- A Historical Perspective
- The Response of LTI Systems to Complex Exponentials
- Fourier Series Representation of Continuous-Time Periodic Signals
- Convergence of the Fourier Series
- Properties of Continuous-Time Fourier Series
- Fourier Series Representation of Discrete-Time Periodic Signals
- Properties of Discrete-Time Fourier Series
- Fourier Series & LTI Systems
- Filtering & Examples of CT & DT Filters

Problem 3.2 (p.250) – FS coefficients [SS3:64]

Feng-Li Lian © 2015 NTUEE-SS3-FS-15

3.2. A discrete-time periodic signal x[n] is real valued and has a fundamental period N=5. The nonzero Fourier series coefficients for x[n] are

$$a_0 = 1, a_2 = a_{-2}^* = e^{j\pi/4}, a_4 = a_{-4}^* = 2e^{j\pi/3}.$$

Express x[n] in the form

$$x[n] = A_0 + \sum_{k=1}^{\infty} A_k \sin(\omega_k n + \phi_k).$$

3.9. Use the analysis equation (3.95) to evaluate the numerical values of one period of the Fourier series coefficients of the periodic signal

$$x[n] = \sum_{m=-\infty}^{\infty} \{4\delta[n-4m] + 8\delta[n-1-4m]\}.$$

Outline

Feng-Li Lian © 2015 NTUEE-SS3-FS-17

- A Historical Perspective
- The Response of LTI Systems to Complex Exponentials
- Fourier Series Representation of Continuous-Time Periodic Signals
- Convergence of the Fourier Series
- Properties of Continuous-Time Fourier Series
- Fourier Series Representation of Discrete-Time Periodic Signals
- Properties of Discrete-Time Fourier Series
- Fourier Series & LTI Systems
- Filtering & Examples of CT & DT Filters

Problem 3.10 (p.252) - Real, Odd, Table 3.2 [SS3:76]

Feng-Li Lian © 2015 NTUEE-SS3-FS-18

3.10. Let x[n] be a real and odd periodic signal with period N = 7 and Fourier coefficients a_k . Given that

$$a_{15} = j, a_{16} = 2j, a_{17} = 3j,$$

determine the values of a_0 , a_{-1} , a_{-2} , and a_{-3} .

Problem 3.11 (p.252) – Table 3.2 [SS3:76]

Feng-Li Lian © 2015 NTUEE-SS3-FS-19

- **3.11.** Suppose we are given the following information about a signal x[n]:
 - 1. x[n] is a real and even signal.
 - **2.** x[n] has period N = 10 and Fourier coefficients a_k .
 - 3. $a_{11} = 5$.
 - **4.** $\frac{1}{10} \sum_{n=0}^{9} |x[n]|^2 = 50.$

Show that $x[n] = A\cos(Bn + C)$, and specify numerical values for the constants A, B, and C.

Problem 3.12 (p.252) – Multiplication [SS3:79]

Feng-Li Lian © 2015 NTUEE-SS3-FS-20

3.12. Each of the two sequences $x_1[n]$ and $x_2[n]$ has a period N=4, and the corresponding Fourier series coefficients are specified as

$$x_1[n] \longleftrightarrow a_k, \quad x_2[n] \longleftrightarrow b_k,$$

where

$$a_0 = a_3 = \frac{1}{2}a_1 = \frac{1}{2}a_2 = 1$$
 and $b_0 = b_1 = b_2 = b_3 = 1$.

Using the multiplication property in Table 3.1, determine the Fourier series coefficients c_k for the signal $g[n] = x_1[n]x_2[n]$.