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• L. Euler’s study on the motion of a vibrating string in 1748

Leonhard Euler
1707-1783

Born in Switzerland
Photo from wikipedia
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• L. Euler showed (in 1748)
–The configuration of a vibrating string

at some point in time is a linear combination
of these normal modes

• D. Bernoulli argued (in 1753)
–All physical motions of a string could be represented 

by linear combinations of normal modes

–But, he did not pursue this mathematically

• J.L. Lagrange strongly criticized (in 1759)
–The use of trigonometric series

in examination of vibrating strings

– Impossible to represent signals with corners
using trigonometric series

Daniel Bernoulli
1700-1782

Born in Dutch
Photo from wikipedia

Joseph-Louis Lagrange
1736-1813
Born in Italy

Photo from wikipedia



Feng-Li Lian © 2011Feng-Li Lian © 2012
NTUEE-SS3-FS-5A Historical Perspective

• In 1807, Jean Baptiste Joseph Fourier
– Submitted a paper of using trigonometric series to represent 

“any” periodic signal

– It is examined by 
S.F. Lacroix, G. Monge, P.S. de Laplace, and J.L. Lagrange, 

– But Lagrange rejected it! 

• In 1822, Fourier published a book 
“Theorie analytique de la chaleur”
– “The Analytical Theory of Heat”

Jean Baptiste Joseph Fourier
1768-1830

Born in France
Photo from wikipedia
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Pierre-Simon, Marquis de Laplace
1749-1827

Born in France
Photo from wikipedia

Gaspard Monge, Comte de Péluse
1746-1818

Born in France
Photo from wikipedia

Sylvestre François de Lacroix
1765-1843

Born in France
Photo from 

A short biography of Silvestre-François Lacroix 
In Science Networks. Historical Studies, V35, 
Lacroix and the Calculus, Birkhäuser Basel 

2008, ISBN 978-3-7643-8638-2
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• Fourier’s main contributions:
– Studied vibration, heat diffusion, etc.

– Found series of harmonically related sinusoids
to be useful in representing 
the temperature distribution through a body

– Claimed that “any” periodic signal could 
be represented by such a series 
(i.e., Fourier series discussed in Chap 3)

– Obtained a representation for aperiodic signals
(i.e., Fourier integral or transform discussed in Chap 4 & 5) 

– (Fourier did not actually contribute to 
the mathematical theory of Fourier series)
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• Impact from Fourier’s work:
– Theory of integration, point-set topology, 

eigenfunction expansions, etc.

– Motion of planets, 
periodic behavior of the earth’s climate, 
wave in the ocean, 
radio & television stations

– Harmonic time series in the 18th & 19th centuries
> Gauss etc. on discrete-time signals and systems

– Faster Fourier transform (FFT) in the mid-1960s
> Cooley (IBM) & Tukey (Princeton) reinvented in 1965

> Can be found in Gauss’s notebooks (in 1805)

Carl Friedrich Gauss (Gauß)
1777-1855 

Born in Germany
Photo from wikipedia

James W. Cooley & John W. Tukey (1965): 
"An algorithm for the machine calculation of complex Fourier series", 
Math. Comput. 19, 297–301. 
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 Basic Idea:
• To represent signals 

as linear combinations of basic signals

 Key Properties:

1. The set of basic signals can be used 
to construct a broad and useful class of signals

2. The response of an LTI system to each signal
should be simple enough
in structure to provide us 
with a convenient representation
for the response of the system 
to any signals constructed 
as linear combination of basic signals

LTI
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 One of Choices:

• The set of complex exponential signals 

 The Response of an LTI System:

LTI
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 Eigenfunctions and Superposition Properties:

LTI
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 Harmonically related complex exponentials

 The Fourier Series Representation:
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 Example 3.2:
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 Procedure of Determining the Coefficients:
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 Procedure of Determining the Coefficients:
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 In Summary:
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 Fourier Series of Real Periodic Signals:
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 Alternative Forms of the Fourier Series:
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 Alternative Forms of the Fourier Series:
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 Example 3.4:
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 Example 3.4:

-0.4636

>> a1 = 1-0.5j
>> abs(a1)
>> angle(a1)

0.5000

0.7854

1.1180
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 Example 3.5:
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 Example 3.5:
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 Example 3.5:
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 Example 3.5:
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 Example 3.5:
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 Example 3.5:
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 Example 3.5:
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• Fourier maintained that
“any” periodic signal could be represented 
by a Fourier series

• The truth is that
Fourier series can be used to represent 
an extremely large class of periodic signals

• The question is that
when a periodic signal x(t) does in fact have a 
Fourier series representation? 
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 One class of periodic signals:
• Which have finite energy over a single period: 
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 The other class of periodic signals:
• Which satisfy Dirichlet conditions: 

• Condition 1:

– Over any period, 
x(t) must be absolutely integrable,
i.e.,

Johann Peter Gustav Lejeune Dirichlet
1805-1859

Born in Germany
Photo from wikipedia
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 The other class of periodic signals:
• Which satisfy Dirichlet conditions: 

• Condition 2:

– In any finite interval, x(t) is of bounded variation; i.e.,

– There are no more than 
a finite number of maxima and minima 
during any single period of the signal
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 The other class of periodic signals:
• Which satisfy Dirichlet conditions: 

• Condition 3:

– In any finite interval, 
x(t) has only finite number of discontinuities.

– Furthermore, each of these discontinuities is finite
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 How the Fourier series converges 
for a periodic signal with discontinuities

• In 1898,
Albert Michelson (an American physicist) 
used his harmonic analyzer
to compute 
the truncated Fourier series approximation 
for the square wave

Albert Abraham Michelson
1852-1931

Polish-born German-American
Photo from wikipedia
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• Michelson wrote to Josiah Gibbs

• In 1899, Gibbs showed that

– the partial sum near discontinuity exhibits ripples &

– the peak amplitude remains constant 
with increasing N

• The Gibbs phenomenon
Josiah Willard Gibbs
1839-1903
Born in USA
Photo from wikipedia
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 CT Fourier Series Representation:
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Section Property
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 Linearity:

Add
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 Time Shifting:
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 Time Reversal:
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 Time Scaling:



Feng-Li Lian © 2011Feng-Li Lian © 2012
NTUEE-SS3-FS-49Properties of CT Fourier Series

 Multiplication:

Add
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 Differentiation:
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 Integration:
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 Conjugation & Conjugate Symmetry:
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 Conjugation & Conjugate Symmetry:
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 Parseval’s relation for CT periodic signals:
• As shown in Problem 3.46:

• Parseval’s relation states that
the total average power in a periodic signal
equals
the sum of the average powers 
in all of its harmonic components
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 Example 3.6:
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 Example 3.7:

Feng-Li Lian © 2011Feng-Li Lian © 2012
NTUEE-SS3-FS-58Properties of CT Fourier Series

 Example 3.8:
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 Example 3.8:
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 Harmonically related complex exponentials

 The Fourier Series Representation:
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 Procedure of Determining the Coefficients:
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 Procedure of Determining the Coefficients:
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 In Summary:
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 Example 3.11:
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 Example 3.11:
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 Example 3.12:
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 Example 3.12:
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 Examples 3.5 (CT) & 3.12 (DT):
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 Partial Sum:
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 In Summary:
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 Linearity:

 Time Shifting:
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 Multiplication:

Add
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 First Difference:
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 Parseval’s relation for DT periodic signals:
• As shown in Problem 3.57:

• Parseval’s relation states that
the total average power in a periodic signal
equals
the sum of the average powers 
in all of its harmonic components 
(only N distinct harmonic components in DT)
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 Example 3.13:
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 CT & DT Fourier Series Representation:
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 The Response of an LTI System:

LTI

On pages 12-14 
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 In Summary:

LTI
H(s/z/w)

Examples 3.16 & 3.17
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 Filtering:

• Change the relative amplitudes 
of the frequency components in a signal, 

– Frequency-shaping filters

• OR, significantly attenuate or eliminate
some frequency components entirely

– Frequency-selective filters

filter



Feng-Li Lian © 2011Feng-Li Lian © 2012
NTUEE-SS3-FS-89Filtering: Frequency-Shaping Filters

 Frequency-Shaping Filters:
• Audio System:

Bass Treble Equalizer
Microphone

or Tape Speaker
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 Frequency-Shaping Filters:
• Differentiating filter on enhancing edges:
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 Frequency-Shaping Filters:
• Differentiating filter:

Differentiating 
Filter
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 Frequency-Shaping Filters:
• A simple DT filter: Two-point average



Feng-Li Lian © 2011Feng-Li Lian © 2012
NTUEE-SS3-FS-93Filtering: Frequency-Selective Filters

 Frequency-Selective Filters:
• Select some bands of frequencies and reject others
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 Frequency-Selective Filters:
• Select some bands of frequencies and reject others
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 A Simple RC Lowpass Filter:
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 A Simple RC Lowpass Filter:
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 A Simple RC Highpass Filter:
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 A Simple RC Highpass Filter:
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 First-Order Recursive DT Filters:
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 First-Order Recursive DT Filters:
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 First-Order Recursive DT Filters:
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 Nonrecursive DT Filters:
• An FIR nonrecursive difference equation:
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 Nonrecursive DT Filters:
• Three-point moving average (lowpass) filter:
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 Nonrecursive DT Filters:
• N+M+1 moving average (lowpass) filter:
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 Nonrecursive DT Filters:
• N+M+1 moving average 

(lowpass) filter:
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 Lowpass Filtering on Dow Jones Weekly Stock Market Index:
http://big5.jrj.com.cn/
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 Nonrecursive DT Filters:
• Highpass filters:
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 On page 235, Eq. 3.139

 On page 249, Eq. 3.164
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NTUEE-SS3-FS-110Chapter 3: Fourier Series Representation of Periodic Signals

 A Historical Perspective
 The Response of LTI Systems to Complex Exponentials
 FS Representation of CT Periodic Signals
 Convergence of the FS
 Properties of CT FS

• Linearity Time Shifting Frequency Shifting Conjugation
• Time Reversal Time Scaling Periodic Convolution Multiplication
• Differentiation Integration Conjugate Symmetry for Real Signals
• Symmetry for Real and Even Signals Symmetry for Real and Odd Signals
• Even-Odd Decomposition for Real Signals Parseval’s Relation for Periodic Signals

 FS Representation of DT Periodic Signals
 Properties of DT FS

• Multiplication First Difference Running Sum

 FS & LTI Systems
 Filtering

• Frequency-shaping filters & Frequency-selective filters

 Examples of CT & DT Filters
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