- Representation of Aperiodic Signals:
 the Continuous-Time Fourier Transform
- The Fourier Transform for Periodic Signals
- Properties of Continuous-Time Fourier Transform
- The Convolution Property
- The Multiplication Property
- Systems Characterized by
 Linear Constant-Coefficient Differential Equations

- **4.1.** Use the Fourier transform analysis equation (4.9) to calculate the Fourier transforms of:
 - (a) $e^{-2(t-1)}u(t-1)$ (b) $e^{-2|t-1|}$

Sketch and label the magnitude of each Fourier transform.

- **4.2.** Use the Fourier transform analysis equation (4.9) to calculate the Fourier transforms of:

 - (a) $\delta(t+1) + \delta(t-1)$ (b) $\frac{d}{dt}\{u(-2-t) + u(t-2)\}$

Sketch and label the magnitude of each Fourier transform.

Problem 4.4-4.5 (p.334) – IFT [SS4:11]

- **4.4.** Use the Fourier transform synthesis equation (4.8) to determine the inverse Fourier transforms of:
 - (a) $X_1(j\omega) = 2\pi \delta(\omega) + \pi \delta(\omega 4\pi) + \pi \delta(\omega + 4\pi)$

(b)
$$X_2(j\omega) = \begin{cases} 2, & 0 \le \omega \le 2 \\ -2, & -2 \le \omega < 0 \\ 0, & |\omega| > 2 \end{cases}$$

4.5. Use the Fourier transform synthesis equation (4.8) to determine the inverse Fourier transform of $X(j\omega) = |X(j\omega)|e^{j \ll X(j\omega)}$, where

$$|X(j\omega)| = 2\{u(\omega + 3) - u(\omega - 3)\},\$$

$$\langle X(j\omega) = -\frac{3}{2}\omega + \pi.$$

Use your answer to determine the values of t for which x(t) = 0.

6. (10%) Consider the periodic signal $\tilde{x}(t)$ shown in the following picture, which is composed solely of impulses.

- a) (3%) Find the Fourier series a_k of $\tilde{x}(t)$.
- b) (3%) Find the Fourier transform X(jw) of the following signal x(t), which is composed of only three impulses.

c) (2%) $\tilde{x}(t)$ can be expressed as x(t) periodically repeated, i.e.,

$$\tilde{x}(t) = \sum_{k=-\infty}^{\infty} c_k x(t - kT)$$

Determine c_k and T and demonstrate graphically that the above equation is valid.

d) (2%) Verify that the Fourier series of $\tilde{x}(t)$ is composed of scaled samples of X(jw).

- Representation of Aperiodic Signals:
 the Continuous-Time Fourier Transform
- The Fourier Transform for Periodic Signals
- Properties of Continuous-Time Fourier Transform
- The Convolution Property
- The Multiplication Property
- Systems Characterized by
 Linear Constant-Coefficient Differential Equations

- **4.3.** Determine the Fourier transform of each of the following periodic signals:

 - (a) $\sin(2\pi t + \frac{\pi}{4})$ (b) $1 + \cos(6\pi t + \frac{\pi}{8})$

Midterm 2014-9

- 9. (10 %) Answer the following questions.
 - a) (2%) Consider the following periodic signal p(t).

Find the Fourier transform P(jw) of p(t).

b) (3%) Consider the following operation.

Assume that the Fourier transform X(jw) of one signal x(t) is as follows.

Assume that $w_M < \frac{\pi}{T}$. Sketch the Fourier transform Y(jw) of y(t) and express Y(jw)

in the form: $Y(jw) = A \sum_{k=0}^{\infty} X(jw+kB)$. What are the value of A and B?

c) (3%) Let r[n] = y(nT) and assume that:

$$Y(jw) = \sum_{n=-\infty}^{\infty} y(nT)e^{-jwnT}$$
, and

$$R(e^{jw}) = \sum_{n=-\infty}^{\infty} r[n]e^{-jwn}.$$

Show that $R(e^{jw}) = Y(\frac{jw}{T})$ and sketch the graph of $R(e^{jw})$.

d) (2%) Consider the following operation:

where H(jw) an ideal lowpass filter with a magnitude C in the passband between $-w_o$ and w_o . Find the value of C and the range of w_o , such that w(t) = x(t). Justify your answer.

Midterm 2011-3

- 3. [16] Consider the unit impulse response $h(t) = \cos(\pi t)\sin(10\pi t)$ of a linear-time-invariant system.
 - (a) Determine its fundamental period. [4]
 - (b) Determine the Fourier series coefficients of h(t). [4]
 - (c) Determine the Fourier transform of the even part of h(t). [4]
 - (d) Determine the response of the system to the input $x(t) = e^{-at}u(t)$, a > 0.[4]