

A Historical Perspective

Feng-Li Lian © 2012 NTUEE-SS3-FS-3

• L. Euler's study on the motion of a vibrating string in 1748

Leonhard Euler 1707-1783 Born in Switzerland Photo from wikipedia

Feng-Li Lian © 2012

A Historical Perspective

A Historical Perspective

Feng-Li Lian © 2012 NTUEE-SS3-FS-6

Figure 1.2: A medallion by David d'Angers, the only known portrait of Lacroix, made two years prior to his death. [Académie des Sciences de l'Institut de France]

Sylvestre François de Lacroix

1765-1843 Born in France Photo from A short biography of Silvestre-François Lacroix In Science Networks. Historical Studies, V35, Lacroix and the Calculus, Birkhäuser Basel 2008, ISBN 978-3-7643-8638-2 Gaspard Monge, Comte de Péluse 1746-1818 Born in France Photo from wikipedia Pierre-Simon, Marquis de Laplace 1749-1827 Born in France Photo from wikipedia

"An algorithm for the machine calculation of complex Fourier series", Math. Comput. 19, 297–301. Born in Germany Photo from wikipedia

wchart				Feng-Li Lian © 201 NTUEE-SS3-FS
Signals & Syste	ms <u>(Chap 1)</u>	Ľ	TI & Convolution	(Chap 2)
	Bounded	/Conver	gent	
Peric	<u>dic</u>		Aperiodic	
FS	CT DT	F	CT (Chap 4)	2
<u>(Chap 3)</u>			DT (<u>Chap 5</u>)	
	Unbounded	/Non-co	nvergent	
	LT	СТ	<u>(Chap 9)</u>	
	zT	DT	<u>(Chap 10)</u>	
			0	
lime-Frequer	ICY (Chap 6)		Communication	<u>(Chap 8)</u>
CT-DT	<u>(Chap 7)</u>		Control	<u>(Chap 11)</u>

 $=\frac{1}{T}\int_{T}x(t)e^{-jkw_0}dt$

$$\int_{T} f^{j(k-n)w_0 t} dt = \begin{cases} T, & k = n \\ 0, & k \neq n \end{cases}$$

- A Historical Perspective
- The Response of LTI Systems to Complex Exponentials
- Fourier Series Representation of Continuous-Time Periodic Signals
- Convergence of the Fourier Series
- Properties of Continuous-Time Fourier Series
- Fourier Series Representation of Discrete-Time Periodic Signals
- Properties of Discrete-Time Fourier Series
- Fourier Series & LTI Systems
- Filtering & Examples of CT & DT Filters

Convergence of the Fourier Series
• Fourier maintained that
"any" periodic signal could be represented
by a Fourier series
• The truth is that
Fourier series can be used to represent
an extremely large class of periodic signals
• The question is that
when a periodic signal X(t) does in fact have a
Fourier series representation?

$$x(t)$$

 $x_{FS}(t) = \sum_{k=-\infty}^{+\infty} a_k e^{jk(2\pi/T)t}$
 $x_N(t) = \sum_{k=-N}^{+N} a_k e^{jk(2\pi/T)t}$
• One class of periodic signals:
• Which have finite energy over a single period:
 $\int_{T} |x(t)|^2 dt$ \propto $a_k = \frac{1}{T} \int_{T} x(t) e^{-jk(2\pi/T)t} dt < \infty$
 $x_N(t) = \sum_{k=-N}^{+N} a_k e^{jk(2\pi/T)t}$
• One class of periodic signals:
• Which have finite energy over a single period:
 $\int_{T} |x(t)|^2 dt$ \propto $a_k = \frac{1}{T} \int_{T} x(t) e^{-jkw_0t} dt < \infty$
 $x_N(t) = x(t) - x_N(t)$
 $e(t) = x(t) - \sum_{k=-N}^{+\infty} a_k e^{jkw_0t}$

 $E(t) = \int_{T} |e(t)|^2 q$

0

 $E_N(t) = \int_T |e_N(t)|^2 dt$

 $\rightarrow 0$ as $N \rightarrow \infty$ $x(t) = \sum_{k=-\infty}^{+\infty} a_k e^{jkw_0 t}$, $\forall t ??$

- In any finite interval, x(t) is of bounded variation; i.e.,
- There are no more than a finite number of maxima and minima during any single period of the signal

$$(t) = \sin\left(\frac{2\pi}{t}\right) \quad 0 < t \le 1$$

Feng-Li Lian © 2012

(a)

NTUEE-SS3-FS-40

The other class of periodic signals:

- Which satisfy **Dirichlet conditions**:
- Condition 3:
 - In any finite interval,
 x(t) has only finite number of discontinuities.
 - Furthermore, each of these discontinuities is finite

Convergence of the Fourier Series

 $x_1(t)$

How the Fourier series converges for a periodic signal with discontinuities

• In 1898 Albert Michelson (an American physicist) used his harmonic analyzer to compute the truncated Fourier series approximation for the square wave $x_{N}(t) = \int_{k=-N}^{+N} a_{k}e^{jkw_{0}t}$

Section	Property			
3.5.1	Linearity			
3.5.2	Time Shifting			
	Frequency Shifting			
3.5.6	Conjugation			
3.5.3	Time Reversal			
3.5.4	Time Scaling			
	Periodic Convolution			
3.5.5	Multiplication			
	Differentiation			
	Integration			
3.5.6	Conjugate Symmetry for Real Signals			
3.5.6	Symmetry for Real and Even Signals			
3.5.6	Symmetry for Real and Odd Signals			
	Even-Odd Decomposition for Real Signals			
3.5.7	Parseval's Relation for Periodic Signals			

- A Historical Perspective
- The Response of LTI Systems to Complex Exponentials
- Fourier Series Representation of Continuous-Time Periodic Signals
- Convergence of the Fourier Series
- Properties of Continuous-Time Fourier Series
- Fourier Series Representation of Discrete-Time Periodic Signals
- Properties of Discrete-Time Fourier Series
- Fourier Series & LTI Systems
- Filtering & Examples of CT & DT Filters

Section	Property		
	Linearity		
	Time Shifting		
	Frequency Shifting		
	Conjugation		
	Time Reversal		
	Time Scaling		
	Periodic Convolution		
3.7.1	Multiplication		
3.7.2	First Difference		
	Running Sum		
	Conjugate Symmetry for Real Signals		
	Symmetry for Real and Even Signals		
	Symmetry for Real and Odd Signals		
	Even-Odd Decomposition for Real Signals		
3.7.3	Parseval's Relation for Periodic Signals		

Properties of DT Fourier Series

Property	Periodic Signal	Fourier Series Coefficients	
	$x[n]$ Periodic with period N and $y[n]$ fundamental frequency $\omega_0 = 2\pi/N$	a_k Periodic with b_k period N	
Linearity Time Shifting Frequency Shifting Conjugation Time Reversal	$\begin{aligned} Ax[n] + By[n] \\ x[n - n_0] \\ e^{jM(2\pi i N)n} x[n] \\ x^*[n] \\ x[-n] \end{aligned}$	$\begin{array}{l} Aa_{k}+Bb_{k}\\ a_{k}e^{-jk(2\pi/N)m_{0}}\\ a_{k-M}\\ a_{-k}^{*}\\ a_{-k} \end{array}$	
Time Scaling	$x_{(m)}[n] = \begin{cases} x[n/m], & \text{if } n \text{ is a multiple of } m \\ 0, & \text{if } n \text{ is not a multiple of } m \\ (\text{periodic with period } mN) \end{cases}$	$\frac{1}{m}a_k \left(\begin{array}{c} \text{viewed as periodic} \\ \text{with period } mN \end{array} \right)$	
Periodic Convolution	$\sum x[r]y[n-r]$	Na_kb_k	
Multiplication	x[n]y[n]	$\sum_{l=(N)} a_l b_{k-l}$	
First Difference	x[n] - x[n - 1]	$(1-e^{-jk(2\pi/N)})a_k$	
Running Sum	$\sum_{k=-\infty}^{n} x[k] \left(\text{finite valued and periodic only} \right)$	$\left(\frac{1}{(1-e^{-jk(2\pi/N)})}\right)a_k$	
Conjugate Symmetry for Real Signals	x[n] real	$\begin{cases} a_k = a^*_{-k} \\ \mathfrak{Re}\{a_k\} = \mathfrak{Re}\{a_{-k}\} \\ \mathfrak{Gm}\{a_k\} = -\mathfrak{Gm}\{a_{-k}\} \\ a_k = a_{-k} \\ \mathfrak{K}a_k = -\mathfrak{K}a_{-k} \end{cases}$	
Real and Even Signals Real and Odd Signals	x[n] real and even x[n] real and odd	a_k real and even a_k purely imaginary and odd	
Even-Odd Decomposition of Real Signals	$\begin{cases} x_e[n] = \delta v\{x[n]\} & [x[n] \text{ real}] \\ x_o[n] = \hat{O}d\{x[n]\} & [x[n] \text{ real}] \end{cases}$	$\operatorname{Re}\{a_k\}$ $j\operatorname{Im}\{a_k\}$	
	Parseval's Relation for Periodic Signals $\frac{1}{N} \sum_{n=\langle N \rangle} x[n] ^2 = \sum_{k=\langle N \rangle} a_k ^2$		

- A Historical Perspective
- The Response of LTI Systems to Complex Exponentials
- Fourier Series Representation of Continuous-Time Periodic Signals
- Convergence of the Fourier Series
- Properties of Continuous-Time Fourier Series
- Fourier Series Representation of Discrete-Time Periodic Signals
- Properties of Discrete-Time Fourier Series
- Fourier Series & LTI Systems
- Filtering & Examples of CT & DT Filters

Feng-Li Lian © 2012 NTUEE-SS3-FS-87

Outline

- A Historical Perspective
- The Response of LTI Systems to Complex Exponentials
- Fourier Series Representation of Continuous-Time Periodic Signals
- Convergence of the Fourier Series
- Properties of Continuous-Time Fourier Series
- Fourier Series Representation of Discrete-Time Periodic Signals
- Properties of Discrete-Time Fourier Series
- Fourier Series & LTI Systems
- Filtering & Examples of CT & DT Filters

- A Historical Perspective
- The Response of LTI Systems to Complex Exponentials
- Fourier Series Representation of Continuous-Time Periodic Signals
- Convergence of the Fourier Series
- Properties of Continuous-Time Fourier Series
- Fourier Series Representation of Discrete-Time Periodic Signals
- Properties of Discrete-Time Fourier Series
- Fourier Series & LTI Systems
- Filtering & Examples of CT & DT Filters

DT Filters by Difference Equations

Feng-Li Lian © 2012

Correction Fengli Lian @ 2012 MTUEE-SS3-FS-109 $1 \pm e^{-j\theta} = e^{-j\theta/2} \left(e^{j\theta/2} \pm e^{-j\theta/2} \right)$ $\Rightarrow H(e^{jw}) = \frac{1}{2} \left[1 + e^{-jw} \right] = \frac{1}{2} e^{-j(\frac{w}{2})} \left[e^{j(\frac{w}{2})} + e^{-j(\frac{w}{2})} \right]$ $= e^{-j(\frac{w}{2})} \cos\left(\frac{w}{2}\right)$ • On page 249, Eq. 3.164 $\Rightarrow H(e^{jw}) = \frac{1}{2} \left[1 - e^{-jw} \right] = \frac{1}{2} e^{-j(\frac{w}{2})} \left[e^{j(\frac{w}{2})} - e^{-j(\frac{w}{2})} \right]$ $= j e^{-j(\frac{w}{2})} \sin\left(\frac{w}{2}\right)$

Feng-Li Lian © 2012 Chapter 3: Fourier Series Representation of Periodic Signals NTUEE-SS3-FS-110 A Historical Perspective The Response of LTI Systems to Complex Exponentials FS Representation of CT Periodic Signals Convergence of the FS Properties of CT FS Linearity **Time Shifting** Frequency Shifting Conjugation Time Reversal **Multiplication Time Scaling** Periodic Convolution Differentiation Integration Conjugate Symmetry for Real Signals Symmetry for Real and Even Signals Symmetry for Real and Odd Signals Even-Odd Decomposition for Real Signals Parseval's Relation for Periodic Signals FS Representation of DT Periodic Signals Properties of DT FS • Multiplication **First Difference Running Sum** FS & LTI Systems Filtering Frequency-shaping filters & Frequency-selective filters Examples of CT & DT Filters

Wenan				NTUEE-SS3-FS-11
Signals & Syst	ems (Chap 1)	Ľ	TI & Convolution	<u>Chap 2)</u>
	Bounded	Conver/	gent	
Peri	odic		Aperiodic	
	СТ		CT (Chap 4)	
(Chap 3)	DT	F	DT (Chap 5)	
			<u></u>	
	Unbounded,	/Non-co	nvergent	
	ιт	СТ	(Chap 9)	
		UT	······	
	zT	DT	<u>(Chap 10)</u>	
Time-Freque	ency (Chap 6)		Communication	<u>(Chap 8)</u>
CT-DT	<u>(Chap 7)</u>		Control	<u>(Chap 11)</u>