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Figures and images used in these lecture notes are adopted from
“Signals & Systems” by Alan V. Oppenheim and Alan S. Willsky, 1997
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L. Euler’s study on the motion of a vibrating string in 1748

|7 X Position along
0 the string

vertical deflection
f{t.x)

Leonhard Euler
1707-1783
Born in Switzerland
Photo from wikipedia
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L. Euler showed (in 1748)
—The configuration of a vibrating string
at some pointh-tiae s a linear combination
normal modes

 D. Bernoulli argued (in 1753) P
—All physical motions of a stri represented Dane Semoull

by linear inations of¢hormal mode Born in Dutch
] ) - Photo from wikipedia
—But, he(did noypursue this mathematically

« J.L. Lagrange strongly criticized (in 1759)

—The use of trigonometric series
in examination of vibrating strings

—Impossible to represent signals witll corner
using trigonometric series

Joseph-Louis Lagrange

1736-1813
Born in Italy
Photo from wikipedia
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° In , Jean Baptiste Joseph Fourier

— itted a paper of using trigonometric series to represent
‘any” periodic signal T

— It IS examined by -
S.F. Lacroix, G. Monge, P.S. de Laplace, and J.L{Lagrange,

— But Lagrange {ejected it!
- AN

. In@ Fourier published a book
“Theorie analytique de la chaleur”

— “The Analytical Theory of Heat”

800ft = = — = ~~ = = = 7 150 ! Baptistereph Fourier
= Wavelength 150 ft 500 ft
- —— — Wavelenght 500 ft 1768-1830
=+ = =Wavelength 800 ft Born in France
Photo from wikipedia
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Figure 1.2 A medallion by David d"Angers, the oaly known portrait of Lacroix,
fesieos

e twes yoars prhor to his death. |Académbe dis Sel e Ilistivut de Franee|

Sylvestre Francois de Lacroix Gaspard Monge, Comte de Péluse Pierre-Simon, Marquis de Laplace
1765-1843 1746-1818 1749-1827
Born in France Born in France Born in France
Photo from Photo from wikipedia Photo from wikipedia

A short biography of Silvestre-Frangois Lacroix
In Science Networks. Historical Studies, V35,
Lacroix and the Calculus, Birkhauser Basel
2008, ISBN 978-3-7643-8638-2
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e Fourier's main contributions:
— Studied vibration, heat diffusion, etc.

—@ series of harmonically related sinusoids
t useful in répresenting o
the temperature distribution through a body

@hm “any” periodic signal could
presented by such a series

(i.e., Eourier series discussed in Chap 3)

@M representation fQr gperiodic signals
(1.e.,#ourier integral or transform discussed in Chap 4 & 5)

— (Fourier did not actually contribute to
the mathematical theory of Fourier series)

. . . Feng-Li Lian © 2012
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« Impact from Fourier’s work:

— Theory of integration, point-set topology,
eigenfunction expansions, etc.

— Motion of Elanets,
periodic behavior of the earth’s climate,
wave in the ocean,
radio & television stations

-

— HarmaQic time series in the 18th & 19th centuries
rete-time signals and systems
— Easter Eaurier transform (FFT) in the mid-1960

> Cooley (IBM) & Tukey(Princeton) reinv. di
> Can be found in Gauss’s notebooks (in 1805)

{2
Carl Friedrich Gauss (GauR)
James W. Cooley & John W. Tukey (1965): 1777-1855

"An algorithm for the machine calculation of complex Fourier series", Bornin Ger.m.any.
Math. Comput. 19, 297-301. Photo from wikipedia
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Signals & Systems (Chap 1) LTI & Convolution  (Chap2)
/[ Bounded/Convergent \\
Periodic Aperiodic
CT CT (Chap 4)
FS o FT
(Chap 3) DT (Chap 5)
Unbounded/Non-convergent
LT CT (Chap 9)
k ZT DT (Chap 10) /
Time-Frequency (Chap 6) Communication  (Chap 8)
CT-DT (Chap 7) Control (Chap 11)
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Response of LTI Systems to Complex Exponentials

= Basic Ildea:

» To represent signals
as linear combinations of basic signals

—

= Key Properties:

1. The set of basic signals can be used
to construct a broad and useful class of signals
e

2. Theofa LTI gystem to each signal
should be simple enough

in structure to provide us
with a convenient representation
for the response of the system

to any signals constructed
as linear combination of(asic si

Feng-Li Lian © 2012

Response of LTI Systems to Complex Exponentials NTUEE.SS3.FS.12

= One of Choices:

* The set of complex exponential signals

signals of form‘est Jin CT 't j, \r }\V

signals of form@in DT {L

= The Response of an LTI System:

. “+oo
input %-—> output (1) = / z(T)h(t — T)dr
—0o0

eigenfunction

- Q @@\ eigenvalue
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/\ Let z[n] H 2" /

y(t) = _+ h(q-)x(t -T) zj['n _Z 'n = h]

= [T n(ryer- T)(@ (}: B
_O:Oh(T)e_\Sl’{rd :@lz h_[l”&]

= y(t) = H(s)z(t) = H(s@ = y[n] =_H=(Z)CC_[’-'_1] = ﬂz@

Response § stems to Complex Exponentials

Let x(t)

——\-

o0 r+oo
fﬁz =/_—; h('r)e_s'ra M = > h[k]z_kJ

— ==

=
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= Eigenfunctions and Superposition Properties:

Slt s1t
p— —_— qz eS2t Q‘LH(SQ) eSat
k=123 q>£9§-t_> M}H(SE‘;) 883t

z(t) = aq €1t + ap e2t + a3 e3

y(t) = a1 2 4(82) e®2 )k a@
CTh= = ﬂz\@ﬁ o =soficfes)

T = zln] = Zfa%k >—> y[n] = Z@
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= Harmonically related complex exponentials
ﬁ. 27
w PR

I|, ¢k(t)—eﬂ~“0t . k=0,+1,+2,...

= The Fourier Series Representatlon
z(t) = (a-2¢ 2(1) +aQs (1) {agléo®) {ar )t oot +o..

— Z aj (bk(t) — Z ay ejk-u.‘ot — Z aj, 8Jk(T)t

k=—o00 k=—o0 k=—00

k=-+1,—1: the first harmonic components
or, the fundamental components

k= +2,—2: the second harmonic components

etc.
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= Example 3.2:

z(t) = ejk(Qﬂ')t

ly\c» Bl

— ’E(t) _O_l_ (6327rt+6—32ﬂ'

%’(ef'w + e—jﬁ'“/é_ CosLH'

4>

I my

el? = cos(9) + jsin(6)

1 2 _ /
= z(t) =14+ 5 cos 2wt + cosé4nt + 5 COS 67t cos(9) = %(6394_ e30)

_ sin(@) = %(ejg - e_jQ)J

—
bl -—
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1 2
x(t) =@—|— 5 cos2nt + cos4nt + 3 COS 67t

%(t) = § cos 2t Xoft) + %5 (1)
—
— ANANY\\WAWANE
V VIV U X

AVAVAVAVAY t

1

Xalt) = % cos 6wt

Xolt) + x4(t) + xa(t)
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.. .o 2
= Procedure of Determining the Coefficients: wy = ?"T
400 . =
.ﬁﬁ‘(t) — Z @jkmot
k=—o0
+o00
x(t)e-—j‘}zwoi — Z akejkwoteﬂjf‘fwot _-{\ é Z
k=—o00 >
—
/0 z(t)e I"Woldt

n
/(')Tﬂk—n)wotdt — /OT coSs ((k — n)wgt) dt +0/; sin ((k - n)'wot) dt
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= Procedure of Determining the Coefficients: 0

fTej(k—n)thdt = 0S ((k —n) t)odt Y sin Q/) ) dt
0 - 0 Ao " @

T k=n Q;/V\-;\D

P S —

0, k#n 4&0\=> D

]f z(t)e™ anotd‘LE = EEZ—/ :r:(t)e_m“otdt

e Furthermore,

j‘ j(k—n)wotdt - T, k=mn
i 0, k#n
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= |n Summary:
IXH-) e [ he synthesis equation:

O&_ ® The analysis eg

\\\/{\g t}[}tl? 4 |@-7, z
*)* ® @ CT Fouries series pair

e {a.}: the Fourier series coefficients

or the spectral coefficients of z(t)

1 9
e ap = f/fw(t)dt’ the dc or constant component of z(t)

Feng-Li Lian © 2012
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= Fourier Series of Regl Periodic Signals:

(a+b)" = (a"+b")
(axb)* = (a*xb")

m = —k
—
k=m
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= Alternatiye Forms of the Fourier Series:

o0 ,
z(t) = ape’ kool

DT DR o
= w(t) = ao -+ Z akejkwot—l a_ _jkwot] a‘K’: QlL

= ap + Z Eakejkwot %l CL )} —Jjkwot

Okls e’
(}@otmot (BijI)(C—I—jS)-l-( L1 (C=iS)

(RC—IS)+j(RSHIC)+(RC=1S)—j(RIHFIC)

= ag + 2 Re J/&kejkwotl
C'kzj e

—
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= Alternative Forms of the Fourier Series:

o If aj, =[ A) 7%
Z S 0 jkw
= z(t) =ag+ ) 2 Re{ Afe% ?*0
k=1

= ag + Z QRG{A ej(k'wot-l-f?a)}
= = —

R4

I
0+2 > | A cos(kwot + 6;) K

k=1 Py

. |ej0 = cos(f) +j5in(ﬁj[
o If ap = Bﬁ‘- + 35 Ck (aF30)(c + jd) =Lac—hd + i(ad o)

C(a+b) = C(a)C(b) — S(a)S(b)

= z(t) =ag+ i 2 E;e_{ (B;ﬁ +j Cﬂ(ejkwo’}
k=1 -

(o 9]
=ag+2 {Bk cos(kwgt) — C. Sm(kwotﬂ

Hk:l ——
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Fo0 _ Fo0 A
(1) = Z a}cejk.urotz Z &kejk(Qﬂ'/T)t

k=——00 k=—o00

= Example 3.4:
r’g e7? = cos(0)+jsin(6); cos(h) = l(ez-""g+e_~"“9); sin(6) = L (eI0_e—30
6 “'M —_— N

Fourier Series Representation of CT Periodic Signals

= Example 3.4:

apg = 1,
=
o = (1+3)
P S —
— 1
s = (1-4)
= <
a_o = %e_j(ﬂ—/&l’) —
L Ak = 0,
Im I a = (b: C)
|al
Ja
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>>al =1-0.5 11180

>> abs(al) l i 0.5000 a\ﬁ)

>> angle(al) )

L n‘ﬁw\ 7 H
1 — 5-?’ .
=2l g
1_|_§3‘ 3-2-1 0 1 2 3 k
\
4. 40k, o aﬁ)
ol g

\/TE(]' —‘}‘)7 -3 [ -1 gu 2 3 - K
k| > 2 -0.4636

a = |a|e?*

o = |a| [ cos(J a) + jsin( a)
a="b+ jc=r2+32

b ; c
| V0242 i V242
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1 ; 1 .
= Example 3.5:‘1; =jfzx(t)‘e‘3k“’0tdt = f/j,x(t)e‘fk(z””)tdt

Fourier Series Representation of CT Periodic Signals

_J 1 t<T
= { 0, Ty < |t| < T/2

_ sin(kwoTy) _ sin(k(27/T)Ty)

k 0
km km a
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Y
v

= Example 3.5: T =47, Q= Z




Fourier Series Representatlon of CT Peripdic Slgnals

Iy
: Example 3.5: Sm(k?
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T1—1

2T|

a’k

— ‘ a ._)_'..‘:.
s @ sin {Gx)x f g (E
V. i OO 11 TIPS

(c)

Fourier Series Representation of CT Periodic Signals
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sin(k2
= Example 3.5: T a,= T %
T = 4T1 Sln(k%) Ta;k.
Ta,k
; k
l__l ’_—-l ’_] o S B . ‘a,g “I‘l loo | -
I (@)
T = 8T
Ta,k
Som M -
T = 16T}
Ta,k
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My o 47

2sin(wTy)

w = kwq wTy ::k:(gf) Ty
T

2k

A

. . . . : . Feng-Li Lian © 2012
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= Example 3.5: T ap= T sin(k2r )

sm(k'”) kT
T = 4T Ta, = T

= = T sin G sin(kZ
I I'?o Id% —0 ™

ki

A %=i2c¢\( " T=16TY =% T Sinc(gw
| G

Sln(}‘ﬁﬂ-) "|"=||||||_

k

'__r‘_ﬁ(}',,{h =

/R wﬂ‘ N




Fourier Series Representation of CT Periodic Signals
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= Example 3.5:

Tap,=T

= {1

1 k
— T sinc(—=
2 (2)

1 k.
— T sinc(—
4 (4)

2sin (k“onl )
kaT

2sin (kaTl)
konl

|

’_I s ’_] - §_|"'“=1|| Ll l‘

R LY R L L k

Outline

Feng-Li Lian © 2012
NTUEE-SS3-FS-34
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* Fourier maintained that

any” periodic signal could be represented

by a Fourier series

* The truth is that
Fourier series can be used to represent
an extremely large class of periodic signals

e The question is that
when a periodic signal x(t) does in fact have a
Fourier series representation?

z(t)
= ik(2n/T)t 1 jk(2m/T)t
ro(t) = ol RSN a:—/mte_ % dt
zrs(t) k—z—:oo are k T )T (1)
+N _
an(t) = Z akejk(z'”/ﬂt
k=—N
. . Feng-Li Lian © 2012
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= One class of periodic signals:
« Which have finite energy over a single period:

o0 — @e —Jkwol it « o

:L’N(t) = Jkwot
b —— k:

/T (8|2 dt

en(t) = z(t) —zn(t)
— — —

By(t) = [ len(t)]?dt

pre— V] e——
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Convergence of the Fourier Series

= The other class of periodic signals:
* Which satisfy Dirichlet conditions:
« Condition 1:

— Over any period,
X(t) must be absolutely integrable,
. A ~——

e . 1805-1859
sy Born in Germany
/T |$(t) | dt < oo Photo from wikipedia
——
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= The other class of periodic signals:
« Which satisfy Dirichlet conditions:

« Condition 2:
— In any finite interval@is of bounded variation; i.e.,
— There are no more th

a finite number of maxima and minima
during any single period of the signal

:c(t)—sin((Q;é) O<t<1
t

1
()| dt < 1
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= The other class of periodic signals:
* Which satisfy Dirichlet conditions:
« Condition 3:

— In any finite interval,
X(t) has only finite number of discontinuities.

— Furthermore, each of these discontinuities is finite

x(t)

. . Feng-Li Lian © 2012
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= How the Fourier series converges
for a periodic signal with discontinuities

° In
Albert Michelson (an American physicist)
used his harmonic analyzer T
to compute ot from wikpetia

the truncated Fourier series approximation
for the square wave

Xn(t)




NeY):- 3~ Yo

Convergence of the Fourier Segies NTUEE SS3.%s 41

* Michelson wrote to Josiah Gibbs

e |n 1899, Gibbs showed that

Josiah Willard Gibbs
1839-1903

* The Gibbs phenomenon Born in USA

Photo from wikipedia
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= Fourier Series Representation
of Discrete-Time Periodic Signals

= Properties of Discrete-Time Fourier Series
= Fourier Series & LTI Systems
= Filtering & Examples of CT & DT Filters




Feng-Li Lian © 2012

Properties of CT Fourier Series NTUEE.SS3.FS.43

=“CT Fourier Series Representation:

e The synthesis equation:

—

. +oo A _
L Jkwqt — Z akejk(zﬂ/T)t

k=—cc

e [ he ar/alysis equation:

: 1 " 1 i
1= — <?L—Jk“fot it =~ / £Ye=ik(2m/T)t g
@ T/J () Y
. @4—% @: Fouries series pair

_'_,.,u;.,",lu_.Tl_T Il|!||I.|[
i
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Section Property
3.5.1 Linearity
3.5.2 Time Shifting
Frequency Shifting
3.5.6 Conjugation
3.5.3 Time Reversal
3.54 Time Scaling
Periodic Convolution
3.5.5 Multiplication
Differentiation
Integration
3.5.6 Conjugate Symmetry for Real Signals
3.5.6 Symmetry for Real and Even Signals
3.5.6 Symmetry for Real and Odd Signals

Even-Odd Decomposition for Real Signals

3.5.7 Parseval's Relation for Periodic Signals
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Properties of CT Fourier Series

= Linearity: 0((’(-[—‘(')‘: /Xﬁ)

e z(t),y(t): periodic signals with peri

FS +oo "
x(t) +—— ag 2lt) = Z akejkwot
= — ———r

FS +oo
y(t) «+—— by y(t) = Z bmejmwot
—_— —— e

z(t) = Z ®ngwot ,.Q&.: Jﬂ‘

= ’\(\ﬂ é&‘w@ (}W)

T be
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= Time Shifting:

e x(t): periodic signal with peri Qj&u)n(-'g
FS
a(t) = (ayy
= z(t — tp) <—>£ —Jjkwoto 3, = e—Jk(Tﬁ) oak
_— s
b/CE T‘Wotdt = :€+_o

T/ x(7)e ‘?kwo(lj_—k))d/r

= Qﬁ_
(e
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= Time Reversal:

FS
x(t) +——m~ay

o If z(t) is even, i.e., z(—t) = z(t)

= ay IS even, i.e.; a_; = a; < _E>:@
s —
o If z(t) is odd, i.e., z(—=t) = —z(¢t)

—

= ap IS 0dd, i.e., a_j = —ay,

. . . Feng-Li Lian © 2012
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= Time Scaling:

e z(t): periodic signals with period@

—

and fundamental frequency(w

({(‘2*‘) e z(at): periodic signals with perio >

and fundamental frequency awg 2Wo

+oo 40 o (2r
erjk LJ;)_ Z erjk( T
k'———oo k=—o0
400 +o00 : 2m
zlat) = Z a, ej k wq t) — Z ax e] k@(% @
V4 k'=~—‘oo k=—c0

= +f:o akejk@t: +f:o %ejk(é)t
\ k=—o0 k=—00
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+o0

= Multiplication: ()= 3 cpeikwot
k=—c0
e 2(t),y(t): periodic signals with peri
T, e
FS Pl :
z(t) «—— ay #(t)= >, a elwot
/= cmm— E:—""‘
FS 10 2
y(t) «— by y(t) = Y bped Wt
r — o ST PO
é'a‘;(t)y(t)s also periodic Witf‘(T
at+b+c)(d+e+ f)
FS =ad+ae+af
&) - :B(t)y(t) — &c_ = +bd+ be +bf

“+cd 4+ ce + cf

%C S'O\L {kwwl'
Propertles Fﬁ?%élefgf Fo 50

= Differentiation: x(t) — Z L
k=—o0
e 2(t): periodic signals with perio
="
FS

z(t) +—— ‘ aiﬁh)
S
d FS , \

202
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o0

= [ntegration: ()= Y apelkwol

k=—o0
e 2(t): periodic signals with perioc@

:n(t) PR ‘@"

only iflag = 0O
it is finite velaued
and periodic
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= Conjugation & Conjugate Symmetry:

i) <=3 @ &@

Feng-Li Lian © 2012 [
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= Conjugation & Conjugate S¥mmetr¥:
/
(m(t)Z&-

o z(t) = :E(Q*

z(t) is real = {a;} are conjugate symmetric

_— ——
ez(t) =z()* & z(—t) = m(t) = G_j =!a}‘: )ia a_j =(aé, 2

= ap = (Lz

z(t) is real & even = {a;} arf real)& even

e 2(t) is real & odd = {a;} are purely imaginayy & odd
—— — S —

= CLI — —ag

. . . Feng-Li Lian © 2012
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= Parseval’s relation for CT periodic signals:
e As shown in Problem 3.46:
' FS
‘ z(t) «—— ay OO

: ..__.J__._.Jr__l__... —— L1 1l q - f |ﬂol‘ |h y ! ‘I lat N .

- Ij 2
+oo 1 .
ew — —jkwot
z(t) = ) akeﬁ‘kuot ap = T'/Tx(t)e dt
=—00
o0

1/ 2 2

— [ |z@)| dt = > J|ag

LT | ’ i:—no ‘ | o

» Parseval’s relation states that
the total average power in a periodic signal
equals
the sum of the average powers
in all of its harmonic components




TABLE 3.1 PROPERTIES OF CONTINUOUS-TIME FOURIER SERIES i Lian © 2012
Property Section  Periodic Signal Fourier Series Coefficients SRSRXSRSE)
x(t)] Periodic with period T and a
¥(1)| fundamental frequency wo = 27/T by
Linearity 3.5.1 Ax(r) + By(n) Aa, + Bby
Time Shifting 3.5.2 x(r = 1p) age ot = g e MRTy,
Frequency Shifting giMugt = IMQTITN y(p) ap_um
Conjugation 35.6 x'(1) a',
Time Reversal 353 x(—1) a.y
Time Scaling 354 x(axt), e = 0 (periodic with period 7/e) ag
Periodic Convolution J x(T)y(t — 7)dt Tab,
.‘.
Multiplication 355 x(1)y(1) > abi
=
N ot dx(r) " ., 27
Differentiation i Jkwgay = jk T-m
Kntesvation J’ ‘_mm{ﬁnitc valued and (_I . _( 1
€ N periodic only if ay = 0) Jkwo /T \JkQwIT) ]ﬂiL
a; = “'-L
Relay} = Rela-;}
Conjugate Symmetry for 356 x(1) real Imlay} = —9Imia-,}
Real Signals lay| = la-x
Lay, = —da-
Real and Even Signals 356 x(1) real and even ay real and even
Real and Odd Signals 356 x(1) real and odd ay purely imaginary and odd

Even-Odd Decomposition
of Real Signals

{x,(r) = &{x(n)} [x(1) real]
X,(1) = 0d{x(N} [x(r) real]

Melas}
jgmlai}

Parseval’s Relation for Periodic Signals

%

L1 J |x(Dde = lae?

fmr

@_N)( f'umf

ag

)

=
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, E < Ty
0, Ty < |t| < T/2

27y

_ fn(E(27/T)Ty k

k.:rr

b
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= Example 3.7:

git)

T =4
} ) <225 (a,
21 ([0 Q)
—
i FS .
7 . — (jkwg e
g(t) = —w(ﬁ) = dj = Jk:(ﬂ/

wk/2) _
ka@ Izsmf(mé) ﬂ;)’ for g0

for k=20

€;€—

_2

Feng-Li Lian © 2012
NTUEE-SSTFS-SB

= Example 3.8: T/ )@exwdt ',“ ':r"

am

Properties of CT Fourier Series

£ Q(t) <—> Ck
i .U

w0 q(t) = —q(f) =\ by {-}\2'_
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= Example 3.8: \

by -tjkuoTlﬁz % JmoTﬁD "'

— . -
L)

@[ng‘u()’rl e Jku}(ﬁ/j

27 sin(kwaT"
T/
b = jkwocy
= —".=
NPT S
k#0 o=k - 2jsin(huoTy) _{
g Jkwq JkwoT
2T
k=0 coA=2
= L
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= A Historical Perspective

= The Response of LTI Systems
to Complex Exponentials

= Fouri | res lon
of Continuous-TimegPeriodie Signals

= Convergence of the Fourier Series
. Propertles of Continuous-Time Fourier Series

= Properties of Discrete-Time Fourier Series
= Fourier Series & LTI Systems
= Filtering & Examples of CT & DT Filters




Fourier Series Representation of DT Periodic Signals

= Harmonically related complex exponentials

k=0,41,42,..

Feng-Li Lian © 2012
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W& L o] —@:

e+ (3 ) _

brp4nIn] = e

- 2=

Cnfwi

+ = ¢p+ » NN
~—

= ¢rln] = dpynIn] =

= The Fourier Series Representation:

= iam [n] =
k=<

<A

z[n]
k=<N>

Z akejktvon — Z ake (TT)

Fourier Series Representation of DT Periodic Signals

= Procedure of Determining the Coefﬁments:

zl0l = ) @7 2m
k=<N>

z[Jl= ) ake_—(%)
k= <N> 5

= T a2F)
k=<N> =

Feng-Li Lian © 2012




Fourier Series RepresentatiQ T Perjoet , ng-iLiag ?f@FZSOEZB
= Procedure oj/Deterpaning el

1

8
r—
=,
M
d
-
e
=y
N’
=
I
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= |n Summary:

e [ he synthesis equation:

e z[n] «—— ayp: DT Fouries series pair

e {a,}: the Fourier series coefficients

or the spectral coefficients of z[n]




Fourier Series Representation o >’ ic Sign Fe”Q'Li§§S3_F§ “
\ Wo
= Example 3.11: Jgwn §2wew/ o
2m
1 N
1+ () @ '

[e' ®))_QE) 1 2ED L (F)

Fourier Series Representation of DT Periodic Signals iyl
—( )7
o Example 3.11: 0 =\gle _
O a = |a| | cos( a) + jsin(g a)
a.o = (1 —— —
- = 1) — 1, N
A = 5) = QL Ua = b+ je = (/2+¢ %—F L
a1 = %) = j < | b24c 1 '52-%—-’32‘
= | = -

ap  =0%j \q I
T =0

| ag . others in < N > ﬂ%

i e
03 ‘ H r H T T
-2N -N m N 2N k %aﬁu

Imiag} ,,1‘1

n e - _r:‘] esan
2
..
2N N ’-’-l N 2N k
1
-3 -T2
(a)

(b)
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1 k(25 )n
= Example 3.12: {ak =y (] (%)

L

N N oWy T " 0, others ir@
ap = % 1 e_jk(gf;r)vl = % N e_jk(
= - M e ()
N

()
M| @

eletm=n+Njiorn=m— Ny

2N
(2 (2
ap = i e_Jk(Ww) m—N1) = ejk(_j{;')‘
N A —
m=0
e P —)
Fourier Series Representation of DT Periodic Signals Feng-LiLian © 2012
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= Example 3.12: —
f o —30

—J0/Xi0/2) _No—30/9e—36/2

N\~ —j0/2 ( 36/2 —j6/2
N g € — € 4
@#Q/ﬂ\fﬁ-&-.. J

Jv




Fourier Series Representation of DT Periodic Signals

Feng-Li Lian © 2012
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. E 1 sin[(%{/) k(N7 + D]#
xample 3.12: (. @ RNV,
PN, +1j N sin [ (R K

e N =10
‘—f_‘

LA L

\\\\\\\\\\
uuuuuuuuuuuuuuu

ppppp

Fourier Series Representation of DT Periodic Signals

Loz
_ 1( sin (QW“) (ENl +—§J
u Example 312@ oy == F/ _— .

e2N;+1=5

e LT

LUy TP TP TP T T TT 1T 1T

””””” viw @
IR % T TM T MT T TH MT T TH
W i i % HN% L TTHH Hﬁ% e TTHH




Fourier Series Representation of DT Periodic Signals Al (‘n‘

= Example 3.12:

o4
009

- ooy

. 004
N -N; 0 N, N no oo

oo

{N:40’
2

o [(30) (Gt D)

ap — — g E—

N sinf(x ]k

L o

e 0 £ W £l
15
f
o
m £ g ) o
1
o
% m 0 o £ W EY
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N1 =2
hT il ‘TW

"

.° LML ll ll LML

LML LL LL LML

1. i,

|.€2 1
) L’ i ‘H

<

Fourier Series Representation of CT Periodic Signals

= Examples 3.5 (CT) & 3.12 (DT):

Feng-Li Lian © 2012
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Fourier Series Representation of DT P
= Partial Sum:;

St e
1 s o llh,,,xlﬂh,,ﬂ m\ IIMI,[IL %
ln] = A‘_i” ael* (FF)n x.n, /)
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= A Historical Perspective

* The Response of LTI Systems to Complex
Exponentials

= Fourier Series Representation of Continuous-
Time Periodic Signals

= Convergence of the Fourier Series
= Properties of Continuous-Time Fourier Series

= Fourier Series Representation of Discrete-Time
Periodic Signals

= Properties of Discrete-Time Fourier Series
= Fourier Series & LTI Systems
= Filtering & Examples of CT & DT Filters




Outline
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Section Property

Linearity

Time Shifting

Frequency Shifting

Conjugation

Time Reversal

Time Scaling

Periodic Convolution

3.7.1 Multiplication v

3.7.2 First Difference (V4

Running Sum

Conjugate Symmetry for Real Signals

Symmetry for Real and Even Signals

Symmetry for Real and Odd Signals

Even-Odd Decomposition for Real Signals

Vi

3.7.3 Parseval's Relation for Periodic Signals \4

Properties of DT Fourier Series
TABLE 3.2 PROPERTIES OF DISCRETE-TIME FOURIER SERIES

Feng-Li Lian © 2012
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Property Periodic Signal

Fourier Series Coefficients

x[n] } Periodic with period N and

¥[n] | fundamental frequency wy = 2w/N
Linearity Ax{n] + By[n]
Time Shifting x[n = ng)
Frequency Shifting /MmNy 0]
Conjugation A [n]
Time Reversal x[=n]

Time Scaling (e x[nfm), ff n isa multiple of m
0, if n is not a multiple of m
(periodic with period mN)

Periodic Convolution i xlrlvln -]

Multiplication i)

First Difference x[n] = x[n = 1]

Ronning Som >’ (K .ﬁ.nilc valued and periodic nnly)
—— ifay = 0

Conjugate Symmetry for x[n] real
Real Signals

Real and Even Signals x[n] real and even

Real and Odd Signals x[n] real and odd

Even-0dd Decomposition [ Xe[n] = &{x[n]} [x[n] real]
of Real Signals xoln) = Od{x{n]} [x[n] real]

Parseval’s Relation for Periodic Signals

N =

x[n)} = ‘\_‘ e

ay | Periodic with
by | period N

Aa; + Bby
aie Fki2aiNing
-

a-,

a-;

1 (viewed as periodic
ay - .
m (\w th period mN

Nagby

2 arby_;
(N

(1 — e~ =g

1
0= e-Fmy |

a = a.,
Refa;} = Refa_y)
Imfas} = ~Imfa-;}
laz| = |a-s|
fag = —4a_;
ay real and even
ay purely imaginary and odd
{ﬁ«{u;}
jImia}
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= |n Summary:

e [ he synthesis equation:

FS . . .
e z[n] «—— ay: DT Fouries series pair

Feng-Li Lian © 2012
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. o z[n] = Z akejkwon
= Linearity: e 2

Properties of DT Fourier Series

e x[n],y[n]: periodic signals with period N
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= Multiplication:

e x[n],y[n]: periodic signals with period N

wlnl = Y, aedtwon
I=<N>

ylnl = > bped™WO"
m=<N>

= a periodic convolution

Add

Feng-Li Lian © 2012
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= First Difference:

FS
FS

= z[n —ng] —— € I
—————

FS —'}g(,r
zln — 1)) —— eak ="\
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= Parseval’s relation for DT periodic signals:

e As shox/f in Problem 3.57:
z[n] Fikcaal ag /\/
-N 1 0 —1 N n o 4'llg
al = i Z T ]e—jku‘on
N-n=<;\-">

« Parseval’s relation states th
the total average power in a periodic signal
equals
the sum of the average powers
in all of its harmonic components
(only N distinct harmonic components in DT)

Properties of DT Fourier Series

= Example 3.13:

-7I|IHIHE B8

1sin(3wk/5)

5 sin(k/5), for k #= 0,45, £10,...

z[n] = x1[n] + zo[n]

for k = 0,£5,%10,...

0, for k # 0,45,+10,... = a5 = b, + ¢},
- for k = 0,+5,+10, ...
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= CT & DT Fourier Series Representation:

(F-o9 _ 1/ 0
z(t) = ’I‘ejk“‘Ot a = _/ J(t)e—jk-u'otdt
TNT
k o
-_—H_P t

= U1 U!I\I ”N 7433[?’?,] — Qi D R 7
[ ] Jkwon, ap = i N m[n]e—jk?t'on
rnj = aj.e D
: S
Outline Feng-Li Lian © 2012
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= A Historical Perspective

* The Response of LTI Systems to Complex
Exponentials

= Fourier Series Representation of Continuous-
Time Periodic Signals

= Convergence of the Fourier Series
= Properties of Continuous-Time Fourier Series

= Fourier Series Representation of Discrete-Time
Periodic Signals

= Properties of Discrete-Time Fourier Series
= Fourier Series & LTI Systems
= Filtering & Examples of CT & DT Filters
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‘g‘\)‘bn pages 12-14

= The Response of an LTI System: L
Wo

m — — out
() ht) ot (H—C )
H s :f;mw = the@lse respongl

—

“+ o0
@= Z{J@[k}—k = th% system function
- \J;_Lh’o —
_’ i
:> the frequency @
w=@"’

. +oo O
H(e?%) = > hlnle”]

n——0oo

Feng-Li Lian © 2012
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a = |alei*®

H = |H|ei*H

= |n Summary:

CT: et — H(s;)eSi

DT: 2!— H(2)z!

+ + ,
=3 (o =5 f(@ &
— k=-— b—=—

Examples 3.16 & 3.17
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= A Historical Perspective

* The Response of LTI Systems to Complex
Exponentials

= Fourier Series Representation of Continuous-
Time Periodic Signals

= Convergence of the Fourier Series
= Properties of Continuous-Time Fourier Series

= Fourier Series Representation of Discrete-Time
Periodic Signals

= Properties of Discrete-Time Fourier Series
= Fourier Series & LTI Systems
= Filtering & Examples of CT & DT Filters

. . Feng-Li Lian © 2012
Filtering NTUEE-SS3-FS-88

u Fllterlng: in _>-_, out

* Change the relative amplitudes
of the frequency components in a signal,

— Frequency-shaping filters

* OR, significantly attenuate or eliminate
some frequency components entirely

— Frequency-selective filters




Filtering: Frequency-Shaping Filters

= Frequency-Shaping Filters:
* Audio System:

Feng-Li Lian © 2012
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Microphone

T T—T T e e e I + LI B T
]
s Switch pisitigh 1 3 + 15
—
] 09 [ @ 10
3 2
a°’ 1 g v
2 Switghl position 2 E [/}
g B
[ 4 5 o 5
10 '\ -10
s 1 . ] L 15 [ L
20Hz glﬁ 50 60 100 200 400 600 TxHz 2 34 8 810 20 20, 100 200

LI T T TT1T

Lol A IIIIII\_

Frequency
(&)

Response (dB)

-15 - 1 I I I I [
20Hz 3040 60 100 200 400 800 1TkHz 2 34 6 810 ‘20

Frequency
(b)

400 600 Tkmz 2 34 6810 0

Frequency
(e}

Filtering

= Frequency-Shaping Filters: "™
 Differentiating filter on enhancing edges:

H(jw)

= ju

Feng-Li Lian © 2012
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() = %.-v(w
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Filtering

= Frequency-Shaping Filters:
« Differentiating filter:

Feng-Li Lian © 2012
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14+eJ0 — e—jazz (ejG/Qie—jﬂ/Q

Filtering

= Frequency-Shaping Filters:
« A simple DT filter: Two-pwini average

oin) = 5 (alnl +aln = 11) =|& | (4 & ptel = #7210

= H(W) = % {1 -+ e_jwl :gf) {ej(%) + e_j(%)&

/

_s(w w
— ¢ 9(5) cos (2

[H()] Y H(™)
/T\NV
5 *TC =

@
r 4

faln] = k! then yln] = H (;@) Kel(3)m
W=7 %)
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= Frequency-Selective Filters:

» Select some bands of frequencies and reject others

H((jw : :
(w) CT ideal lowpass filter
15 le ch
. S 7Ty H(jw) = 0
4—Stopband——--—Passband—»“-—Stopband—- ’ |’LU| > We
H(jw)

CT ideal highpass filter

1

O, le < We
= - - H(jw) =
[ @ ¢ 1, Jwl 2 we

H(jw) CT ideal bandpass filter
1 1, we < |w| < wep
H(jw) =
~wea ~ ey We1 Wep  ° 0, otherwise
(b)

. . Feng-Li Lian © 2012
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= Frequency-Selective Filters:

» Select some bands of frequencies and reject others

H(ejw)

= . 0 We T T S DT ideal lowpass filter
- (@ —2
) mw— We
H (")
M DT ideal highpass filter
=2 - o 2w
(b)
H(ejw)

J].mrw DT ideal bandpass filter
-2 —1r ™ T ®
. =
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= A Historical Perspective

* The Response of LTI Systems to Complex
Exponentials

= Fourier Series Representation of Continuous-
Time Periodic Signals

= Convergence of the Fourier Series
= Properties of Continuous-Time Fourier Series

= Fourier Series Representation of Discrete-Time
Periodic Signals

= Properties of Discrete-Time Fourier Series
= Fourier Series & LTI Systems
= Filtering & Examples of CT & DT Filters
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CT Filters by Differential Equations

= A Simple RC Lowpass Filter:

+ et

Input signal: %‘, Output signal:
R

’Usgt) — Jwl ) UL@ — H(jw)ej’“"ﬂ
— vs(t) () 9:? Ve(t) —

5(t) h(t)

u(t) s(t)

RC’ —Up(t) + ve(t) = 11«;9}}

= RC’d [H(?EU)FJU:%—I_H(?ZU)F’JUIL_e‘?ut
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: . ) +oo .
= A Simple RC Lowpass Filter: H(jw) =/ h(t)e " dt
— 00
= H(jw) = —— o h(t) = —— e=t/RC (1)
1+ RCjw RC
_ [+ _ —t/RC
H = |H|e* = s(t) = [1 e ] w(t)
h(t) iImpulse response
: s(t) step response
%: H(j’bb) thi:i2 Ll e
AN B
! " 1/RC © :
1RC 0 | @ |
A B [
®) (s3]

. . . . Feng-Li Lian © 2012
CT Filters by Differential Equations o E So3.r0.08

: : . h(t) Output signal:
= A Simple RC Highpass Filter: s(t) or(t) = G(jw)eltt

+vt) -
Input signal: W(\)A«
vs(t) = eWt "
vs(t) () C =% v (t)
6(t)
u(t)

= RC %’U‘T(t) + v.(t) = RC %Us(t)

d . o d
= RC g [G(jw)e-} U"'f] + G(jw)elYt = RC aev‘?wt
” RCG(jw)eﬁ““" + G(jw)e"" = RC@QM

= G(jw)elVt = jw RC
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= A Simple RC Highpass Filter:

) w RC
= G(w) = J .
14+ jw RC
GGw)|
[ ‘Ufr(t) = ‘Us(t) — 'Uc(t)
---1:['Rc ol 1£=Rc = = 'Ur(t) —_— e_t/RC ?_L(t)
(@
, vr(t)
I G(jw) N
Yot step response
1/AC e I
I o] me w
(o) t
DT Filters by Difference Equations fong Lo 20w

= First-Orde Recursiv DT Filters:

y[n] — ay[n — 1] = z[n]
o If 2[n] = /%™, then y[n] = H(eIW)eIWn

where H(e/%): the frequency response

= H(elV) W — am@ = gJwn

o«

= {1 - a@ H(eV) &dWN = IWn

- 1
= H(V) = -
—_— l—ae ¥

—_—
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DT Filters by Difference Equations

= First-Order Recursive DT Filters:

1
H(e?) = . n] = ay[n — 1] + z[n]
(™) 1 —a ™It vl
lowpass filter: 0 <a< 1 highpass filter: -1 <a <0
‘H(ejwﬂ a=0.6 : d=-0.6

| Hie) |

1AL NN
—’. T —t 71' ”
|

L Hiel) <« Higl

- N
—7 t/ﬁ- _ij S
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DT Filters by Difference Equations

= First-Order Recursive DT Filters:
y[n] = ay[n — 1] + z[n]

lowpass filter: 0 <a<1 highpass filter: -1 <a <0

HHHH”H n:m,,,,," Ih lI]ljllIﬂx'ﬂﬁup...-..;..n

()

=]

;....?ff_xltl ]II

......,,,mnnyHHlIH”' S I }

n (d)




. . . Feng-Li Lian © 2012
DT Filters by Difference Equations NTUEE-SS3-FS-103

= Nonrecursive DT Filters:
* An FIR nonrecursive difference equation:

y[n] = %I: b, x[n — k] N+ MhI/]

k=—N

=b yoln+ N +b_ypraln+N-1]4+--- T$4yﬂﬂ]

+bo z[n] + by zln — 1] 4 - + by z[n — M]

E——

|
NEMAT

by — e‘mwav@

TR
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= Nonrecursive DT Filters:
* Three-point moving average (lowpass) filter:

i) = 3 (s + 11+ ol + 2l — 1])

= hln] = (5[n + 1] + 8[n] + 5[n — 1])

= H(V) =

Wl Wk

V414 eI =
( )
[H(E™)]

%(1 -+ 2c05w)

)

2m @




DT Filters by Difference Equations

= Nonrecursive DT Filters:
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el? = cos(0) + jsin(0)

1 . @
. H 8) = — cjg+e'J9
« N+M+1 moving average (lowpass) filter: cos(8) =3¢ )
L M sin(f) = %(ejﬁ _e—je)
yln] = >, z[n—k] J
N+M+1 ,
| e M M
=5 HEW) = 3
N+ M+ 1&1
» 1 - M)@ (M+N+1)Y%
. ) = o (0RO £V +1)3)
—— N+M+1 @5)
1_eda e 942 (eja/z — eie/2)
1 —e—Jb -

e—ib/2 (ejb/2 _ e—jb/2)

DT Filters by Difference Equations

= Nonrecursive DT Filters:

 N+M+1 moving average 3’)7
(lowpass) filter;
)
1

M = N =16
[ g N

» .
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N |

N | =%




DT Filters by Difference Equations
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= Lowpass Filtering on Dow Jones Weekly Stock Market Index:

A

400
S [
£ ]
wERPANLE
150 !\ /,‘ /
100 . 2
s il
]
IJQ‘Q.‘? JS-;G 1% ‘J‘r‘N 1{:3“1 1"9?2 f;‘:! 1-:3"4 1‘;‘3"6 “;’3‘6 1‘;??
e i
i n
b » {
200 et
1ol "\ /
100 /
50 r/

sl

[N

N

N

I p——

Jan

Jan
1921 1958 Jan Jan n an an

Ja - Ji
1829 1930 1831 1932 1933
)
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DT Filters by Difference Equations

= Nonrecursive DT Filters:

* Highpass filters:
y[n] = z[n] — z[n — 1]
2

1
= h[n] ==
1[n] 5

= H(V) = % [l—e_jw}

5[n] — 6[n — 1]}
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= On page 235, Eq. 3.139 R G e

o H(eIv) = {He—jw} ) {ej(%)ﬂ—j(%)]
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= On page 249, Eq. 3.164
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Chapter 3: Fourier Series Representation of Periodic Signals NTUEE.SS3.FS.110

= A Historical Perspective

* The Response of LTI Systems to Complex Exponentials
» FS Representation of CT Periodic Signals

= Convergence of the FS

= Properties of CT FS

Linearity Time Shifting Frequency Shifting Conjugation
e Time Reversal Time Scaling Periodic Convolution Multiplication
« Differentiation Integration Conjugate Symmetry for Real Signals
e Symmetry for Real and Even Signals Symmetry for Real and Odd Signals
» Even-Odd Decomposition for Real Signals Parseval's Relation for Periodic Signals

» FS Representation of DT Periodic Signals
= Properties of DT FS

e Multiplication First Difference Running Sum

= FS & LTI Systems
= Filtering

¢ Frequency-shaping filters & Frequency-selective filters

= Examples of CT & DT Filters




Flowchart

Signals & Systems (Chap 1)
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LTI & Convolution (Chap 2)

>

Bounded/Convergent
Periodic Aperiodic
CT CT (Chap 4)
FS DT FT
(Chap 3) DT (Chap 5)

\

_/

Unbounded/Non-convergent

LT cT

K zT DT

(Chap 9)

(Chap 10)

/

Time-Frequency (Chap 6)
CT-DT (Chap 7)

Communication

Control

(Chap 8)
(Chap 11)




