frac{\pi}{4}n}{\pi n}\right)^2 * \left(\frac{\sin\omega_c n}{\pi n}\right),$$

where * denotes convolution and $|\omega_c| \leq \pi$. Determine a stricter constraint on ω_c which ensures that

$$y[n] = \left(\frac{\sin\frac{\pi}{4}n}{\pi n}\right)^2.$$

Feng-Li Lian © 2015 NTUEE-SS5-DTFT-15

5.15. Let the inverse Fourier transform of $Y(e^{j\omega})$ be

$$y[n] = \left(\frac{\sin \omega_c n}{\pi n}\right)^2,$$

where $0 < \omega_c < \pi$. Determine the value of ω_c which ensures that

$$Y(e^{j\pi}) = \frac{1}{2}.$$

Problem 5.16 (p.402) – Convolution, Multiplication [SS5:41]

5.16. The Fourier transform of a particular signal is

$$X(e^{j\omega}) = \sum_{k=0}^{3} \frac{(1/2)^k}{1 - \frac{1}{4}e^{-j(\omega - \pi/2k)}}.$$

It can be shown that

$$x[n] = g[n]q[n],$$

where g[n] is of the form $\alpha^n u[n]$ and q[n] is a periodic signal with period N.

- (a) Determine the value of α .
- (b) Determine the value of N.
- (c) Is x[n] real?

Problem 5.17 (p.402) – Duality [SS5:57-60]

5.17. The signal $x[n] = (-1)^n$ has a fundamental period of 2 and corresponding Fourier series coefficients a_k . Use duality to determine the Fourier series coefficients b_k of the signal $g[n] = a_n$ with a fundamental period of 2.

Problem 5.18 (p.402) – Duality [SS5:57-60]

5.18. Given the fact that

$$a^{|n|} \stackrel{\mathfrak{F}}{\longleftrightarrow} \frac{1-a^2}{1-2a\cos\omega+a^2}, |a|<1,$$

use duality to determine the Fourier series coefficients of the following continuoustime signal with period T=1:

$$x(t) = \frac{1}{5 - 4\cos(2\pi t)}.$$