- A Historical Perspective
- The Response of LTI Systems to Complex Exponentials
- Fourier Series Representation of Continuous-Time Periodic Signals
- Convergence of the Fourier Series
- Properties of Continuous-Time Fourier Series
- Fourier Series Representation of Discrete-Time Periodic Signals
- Properties of Discrete-Time Fourier Series
- Fourier Series & LTI Systems
- Filtering & Examples of CT & DT Filters

Problem 3.17, 3.18 (p.254) – Input to LTI [SS3:85]

3.17. Consider three continuous-time systems S_1 , S_2 , and S_3 whose responses to a complex exponential input e^{j5t} are specified as

$$S_1: e^{j5t} \longrightarrow te^{j5t},$$

 $S_2: e^{j5t} \longrightarrow e^{j5(t-1)},$
 $S_3: e^{j5t} \longrightarrow \cos(5t).$

• For each system, determine whether the given information is sufficient to conclude that the system is definitely *not* LTI.

3.18. Consider three discrete-time systems S_1 , S_2 , and S_3 whose respective responses to a complex exponential input $e^{j\pi n/2}$ are specified as

$$S_1: e^{j\pi n/2} \longrightarrow e^{j\pi n/2}u[n],$$

 $S_2: e^{j\pi n/2} \longrightarrow e^{j3\pi n/2},$
 $S_3: e^{j\pi n/2} \longrightarrow 2e^{j5\pi n/2}.$

For each system, determine whether the given information is sufficient to conclude that the system is definitely *not* LTI.

- A Historical Perspective
- The Response of LTI Systems to Complex Exponentials
- Fourier Series Representation of Continuous-Time Periodic Signals
- Convergence of the Fourier Series
- Properties of Continuous-Time Fourier Series
- Fourier Series Representation of Discrete-Time Periodic Signals
- Properties of Discrete-Time Fourier Series
- Fourier Series & LTI Systems
- Filtering & Examples of CT & DT Filters

Problem 3.13 (p.253) – Output = Freq Resp & Input [SS3:86]

3.13. Consider a continuous-time LTI system whose frequency response is

$$H(j\omega) = \int_{-\infty}^{\infty} h(t)e^{-j\omega t} dt = \frac{\sin(4\omega)}{\omega}.$$

If the input to this system is a periodic signal

$$x(t) = \begin{cases} 1, & 0 \le t < 4 \\ -1, & 4 \le t < 8 \end{cases}$$

with period T = 8, determine the corresponding system output y(t).

Problem 3.14 (p.253) - Output = Freq Resp & Input [SS3:86]

3.14. When the impulse train

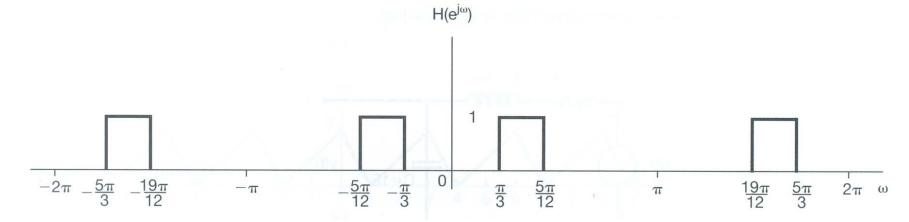
$$x[n] = \sum_{k=-\infty}^{\infty} \delta[n-4k]$$

is the input to a particular LTI system with frequency response $H(e^{j\omega})$, the output of the system is found to be

$$y[n] = \cos\left(\frac{5\pi}{2}n + \frac{\pi}{4}\right).$$

Determine the values of $H(e^{jk\pi/2})$ for k = 0, 1, 2, and 3.

- **3.16.** Determine the output of the filter shown in Figure P3.16 for the following periodic inputs:
 - (a) $x_1[n] = (-1)^n$
 - **(b)** $x_2[n] = 1 + \sin(\frac{3\pi}{8}n + \frac{\pi}{4})$
 - (c) $x_3[n] = \sum_{k=-\infty}^{\infty} (\frac{1}{2})^{n-4k} u[n-4k]$



- A Historical Perspective
- The Response of LTI Systems to Complex Exponentials
- Fourier Series Representation of Continuous-Time Periodic Signals
- Convergence of the Fourier Series
- Properties of Continuous-Time Fourier Series
- Fourier Series Representation of Discrete-Time Periodic Signals
- Properties of Discrete-Time Fourier Series
- Fourier Series & LTI Systems
- Filtering & Examples of CT & DT Filters

Problem 3.20 (p.254) – Differential Equation for RLC [SS3:99]

- **3.20.** Consider a causal LTI system implemented as the *RLC* circuit shown in Figure P3.20. In this circuit, x(t) is the input voltage. The voltage y(t) across the capacitor is considered the system output.
 - (a) Find the differential equation relating x(t) and y(t).
 - (b) Determine the frequency response of this system by considering the output of the system to inputs of the form $x(t) = e^{j\omega t}$.
 - (c) Determine the output y(t) if $x(t) = \sin(t)$.

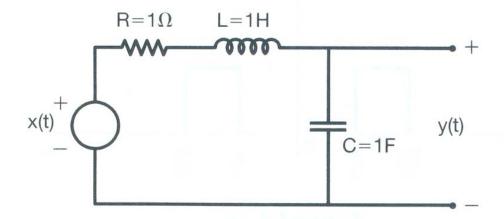


Figure P3.20