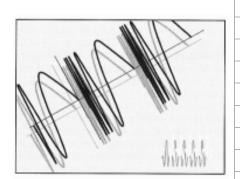
Spring 2015

信號與系統 Signals and Systems

Chapter SS-3
Fourier Series Representation
of Periodic Signals

Feng-Li Lian NTU-EE Feb15 – Jun15

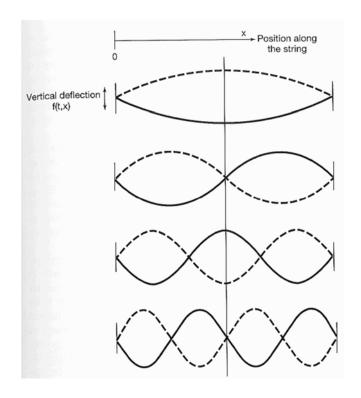


Figures and images used in these lecture notes are adopted from "Signals & Systems" by Alan V. Oppenheim and Alan S. Willsky, 1997

Outline

- A Historical Perspective
- The Response of LTI Systems to Complex Exponentials
- Fourier Series Representation of Continuous-Time Periodic Signals
- Convergence of the Fourier Series
- Properties of Continuous-Time Fourier Series
- Fourier Series Representation of Discrete-Time Periodic Signals
- Properties of Discrete-Time Fourier Series
- Fourier Series & LTI Systems
- Filtering & Examples of CT & DT Filters

• L. Euler's study on the motion of a vibrating string in 1748



Leonhard Euler 1707-1783 Born in Switzerland Photo from wikipedia

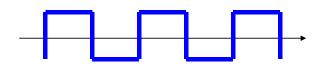
A Historical Perspective

• L. Euler showed (in 1748)

- The configuration of a vibrating string at some point in time is a linear combination of these normal modes
- D. Bernoulli argued (in 1753)
 - All physical motions of a string could be represented by linear combinations of normal modes
 - -But, he did not pursue this mathematically

• J.L. Lagrange strongly criticized (in 1759)

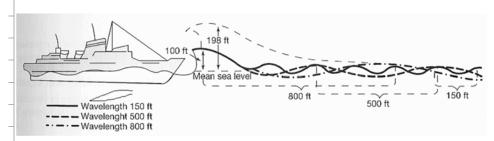
- The use of trigonometric series in examination of vibrating strings
- Impossible to represent signals with corners using trigonometric series



Daniel Bernoulli 1700-1782 Born in Dutch Photo from wikipedia

Joseph-Louis Lagrange 1736-1813 Born in Italy Photo from wikipedia

- In 1807, Jean Baptiste Joseph Fourier
 - Submitted a paper of using trigonometric series to represent "any" periodic signal
 - It is examined by
 S.F. Lacroix, G. Monge, P.S. de Laplace, and J.L. Lagrange,
 - But Lagrange rejected it!
- In 1822, Fourier published a book "Theorie analytique de la chaleur"
 - "The Analytical Theory of Heat"



<mark>Jean Baptiste Joseph Fourier</mark> 1768-1830 Born in France Photo from wikipedia

A Historical Perspective

Feng-Li Lian © 2015 NTUEE-SS3-FS-6

Figure 1.2: A medallion by David d'Angers, the only known portrait of Lacroix, made two years prior to his death. [Académie des Sciences de l'Institut de France]

Gaspard Monge, Comte de Péluse

1746-1818 Born in France Photo from wikipedia

Pierre-Simon, Marquis de Laplace

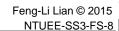
1749-1827 Born in France Photo from wikipedia

Sylvestre François de Lacroix

1765-1843
Born in France
Photo from
A short biography of Silvestre-François Lacroix
In Science Networks. Historical Studies, V35,
Lacroix and the Calculus, Birkhäuser Basel
2008, ISBN 978-3-7643-8638-2

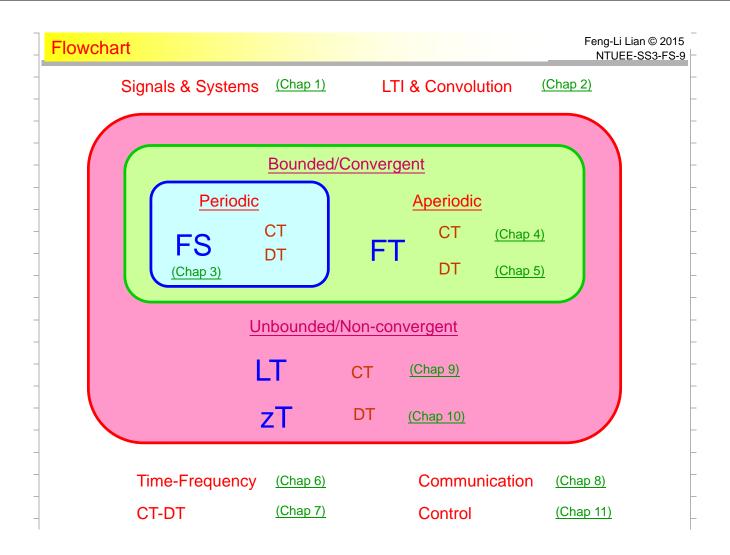
- Fourier's main contributions:
 - Studied vibration, heat diffusion, etc.
 - Found series of harmonically related sinusoids to be useful in representing the temperature distribution through a body
 - Claimed that "any" periodic signal could be represented by such a series (i.e., Fourier series discussed in Chap 3)
 - Obtained a representation for aperiodic signals
 (i.e., Fourier integral or transform discussed in Chap 4 & 5)
 - (Fourier did not actually contribute to the mathematical theory of Fourier series)

- Impact from Fourier's work:
 - Theory of integration, point-set topology, eigenfunction expansions, etc.
 - Motion of planets, periodic behavior of the earth's climate, wave in the ocean, radio & television stations
 - Harmonic time series in the 18th & 19th centuries
 - > Gauss etc. on discrete-time signals and systems
 - Faster Fourier transform (FFT) in the mid-1960s
 - > Cooley (IBM) & Tukey (Princeton) reinvented in 1965
 - > Can be found in Gauss's notebooks (in 1805)



Carl Friedrich Gauss (Gauß 1777-1855 Born in Germany Photo from wikipedia

James W. Cooley & John W. Tukey (1965):
"An algorithm for the machine calculation of complex Fourier series",
Math. Comput. 19, 297–301.



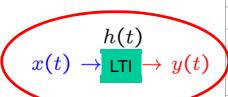
Outline

- A Historical Perspective
- The Response of LTI Systems to Complex Exponentials
- Fourier Series Representation of Continuous-Time Periodic Signals
- Convergence of the Fourier Series
- Properties of Continuous-Time Fourier Series
- Fourier Series Representation of Discrete-Time Periodic Signals
- Properties of Discrete-Time Fourier Series
- Fourier Series & LTI Systems
- Filtering & Examples of CT & DT Filters

- Basic Idea:
 - To represent signals as linear combinations of basic signals

- Key Properties:
 - The set of basic signals can be used to construct a broad and useful class of signals

2. The response of an LTI system to each signal should be simple enough in structure to provide us with a convenient representation for the response of the system to any signals constructed as linear combination of basic signals



Response of LTI Systems to Complex Exponentials

Feng-Li Lian © 2015 NTUEE-SS3-FS-12

- One of Choices:
 - The set of complex exponential signals

signals of form
$$e^{st}$$
 in CT signals of form z^n in DT

The Response of an LTI System:

input
$$\to$$
 LTI \to output $y(t) = \int_{-\infty}^{+\infty} x(\tau)h(t-\tau)d\tau$ $x(t)$ $h(t)$ $y(t)$ \in CT: $e^{st} \to H(s)e^{st}$ eigenfunction eigenvalue

Let
$$x(t) = e^{st}$$

Let
$$x[n] = z^n$$

$$y(t) = \int_{-\infty}^{+\infty} h(\tau)x(t-\tau)d\tau \qquad y[n] = \sum_{k=-\infty}^{+\infty} h[k]x[n-k]$$

$$= \int_{-\infty}^{+\infty} h(\tau)e^{s(t-\tau)}d\tau \qquad = \sum_{k=-\infty}^{+\infty} h[k]z^{n-k}$$

$$= e^{st} \int_{-\infty}^{+\infty} h(\tau)e^{-s\tau}d\tau \qquad = z^n \sum_{k=-\infty}^{+\infty} h[k]z^{-k}$$

$$= \sum_{k=-\infty}^{+\infty} h[k]z^{n-k}$$
$$= z^n \sum_{k=-\infty}^{+\infty} h[k]z^{-k}$$

$$-e$$
 $\int_{-\infty}^{\infty} n(t)e^{-at}$

$$\Rightarrow y[n] = H(z)x[n] = H(z)z^n$$

$$H(s) = \int_{-\infty}^{+\infty} h(\tau) e^{-s\tau} d\tau$$

 $\Rightarrow y(t) = H(s)x(t) = H(s)e^{st}$

$$H(z) = \sum_{k=-\infty}^{+\infty} h[k]z^{-k}$$

Response of LTI Systems to Complex Exponentials

Feng-Li Lian © 2015 NTUEE-SS3-FS-14

Eigenfunctions and Superposition Properties:

$$e^{s_k t} \rightarrow \text{LTI} \rightarrow H(s_k) e^{s_k t}$$
 $k = 1, 2, 3$

$$e^{s_1t} \longrightarrow H(s_1) e^{s_1t}$$

$$e^{s_2t} \longrightarrow H(s_2) e^{s_2t}$$

$$e^{s_3t} \longrightarrow H(s_3) e^{s_3t}$$

$$x(t) = a_1 e^{s_1 t} + a_2 e^{s_2 t} + a_3 e^{s_3 t}$$

$$y(t) = a_1 H(s_1) e^{s_1 t} + a_2 H(s_2) e^{s_2 t} + a_3 H(s_3) e^{s_3 t}$$

$$\Rightarrow x(t) = \sum_{k} a_k e^{s_k t} \longrightarrow y(t) = \sum_{k} a_k H(s_k) e^{s_k t}$$

$$\Rightarrow x[n] = \sum_{k} a_k z_k^n \longrightarrow y[n] = \sum_{k} a_k H(z_k) z_k^n$$

- A Historical Perspective
- The Response of LTI Systems to Complex Exponentials
- Fourier Series Representation of Continuous-Time Periodic Signals
- Convergence of the Fourier Series
- Properties of Continuous-Time Fourier Series
- Fourier Series Representation of Discrete-Time Periodic Signals
- Properties of Discrete-Time Fourier Series
- Fourier Series & LTI Systems
- Filtering & Examples of CT & DT Filters

Fourier Series Representation of CT Periodic Signals

Feng-Li Lian © 2015 NTUEE-SS3-FS-16

Harmonically related complex exponentials

$$\phi_k(t) = e^{jkw_0t} = e^{jk(\frac{2\pi}{T})t}, \qquad k = 0, \pm 1, \pm 2, \dots$$
 $w_0 = \frac{2\pi}{T}$

The Fourier Series Representation:

$$x(t) = \cdots a_{-2} \phi_{-2}(t) + a_{-1} \phi_{-1}(t) + a_{0} \phi_{0}(t) + a_{1} \phi_{1}(t) + a_{2} \phi_{2}(t) + \cdots$$

$$= \sum_{k=-\infty}^{+\infty} a_{k} \phi_{k}(t) = \sum_{k=-\infty}^{+\infty} a_{k} e^{jkw_{0}t} = \sum_{k=-\infty}^{+\infty} a_{k} e^{jk\left(\frac{2\pi}{T}\right)t}$$

k = +1, -1: the first harmonic components or, the fundamental components

k = +2, -2: the second harmonic components

··· etc.

Fourier Series Representation of CT Periodic Signals

Feng-Li Lian © 2015 NTUEE-SS3-FS-17

• Example 3.2:

$$x(t) = \sum_{k=-3}^{+3} a_k e^{jk(2\pi)t}$$

$$a_0 = 1$$
 $a_1 = a_{-1} = \frac{1}{4}$
 $a_2 = a_{-2} = \frac{1}{2}$
 $a_3 = a_{-3} = \frac{1}{3}$

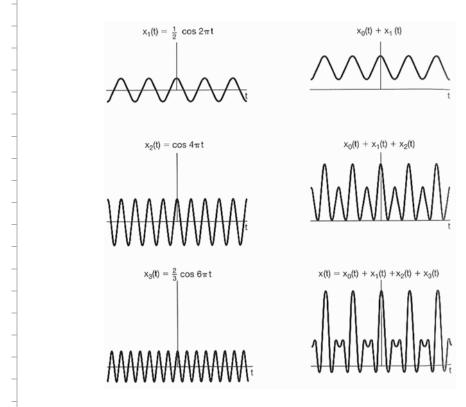
$$\Rightarrow x(t) = 1 + \frac{1}{4} (e^{j2\pi t} + e^{-j2\pi t}) + \frac{1}{2} (e^{j4\pi t} + e^{-j4\pi t}) + \frac{1}{3} (e^{j6\pi t} + e^{-j6\pi t})$$

$$\Rightarrow x(t) = 1 + \frac{1}{2}\cos 2\pi t + \cos 4\pi t + \frac{2}{3}\cos 6\pi t$$

$$e^{j\theta} = \cos(\theta) + j\sin(\theta)$$
$$\cos(\theta) = \frac{1}{2}(e^{j\theta} + e^{-j\theta})$$
$$\sin(\theta) = \frac{1}{2j}(e^{j\theta} - e^{-j\theta})$$

Fourier Series Representation of CT Periodic Signals

$$x(t) = 1 + \frac{1}{2}\cos 2\pi t + \cos 4\pi t + \frac{2}{3}\cos 6\pi t$$



Procedure of Determining the Coefficients:

$$w_0 = \frac{2\pi}{T}$$

$$x(t) = \sum_{k=-\infty}^{+\infty} a_k e^{jkw_0 t}$$

$$x(t)e^{-jnw_0t} = \sum_{k=-\infty}^{+\infty} a_k e^{jkw_0t} e^{-jnw_0t}$$

$$\int_0^T x(t)e^{-jnw_0t}dt = \int_0^T \sum_{k=-\infty}^{+\infty} a_k e^{jkw_0t}e^{-jnw_0t}dt$$
$$= \sum_{k=-\infty}^{+\infty} a_k \left[\int_0^T e^{j(k-n)w_0t}dt \right]$$

$$\int_0^T e^{j(k-n)w_0t} dt = \int_0^T \cos\left((k-n)w_0t\right) \frac{dt}{dt} + j \int_0^T \sin\left((k-n)w_0t\right) \frac{dt}{dt}$$

Fourier Series Representation of CT Periodic Signals

Feng-Li Lian © 2015 NTUEE-SS3-FS-20

Procedure of Determining the Coefficients:

$$\int_{0}^{T} e^{j(k-n)w_{0}t} dt = \int_{0}^{T} \cos\left((k-n)w_{0}t\right) dt + j \int_{0}^{T} \sin\left((k-n)w_{0}t\right) dt$$

$$= \begin{cases} T, & k=n \\ 0, & k \neq n \end{cases}$$

$$\Rightarrow \int_{0}^{T} x(t)e^{-j\mathbf{n}w_{0}t} dt = a_{n}T \quad \Rightarrow a_{n} = \frac{1}{T} \int_{0}^{T} x(t)e^{-j\mathbf{n}w_{0}t} dt$$

$$\Rightarrow a_{k} = \frac{1}{T} \int_{0}^{T} x(t)e^{-jkw_{0}t} dt$$

Furthermore,

$$\int_{T} e^{j(k-n)w_0 t} dt = \begin{cases} T, & k=n \\ 0, & k \neq n \end{cases} \Rightarrow a_k = \frac{1}{T} \int_{T} x(t) e^{-jkw_0 t} dt$$

In Summary:

• The synthesis equation:

$$x(t) = \sum_{k=-\infty}^{+\infty} a_k e^{jkw_0 t} = \sum_{k=-\infty}^{+\infty} a_k e^{jk(2\pi/T)t}$$

• The analysis equation:

$$a_k = \frac{1}{T} \int_T x(t) e^{-jk w_0 t} dt = \frac{1}{T} \int_T x(t) e^{-jk(2\pi/T)t} dt$$

- $x(t) \stackrel{\mathcal{FS}}{\longleftrightarrow} a_k$: CT Fouries series pair
- $\{a_k\}$: the Fourier series coefficients or the spectral coefficients of x(t)
- $a_0 = \frac{1}{T} \int_T x(t) dt$, the dc or constant component of x(t)

Fourier Series Representation of CT Periodic Signals

Feng-Li Lian © 2015 NTUEE-SS3-FS-22

• Example 3.4:

$$a_{k} = \frac{1}{T} \int_{T} x(t)e^{-jkw_{0}t} dt = \frac{1}{T} \int_{T} x(t)e^{-jk(2\pi/T)t} dt$$

$$x(t) = \sum_{k=-\infty}^{+\infty} a_{k}e^{jkw_{0}t} = \sum_{k=-\infty}^{+\infty} a_{k}e^{jk(2\pi/T)t}$$

$$e^{j\theta} = \cos(\theta) + j\sin(\theta)$$

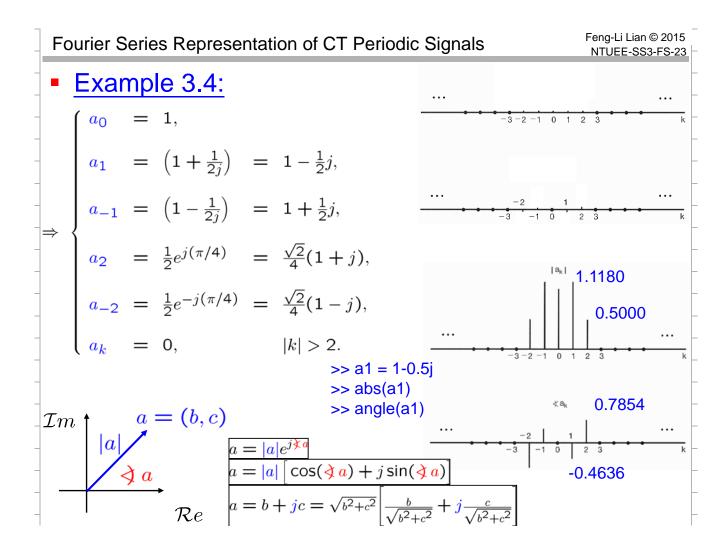
$$\cos(\theta) = \frac{1}{2}(e^{j\theta} + e^{-j\theta})$$

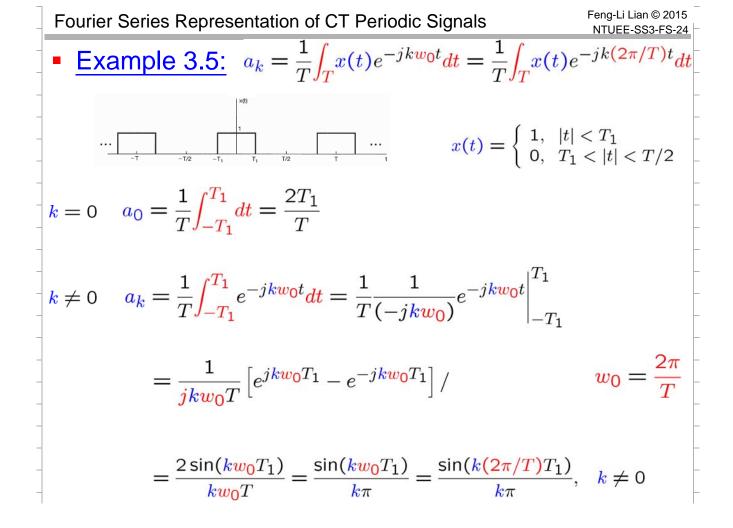
$$\sin(\theta) = \frac{1}{2j}(e^{j\theta} - e^{-j\theta})$$

$$x(t) = 1 + \sin w_0 t + 2\cos w_0 t + \cos\left(2w_0 t + \frac{\pi}{4}\right)$$

$$\Rightarrow x(t) = 1 + \frac{1}{2j} \left[e^{jw_0 t} - e^{-jw_0 t} \right] + \left[e^{jw_0 t} + e^{-jw_0 t} \right] + \frac{1}{2} \left[e^{j(2w_0 t + \pi/4)} + e^{-j(2w_0 t + \pi/4)} \right]$$

$$\Rightarrow x(t) = 1 + \left(1 + \frac{1}{2j}\right)e^{jw_0t} + \left(1 - \frac{1}{2j}\right)e^{-jw_0t} + \left(\frac{1}{2}e^{j(\pi/4)}\right)e^{j2w_0t} + \left(\frac{1}{2}e^{-j(\pi/4)}\right)e^{-j2w_0t}$$

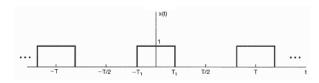




Fourier Series Representation of CT Periodic Signals

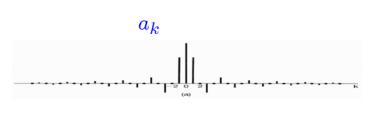
Feng-Li Lian © 2015 NTUEE-SS3-FS-25

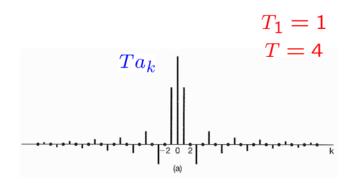
• Example 3.5: $T = 4T_1$

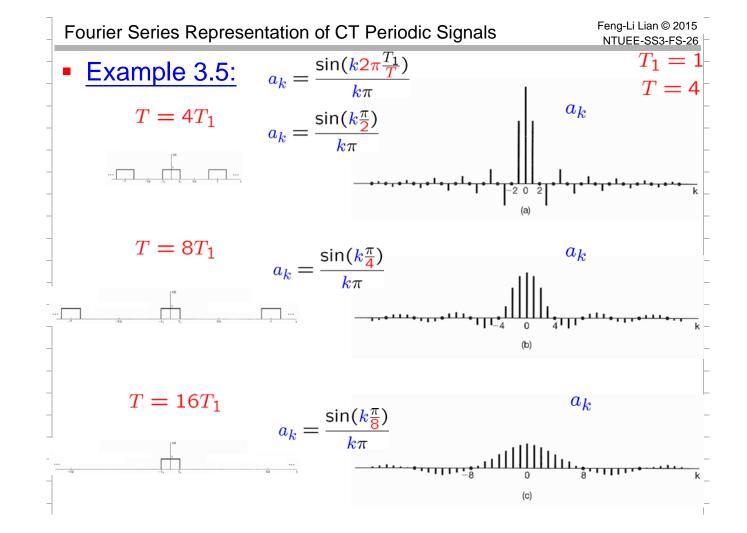


$$a_k = \frac{\sin(k\frac{2\pi\frac{T_1}{T}}{T})}{k\pi}$$
$$= \frac{\sin(k\frac{\pi}{2})}{k\pi}$$

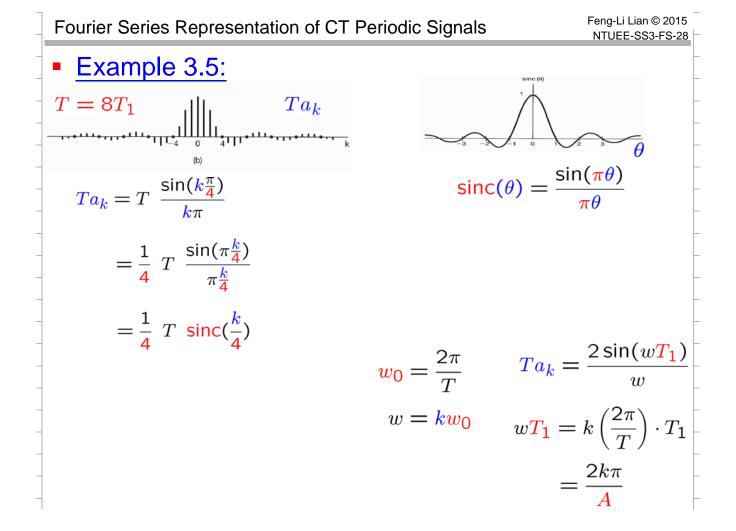
$$T \ a_k = T \ \frac{\sin(k2\pi \frac{T_1}{T})}{k\pi}$$
$$= T \ \frac{\sin(k\frac{\pi}{2})}{k\pi}$$



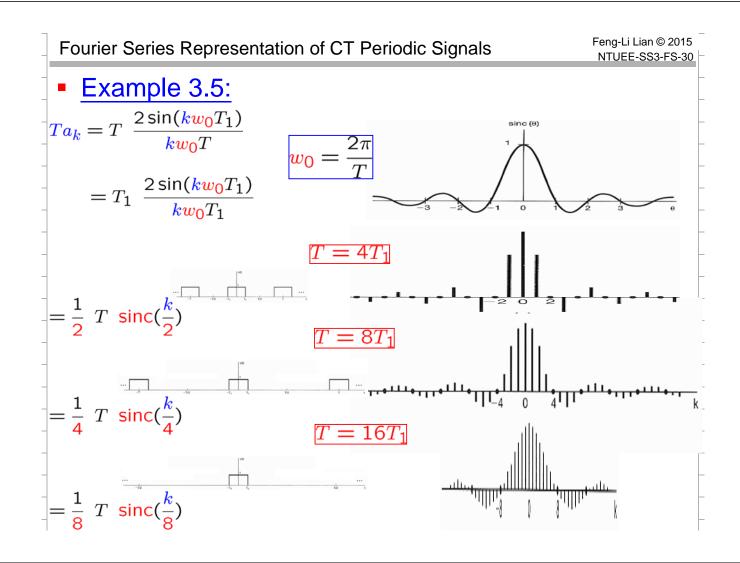




Fourier Series Representation of CT Periodic Signals Feng-Li Lian © 2015 NTUEE-SS3-FS-27 Feng-Li Lian © 2015 NTUEE-SS3-FS-27 Feng-Li Lian © 2015 NTUEE-SS3-FS-27 $T = 4T_1$ $T = 4T_1$ $T = 4T_1$ $T = 8T_1$ $T = 8T_1$ $T = 8T_1$ $T = 16T_1$ $T = 16T_1$



Fourier Series Representation of CT Periodic Signals Feng-Li Lian © 2015 NTUEE-SS3-FS-29 T $a_k = T \frac{\sin(k \frac{\pi}{2})}{k\pi}$ $= \frac{1}{2} T \operatorname{sinc}(\frac{k}{2})$ $= \frac{1}{8} T \operatorname{sinc}(\frac{k}{8})$ $= \frac{1}{4} T \operatorname{sinc}(\frac{k}{4})$ $= \frac{1}{4} T \operatorname{sinc}(\frac{k}{4})$



Fourier Series of Real Periodic Signals:

• If x(t) is real, then $x^*(t) = x(t)$

$$x(t) = \sum_{k=-\infty}^{+\infty} a_k e^{jkw_0 t}$$

$$x(t) = \sum_{k=-\infty}^{+\infty} a_k e^{jkw_0 t}$$

$$\Rightarrow x(t) = x(t)^* = \left(\sum_{k=-\infty}^{+\infty} a_k e^{jkw_0 t}\right)^*$$

$$= \sum_{k=-\infty}^{+\infty} a_k^* e^{-jkw_0 t}$$

$$= \sum_{m=+\infty}^{-\infty} a_{-m}^* e^{jmw_0 t}$$

$$= \sum_{m=+\infty}^{+\infty} a_{-m}^* e^{jkw_0 t}$$

$$= \sum_{k=-\infty}^{+\infty} a_{-k}^* e^{jkw_0 t}$$

$$\Rightarrow a_{-k}^* = a_k \quad \text{or,} \quad a_k^* = a_{-k}$$

$$k = m$$

Fourier Series Representation of CT Periodic Signals

Feng-Li Lian © 2015 NTUEE-SS3-FS-32

Alternative Forms of the Fourier Series:

$$x(t) = \sum_{k=-\infty}^{+\infty} a_k e^{jk w_0 t}$$

$$\Rightarrow x(t) = a_0 + \sum_{k=1}^{\infty} \left[a_k e^{jkw_0 t} + a_{-k} e^{-jkw_0 t} \right]$$
$$= a_0 + \sum_{k=1}^{\infty} \left[a_k e^{jkw_0 t} + a_k^* e^{-jkw_0 t} \right]$$

$$a_{k}e^{jkw_{0}t} + a_{k}^{*}e^{-jkw_{0}t} = (R+jI)(C+jS) + (R-jI)(C-jS)$$

$$= (RC-IS) + j(RS+IC) + (RC-IS) - j(RS+IC)$$

$$= 2(RC-IS)$$

$$= a_{0} + \sum_{k=1}^{\infty} 2 \operatorname{Re} \left\{ a_{k}e^{jkw_{0}t} \right\}$$

Alternative Forms of the Fourier Series:

• If
$$a_k = A_k e^{j\theta_k}$$

$$\Rightarrow x(t) = a_0 + \sum_{k=1}^{\infty} 2 \operatorname{Re} \left\{ A_k e^{j\theta_k} e^{jkw_0 t} \right\}$$

$$= a_0 + \sum_{k=1}^{\infty} 2 \operatorname{Re} \left\{ A_k e^{j(kw_0 t + \theta_k)} \right\}$$

$$= a_0 + 2 \sum_{k=1}^{\infty} A_k \cos(kw_0 t + \theta_k)$$

$$e^{j\theta} = \cos(\theta)$$

$$\bullet \text{ If } a_k = B_k + j C_k$$

$$(a+jb)(c+jd) = (ac-bd) + j(ad+bc)$$

$$C(a+b) = C(a)C(b) - S(a)S(b)$$

$$\Rightarrow x(t) = a_0 + \sum_{k=1}^{\infty} 2 \operatorname{Re} \left\{ \left(B_k + j C_k \right) e^{jkw_0 t} \right\}$$
$$= a_0 + 2 \sum_{k=1}^{\infty} \left[B_k \cos(kw_0 t) - C_k \sin(kw_0 t) \right]$$

Outline

- A Historical Perspective
- The Response of LTI Systems to Complex Exponentials
- Fourier Series Representation of Continuous-Time Periodic Signals
- Convergence of the Fourier Series
- Properties of Continuous-Time Fourier Series
- Fourier Series Representation of Discrete-Time Periodic Signals
- Properties of Discrete-Time Fourier Series
- Fourier Series & LTI Systems
- Filtering & Examples of CT & DT Filters

Convergence of the Fourier Series

- Fourier maintained that "any" periodic signal could be represented by a Fourier series
- The truth is that
 Fourier series can be used to represent
 an extremely large class of periodic signals
- The question is that when a periodic signal x(t) does in fact have a Fourier series representation?

$$x_{FS}(t) = \sum_{k=-\infty}^{+\infty} a_k e^{jk(2\pi/T)t} \qquad a_k = \frac{1}{T} \int_T x(t) e^{-jk(2\pi/T)t} dt$$
$$x_N(t) = \sum_{k=-N}^{+N} a_k e^{jk(2\pi/T)t}$$

Convergence of the Fourier Series

- One class of periodic signals:
 - Which have finite energy over a single period:

$$\int_{T} |x(t)|^{2} \frac{dt}{dt} < \infty \qquad \Rightarrow \qquad a_{k} = \frac{1}{T} \int_{T} x(t) e^{-jk w_{0} t} dt < \infty$$

$$x_{N}(t) = \sum_{k=-N}^{+N} a_{k} e^{jk w_{0} t}$$

$$e_N(t) = x(t) - x_N(t)$$

$$e(t) = x(t) - \sum_{k=-\infty}^{+\infty} a_k e^{jk\mathbf{w_0}t}$$

$$E_N(t) = \int_T |e_N(t)|^2 dt$$
 $E(t) = \int_T |e(t)|^2 dt = 0$

$$ightarrow$$
 0 as $N
ightarrow \infty$ $x(t) = \sum_{k=-\infty}^{+\infty} a_k e^{jkw_0 t}, \quad orall t$???

The other class of periodic signals:

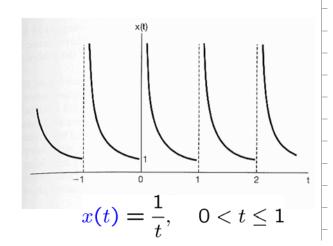
- Which satisfy Dirichlet conditions:
- Condition 1:
 - Over any period,
 x(t) must be absolutely integrable,
 i.e.,

Johann Peter Gustav Lejeune Dirichlet 1805-1859 Born in Germany Photo from wikipedia

$$\int_T |x(t)| \, dt < \infty$$

$$|a_k| \le \frac{1}{T} \int_T \left| x(t) e^{-jkw_0 t} \right| dt$$

$$= \frac{1}{T} \int_T \left| x(t) \right| dt < \infty$$

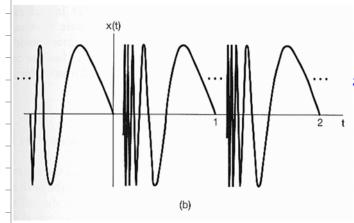


Convergence of the Fourier Series

Feng-Li Lian © 2015 NTUEE-SS3-FS-38

The other class of periodic signals:

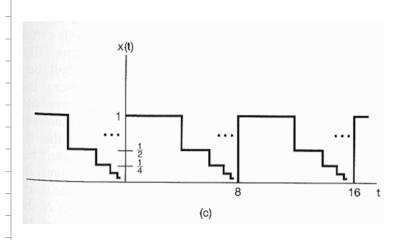
- Which satisfy Dirichlet conditions:
- Condition 2:
 - In any finite interval, x(t) is of bounded variation; i.e.,
 - There are no more than a finite number of maxima and minima during any single period of the signal



$$x(t) = \sin\left(rac{2\pi}{t}
ight), \quad 0 < t \le 1$$

$$\int_0^1 |x(t)| \, dt < 1$$

- The other class of periodic signals:
 - Which satisfy Dirichlet conditions:
 - Condition 3:
 - In any finite interval,
 x(t) has only finite number of discontinuities.
 - Furthermore, each of these discontinuities is finite



Convergence of the Fourier Series

 How the Fourier series converges for a periodic signal with discontinuities

In 1898,
 Albert Michelson (an American physicist) used his harmonic analyzer to compute the truncated Fourier series approximation

$$x_N(t) = \sum_{k=-N}^{+N} a_k e^{jkw_0 t}$$

for the square wave

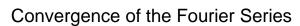
 $x_1(t) = a_{-1}e^{-j\cdot 1\cdot w_0t} + a_0 + a_1e^{j\cdot 1\cdot w_0t}$

Feng-Li Lian © 2015 NTUEE-SS3-FS-40

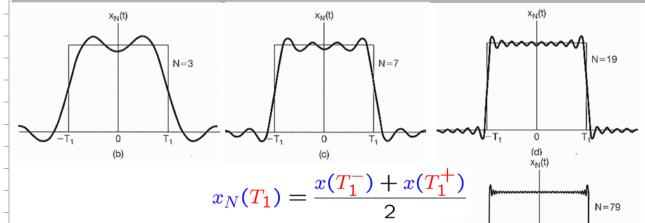
Albert Abraham Michelson 1852-1931 Polish-born German-American Photo from wikipedia

N=1

 $x_N(t)$

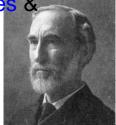


Feng-Li Lian © 2015 NTUEE-SS3-FS-41



- Michelson wrote to Josiah Gibbs
- In 1899, Gibbs showed that
 - the partial sum near discontinuity exhibits ripples
 - the peak amplitude remains constant with increasing N
- The Gibbs phenomenon

Josiah Willard Gibbs 1839-1903 Born in USA Photo from wikipedia

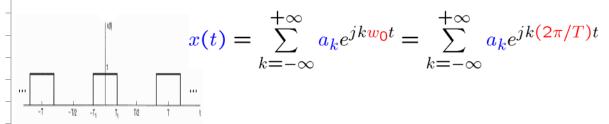


Outline

- A Historical Perspective
- The Response of LTI Systems to Complex Exponentials
- Fourier Series Representation of Continuous-Time Periodic Signals
- Convergence of the Fourier Series
- Properties of Continuous-Time Fourier Series
- Fourier Series Representation of Discrete-Time Periodic Signals
- Properties of Discrete-Time Fourier Series
- Fourier Series & LTI Systems
- Filtering & Examples of CT & DT Filters

CT Fourier Series Representation:

• The synthesis equation:



• The analysis equation:

$$a_k = \frac{1}{T} \int_T x(t) e^{-jk w_0 t} dt = \frac{1}{T} \int_T x(t) e^{-jk(2\pi/T)t} dt$$

•
$$x(t) \stackrel{\mathcal{FS}}{\longleftrightarrow} a_k$$
: Fouries series pair

Outline

Section	Property	
3.5.1	Linearity	
3.5.2	Time Shifting	
	Frequency Shifting	
3.5.6	Conjugation	
3.5.3	Time Reversal	
3.5.4	Time Scaling	
	Periodic Convolution	
3.5.5	Multiplication	
	Differentiation	
	Integration	
3.5.6	Conjugate Symmetry for Real Signals	
3.5.6	Symmetry for Real and Even Signals	
3.5.6	Symmetry for Real and Odd Signals	
	Even-Odd Decomposition for Real Signals	
3.5.7	Parseval's Relation for Periodic Signals	

Linearity:

$$a_k = \frac{1}{T} \int_T x(t) e^{-jkw_0 t} dt$$

• x(t), y(t): periodic signals with period T

$$x(t) \stackrel{\mathcal{FS}}{\longleftrightarrow} a_k$$
 $x(t) = \sum_{\substack{k = -\infty \\ +\infty}}^{+\infty} a_k e^{jkw_0 t}$ $y(t) \stackrel{\mathcal{FS}}{\longleftrightarrow} b_k$ $y(t) = \sum_{m = -\infty}^{+\infty} b_m e^{jmw_0 t}$

$$\Rightarrow z(t) = Ax(t) + By(t) \stackrel{\mathcal{FS}}{\longleftrightarrow} c_k = Aa_k + Bb_k$$
$$z(t) = \sum_{k=-\infty}^{+\infty} c_k e^{jkw_0 t}$$

Add

Properties of CT Fourier Series

Feng-Li Lian © 2015 NTUEE-SS3-FS-46

Time Shifting:

• x(t): periodic signal with period T

$$x(t) \stackrel{\mathcal{FS}}{\longleftrightarrow} a_k$$

$$\Rightarrow x(t - t_0) \stackrel{\mathcal{FS}}{\longleftrightarrow} b_k = e^{-jkw_0t_0}a_k = e^{-jk\left(\frac{2\pi}{T}\right)t_0}a_k$$

$$b/c \quad b_k = \frac{1}{T}\int_T x(t - t_0)e^{-jkw_0t}dt \qquad t - t_0 = \tau \\ t = \tau + t_0$$

$$dt = d\tau$$

$$= \frac{1}{T}\int_T x(\tau)e^{-jkw_0(\tau + t_0)}d\tau$$

$$= e^{-jkw_0t_0} \frac{1}{T}\int_T x(\tau)e^{-jkw_0\tau}d\tau$$

Time Reversal:

$$x(t) \stackrel{\mathcal{FS}}{\longleftrightarrow} a_k$$

$$x(t) = \sum_{k=-\infty}^{+\infty} a_k e^{jk\left(\frac{2\pi}{T}\right)t}$$

$$\Rightarrow x(-t) \stackrel{\mathcal{FS}}{\longleftrightarrow} a_{-k}$$

$$x(-t) = \sum_{k=-\infty}^{+\infty} a_k e^{-j k \left(\frac{2\pi}{T}\right) t}$$

$$= \sum_{m=-\infty}^{+\infty} a_{-m} e^{j m \left(\frac{2\pi}{T}\right) t}$$

• If x(t) is even, i.e., x(-t) = x(t)

$$\Rightarrow a_k$$
 is even, i.e., $a_{-k} = a_k$

$$-k = m$$

• If x(t) is odd, i.e., x(-t) = -x(t)

$$\Rightarrow a_k$$
 is odd, i.e., $a_{-k} = -a_k$

Properties of CT Fourier Series

Feng-Li Lian © 2015 NTUEE-SS3-FS-48

Time Scaling:

- ullet x(t): periodic signals with period T and fundamental frequency w_0
- ullet x(lpha t): periodic signals with period $rac{T}{lpha}$ and fundamental frequency $lpha w_0$

$$x(t) = \sum_{k=-\infty}^{+\infty} a_k e^{jk\mathbf{w_0}t} = \sum_{k=-\infty}^{+\infty} a_k e^{jk\left(\frac{2\pi}{T}\right)t}$$

$$x(\alpha t) = \sum_{k=-\infty}^{+\infty} a_k e^{j k w_0} (\alpha t) = \sum_{k=-\infty}^{+\infty} a_k e^{j k \alpha} (\frac{2\pi}{T}) t$$

$$= \sum_{k=-\infty}^{+\infty} a_k e^{j k (\alpha w_0)} t = \sum_{k=-\infty}^{+\infty} a_k e^{j k \left(\frac{2\pi}{\binom{T}{\alpha}}\right)} t$$

Properties of CT Fourier Series

Feng-Li Lian © 2015 NTUEE-SS3-FS-49

Multiplication:

$$z(t) = \sum_{k=-\infty}^{+\infty} c_k e^{jkw_0 t}$$

• x(t), y(t): periodic signals with period T

$$\begin{array}{ccc} x(t) & \stackrel{\mathcal{FS}}{\longleftrightarrow} & a_k \\ y(t) & \stackrel{\mathcal{FS}}{\longleftrightarrow} & b_k \end{array}$$

$$x(t) = \sum_{l=-\infty}^{+\infty} a_l e^{jlw_0 t}$$

 $\Rightarrow x(t)y(t)$: also periodic with T

$$y(t) = \sum_{m=-\infty}^{+\infty} b_m e^{jmw_0 t}$$

$$z(t) = x(t)y(t) \stackrel{\mathcal{FS}}{\longleftrightarrow} c_k = \sum_{l=-\infty}^{\infty} a_l b_{k-l}$$

$$= \left(\sum_{l=-\infty}^{+\infty} e^{jlw_0 t}\right) \left(\sum_{m=-\infty}^{+\infty} e^{jmw_0 t}\right) \qquad (a+b+c)(d+e+f)$$

$$= ad + ae + af$$

$$+bd + be + bf$$

$$+cd + ce + cf$$

$$= \sum_{l=-\infty}^{+\infty} \sum_{m=-\infty}^{+\infty} e^{j(l+m)w_0 t}$$

$$= \sum_{k=-\infty}^{+\infty} \sum_{m=-\infty}^{+\infty} e^{j(k)w_0 t}$$
Add

Properties of CT Fourier Series

Feng-Li Lian © 2015 NTUEE-SS3-FS-50

Differentiation:

$$x(t) = \sum_{k=-\infty}^{+\infty} a_k e^{jk \mathbf{w_0} t}$$

• x(t): periodic signals with period T

$$x(t) \stackrel{\mathcal{FS}}{\longleftrightarrow} a_k$$

$$\frac{d}{dt}x(t) \stackrel{\mathcal{FS}}{\longleftrightarrow} jkw_0 a_k$$

$$x(t) = \sum_{k=-\infty}^{+\infty} a_k$$

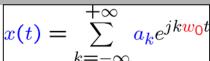
$$e^{jkw_0t}$$

 e^{jkw_0t}

$$=\sum_{k=-\infty}^{+\infty}a_k$$

Properties of CT Fourier Series

Integration:



• x(t): periodic signals with period T

$$x(t) \stackrel{\mathcal{FS}}{\longleftrightarrow} a_k$$

$$\int_{-\infty}^{t} x(\tau)d\tau \overset{\mathcal{FS}}{\longleftrightarrow} \frac{1}{jkw_0} a_k$$

only if $a_0 = 0$, it is finite velaued and periodic

$$x(t)$$
 = $\sum_{k=-\infty}^{+\infty}$

$$a_k = e^{jkw_0t}$$

$$= \sum_{k=-\infty}^{+\infty}$$

$$a_k = e^{jkw_0t}$$

Properties of CT Fourier Series

Feng-Li Lian © 2015 NTUEE-SS3-FS-52

Conjugation & Conjugate Symmetry: $x(t) = \sum_{k=-\infty}^{+\infty} a_k e^{jkw_0 t}$

$$x(t) = \sum_{k=-\infty}^{+\infty} a_k e^{jk\mathbf{w_0}t}$$

$$x(t) \stackrel{\mathcal{FS}}{\longleftrightarrow} a_k \qquad x(t)^* \stackrel{\mathcal{FS}}{\longleftrightarrow} a_{-k}^*$$

$$x(t) = \sum_{k=-\infty}^{+\infty} a_k e^{jkw_0t}$$

$$= \sum_{k=-\infty}^{+\infty} a_k e^{jkw_0t}$$

$$+\infty$$

$$= \sum_{k=-\infty}^{+\infty} a_k e^{j k w_0 t}$$

$$= \sum_{m=+\infty}^{-\infty} a_m e^{j m w_0 t}$$

$$= \sum_{k=0}^{+\infty} a_k e^{j k w_0 t}$$

$$-k = m$$

$$m = k$$

Conjugation & Conjugate Symmetry:

$$x(t) \stackrel{\mathcal{FS}}{\longleftrightarrow} a_k \qquad x(t)^* \stackrel{\mathcal{FS}}{\longleftrightarrow} a_{-k}^*$$

- $x(t) = x(t)^* \Rightarrow a_{-k} = a_k^*$
 - x(t) is real $\Rightarrow \{a_k\}$ are conjugate symmetric
- $\bullet x(t) = x(t)^* \& x(-t) = x(t) \Rightarrow a_{-k} = a_k^* \& a_{-k} = a_k$ $\Rightarrow a_k = a_k^*$

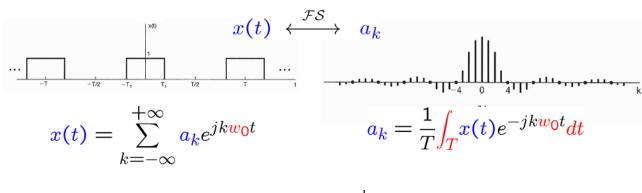
x(t) is real & even $\Rightarrow \{a_k\}$ are real & even

ullet x(t) is real & odd $\Rightarrow \{a_k\}$ are purely imaginary & odd $\Rightarrow a_k^* = -a_k$

Properties of CT Fourier Series

Feng-Li Lian © 2015 NTUEE-SS3-FS-54

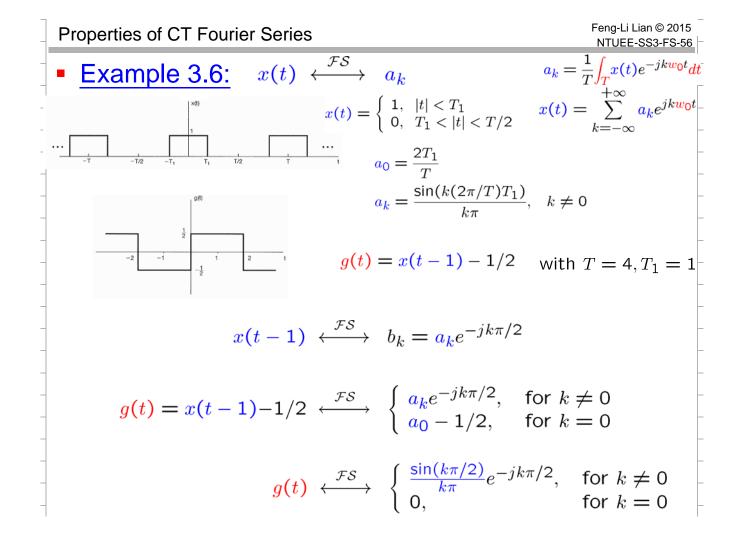
- Parseval's relation for CT periodic signals:
 - As shown in Problem 3.46:



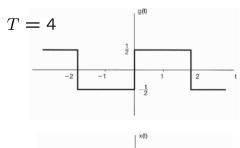
$$\frac{1}{T} \int_{T} \left| x(t) \right|^{2} \frac{dt}{dt} = \sum_{k=-\infty}^{+\infty} \left| a_{k} \right|^{2}$$

 Parseval's relation states that the total average power in a periodic signal equals the sum of the average powers in all of its harmonic components

	Property	Section	Periodic Signal	Fourier Series Coefficients	E-SS3-FS
Time Shifting 3.5.2 $x(t-t_0)$ $a_k e^{-jk\omega_0 t_0} = a_k e^{-jk(2\pi t/T) k_0}$ a_{k-M} a_{k-M} a_{k-M} a_{k-M} a_{k-M} Time Reversal 3.5.3 $x(-t)$ a_{k-M} a_{k-M} a_{k-M} a_{k-M} a_{k-M} a_{k-M} a_{k-M} a_{k-M} a_{k-M} Time Scaling 3.5.4 $x(\alpha t), \alpha > 0$ (periodic with period T/α) a_k Periodic Convolution					
Time Shifting 3.5.2 $x(t-t_0)$ $a_k e^{-jk\omega_0 t_0} = a_k e^{-jk(2\pi t/T) k_0}$ a_{k-M} a_{k-M} a_{k-M} a_{k-M} a_{k-M} Time Reversal 3.5.3 $x(-t)$ a_{k-M} a_{k-M} a_{k-M} a_{k-M} a_{k-M} a_{k-M} a_{k-M} a_{k-M} a_{k-M} Time Scaling 3.5.4 $x(\alpha t), \alpha > 0$ (periodic with period T/α) a_k Periodic Convolution	T in a suite.	251	A v(t) + P(v(t)	$\Delta a_i + Rb_i$	
Frequency Shifting $e^{jM\omega_0 t} = e^{jM\Omega_0 t T^{\gamma} t} x(t) \qquad a_{k-M}$ Conjugation 3.5.6 $x^*(t)$ a_{-k}^2 Time Reversal 3.5.3 $x(-t)$ a_{-k} Time Scaling 3.5.4 $x(\alpha t), \alpha > 0$ (periodic with period T/α) a_k Periodic Convolution $\int_T x(\tau)y(t-\tau)d\tau \qquad Ta_kb_k$ Multiplication 3.5.5 $x(t)y(t)$ $\sum_{l=-\infty}^{+\infty} a_lb_{k-l}$ Differentiation $\int_{-\infty}^t x(t) dt \qquad f(\text{finite valued and periodic only if } a_0 = 0)$ $\int_{-\infty}^t x(t) dt \qquad f(\text{finite valued and periodic only if } a_0 = 0)$ $\int_{-\infty}^t x(t) dt \qquad f(\text{finite valued and periodic only if } a_0 = 0)$ $\int_{-\infty}^t x(t) dt \qquad f(\text{finite valued and periodic only if } a_0 = 0)$ $\int_{-\infty}^t x(t) dt \qquad f(\text{finite valued and periodic only if } a_0 = 0)$ $\int_{-\infty}^t x(t) dt \qquad f(\text{finite valued and periodic only if } a_0 = 0)$ $\int_{-\infty}^t x(t) dt \qquad f(\text{finite valued and periodic only if } a_0 = 0)$ $\int_{-\infty}^t x(t) dt \qquad f(\text{finite valued and periodic only if } a_0 = 0)$ $\int_{-\infty}^t x(t) dt \qquad f(\text{finite valued and periodic only if } a_0 = 0)$ $\int_{-\infty}^t x(t) dt \qquad f(\text{finite valued and periodic only if } a_0 = 0)$ $\int_{-\infty}^t x(t) dt \qquad f(\text{finite valued and periodic only if } a_0 = 0)$ $\int_{-\infty}^t x(t) dt \qquad f(\text{finite valued and periodic only if } a_0 = 0)$ $\int_{-\infty}^t x(t) dt \qquad f(\text{finite valued and periodic only if } a_0 = 0)$ $\int_{-\infty}^t x(t) dt \qquad f(\text{finite valued and periodic only if } a_0 = 0)$ $\int_{-\infty}^t x(t) dt \qquad f(\text{finite valued and periodic only if } a_0 = 0$ $\int_{-\infty}^t x(t) dt \qquad f(\text{finite valued and periodic only if } a_0 = 0$ $\int_{-\infty}^t x(t) dt \qquad f(\text{finite valued and periodic only if } a_0 = 0$ $\int_{-\infty}^t x(t) dt \qquad f(\text{finite valued and periodic only if } a_0 = 0$ $\int_{-\infty}^t x(t) dt \qquad f(\text{finite valued and periodic only if } a_0 = 0$ $\int_{-\infty}^t x(t) dt \qquad f(\text{finite valued and periodic only if } a_0 = 0$ $\int_{-\infty}^t x(t) dt \qquad f(\text{finite valued and periodic only if } a_0 = 0$ $\int_{-\infty}^t x(t) dt \qquad f(\text{finite valued and periodic only if } a_0 = 0$ $\int_{-\infty}^t x(t) dt \qquad f(\text{finite valued and periodic only if } a_0 = 0$ $\int_{-\infty}^t x(t) dt \qquad f(\text{finite valued and periodic only if } a_0 = 0$ $\int_{-\infty}^t $				$a_1 e^{-jk\omega_0 t_0} = a_1 e^{-jk(2\pi/T)t_0}$	
Conjugation 3.5.6 $x'(t)$ a_{-k}^{\dagger} a_{-k} Time Reversal 3.5.3 $x(-t)$ a_{-k} Time Scaling 3.5.4 $x(\alpha t), \alpha > 0$ (periodic with period T/α) a_k Periodic Convolution		3.3.2	$a^{jM\omega_0 t} = a^{jM(2\pi/T)t} y(t)$		
Time Reversal 3.5.3 $x(-t)$ a_{-k} Time Scaling 3.5.4 $x(\alpha t), \alpha > 0$ (periodic with period T/α) a_{-k} Periodic Convolution		356			
Time Scaling 3.5.4 $x(\alpha t), \alpha > 0$ (periodic with period T/α) a_k Periodic Convolution $ \int_T x(\tau)y(t-\tau)d\tau \qquad Ta_kb_k $ Multiplication 3.5.5 $x(t)y(t)$ $ \sum_{l=-\infty}^{+\infty} a_lb_{k-l} $ Differentiation $ \int_{-\infty}^t x(t)dt \qquad jk\omega_0a_k = jk\frac{2\pi}{T}a_k $ Integration $ \int_{-\infty}^t x(t)dt \qquad jk\omega_0a_k = jk\frac{2\pi}{T}a_k $ $ \int_{-\infty}^t x(t)dt \qquad jk\omega_0a_k = jk\omega_0a_k = jk\omega_0a_k $ $ \int_{-\infty}^t x(t)dt \qquad jk\omega_0a_k = jk\omega_0a$			* /		
Periodic Convolution $\int_{T} x(\tau)y(t-\tau)d\tau \qquad Ta_{k}b_{k}$ Multiplication $3.5.5 \qquad x(t)y(t) \qquad \sum_{l=-\infty}^{+\infty} a_{l}b_{k-l}$ Differentiation $\int_{-\infty}^{t} x(t) dt \qquad jk\omega_{0}a_{k} = jk\frac{2\pi}{T}a_{k}$ Integration $\int_{-\infty}^{t} x(t) dt \qquad periodic only if a_{0} = 0) \qquad \left(\frac{1}{jk\omega_{0}}\right)a_{k} = \left(\frac{1}{jk(2\pi/T)}\right)a_{k}$ Conjugate Symmetry for Real Signals $x(t) \text{ real} \qquad \begin{cases} a_{k} = a_{-k}^{*} \\ \Re e\{a_{k}\} = \Re e\{a_{-k}\} \\ \Re a_{k} = -\Im a_{-k} \end{cases}$ Real and Even Signals $3.5.6 \qquad x(t) \text{ real and even} \qquad a_{k} \text{ real and even} $ Real and Odd Signals $x(t) \text{ real and odd} \qquad a_{k} \text{ purely imaginary and odd} $ Even-Odd Decomposition of Real Signals $x_{0}(t) = \Re \{x(t)\} [x(t) \text{ real}] \qquad \Re \{a_{k}\} $				-	
Multiplication 3.5.5 $x(t)y(t)$ $\sum_{l=-\infty}^{+\infty} a_l b_{k-l}$ Differentiation $\frac{dx(t)}{dt} \qquad jk\omega_0 a_k = jk\frac{2\pi}{T}a_k$ Integration $\int_{-\infty}^t x(t) dt \text{ (finite valued and periodic only if } a_0 = 0)$ $\begin{bmatrix} a_k = a_{-k}^* \\ \Re e\{a_k\} = \Re e\{a_{-k}\} \\ \Im e\{a_k\} = -\Im e\{a_{-k}\} \\ a_k = a_{-k} \\ a_k = a_{-k} \\ a_k = -4 a_{-k} \\ a_k = 2 e^{-k} e\{a_{-k}\} \\ a_k = a_{-k} \\ a_{-k} = a_{-k} $	Time Scaning	3.5.4	s(ar), a > 0 (periodic with period 17a)	CC _K	
Multiplication 3.5.5 $x(t)y(t)$ $\sum_{l=-\infty}^{+\infty} a_l b_{k-l}$ Differentiation $\frac{dx(t)}{dt} \qquad jk\omega_0 a_k = jk\frac{2\pi}{T}a_k$ Integration $\int_{-\infty}^t x(t) dt \text{ (finite valued and periodic only if } a_0 = 0)$ $\begin{bmatrix} a_k = a_{-k}^* \\ \Re e\{a_k\} = \Re e\{a_{-k}\} \\ \Im e\{a_k\} = -\Im e\{a_{-k}\} \\ a_k = a_{-k} \\ a_k = a_{-k} \\ a_k = -4 a_{-k} \\ a_k = 2 e^{-k} e\{a_{-k}\} \\ a_k = a_{-k} \\ a_{-k} = a_{-k} $	Periodic Convolution		$x(\tau)y(t-\tau)d\tau$	Ta_kb_k	
Differentiation $\frac{dx(t)}{dt} \qquad jk\omega_0 a_k = jk\frac{2\pi}{T}a_k$ Integration $\int_{-\infty}^t x(t)dt \text{ (finite valued and periodic only if } a_0 = 0)$ $\begin{cases} a_k = a_{-k}^* \\ \Re e\{a_k\} = \Re e\{a_{-k}\} \end{cases}$ Conjugate Symmetry for Real Signals $\begin{cases} a_k = a_{-k}^* \\ \Re e\{a_k\} = -\Im e\{a_{-k}\} \end{cases}$ Real and Even Signals $\begin{cases} x(t) \text{ real and even} \\ x(t) \text{ real and odd} \end{cases}$ Real and Odd Signals $\begin{cases} x(t) \text{ real and even} \\ x(t) \text{ real and odd} \end{cases}$ Even-Odd Decomposition of Real Signals $\begin{cases} x_e(t) = \$v\{x(t)\} \\ x_o(t) = \Im e\{x(t)\} \end{cases} \begin{cases} x(t) \text{ real} \end{cases}$ $\begin{cases} x_e(t) = \$v\{x(t)\} \\ x_o(t) = \Im e\{x(t)\} \end{cases} \begin{cases} x(t) \text{ real} \end{cases}$ $\begin{cases} x_e(t) = \$v\{x(t)\} \end{cases} \begin{cases} x(t) \text{ real} \end{cases}$ $\begin{cases} x_e(t) = \$v\{x(t)\} \end{cases} \begin{cases} x(t) \text{ real} \end{cases}$			J_T		
Differentiation $\frac{dx(t)}{dt} \qquad jk\omega_0 a_k = jk\frac{2\pi}{T}a_k$ Integration $\int_{-\infty}^t x(t)dt {\rm (finite \ valued \ and \ periodic \ only \ if \ a_0 = 0)} \qquad \left(\frac{1}{jk\omega_0}\right) a_k = \left(\frac{1}{jk(2\pi/T)}\right) a_k$ Conjugate Symmetry for Real Signals $x(t) {\rm real} \qquad \qquad \begin{cases} a_k = a_{-k}^* \\ \Re e\{a_k\} = \Re e\{a_{-k}\} \\ \Im e\{a_k\} = -\Im e\{a_{-k}\} \\ a_k = a_{-k} \\ a_k = a_{-k} \\ a_k = -4 - 4 - 4 - 4 - 4 - 4 - 4 - 4 - 4 - $			(2.4)	+	
Differentiation $\frac{dx(t)}{dt} \qquad jk\omega_0 a_k = jk\frac{2\pi}{T}a_k$ Integration $\int_{-\infty}^t x(t)dt \text{ (finite valued and periodic only if } a_0 = 0)$ $\begin{cases} a_k = a_{-k}^* \\ \Re e\{a_k\} = \Re e\{a_{-k}\} \end{cases}$ Conjugate Symmetry for Real Signals $\begin{cases} a_k = a_{-k}^* \\ \Re e\{a_k\} = -\Im e\{a_{-k}\} \end{cases}$ Real and Even Signals $\begin{cases} x(t) \text{ real and even} \\ x(t) \text{ real and odd} \end{cases}$ Real and Odd Signals $\begin{cases} x(t) \text{ real and even} \\ x(t) \text{ real and odd} \end{cases}$ Even-Odd Decomposition of Real Signals $\begin{cases} x_e(t) = \$v\{x(t)\} \\ x_o(t) = \Im e\{x(t)\} \end{cases} \begin{cases} x(t) \text{ real} \end{cases}$ $\begin{cases} x_e(t) = \$v\{x(t)\} \\ x_o(t) = \Im e\{x(t)\} \end{cases} \begin{cases} x(t) \text{ real} \end{cases}$ $\begin{cases} x_e(t) = \$v\{x(t)\} \end{cases} \begin{cases} x(t) \text{ real} \end{cases}$ $\begin{cases} x_e(t) = \$v\{x(t)\} \end{cases} \begin{cases} x(t) \text{ real} \end{cases}$	Multiplication	3.5.5	x(t)y(t)	$\sum_{l=-\infty}^{\infty} a_l b_{k-l}$	
Integration $\int_{-\infty}^{t} x(t) dt \frac{\text{(finite valued and periodic only if } a_0 = 0)}{\int_{-\infty}^{t} x(t) dt} \frac{1}{\text{periodic only if } a_0 = 0}$ $\begin{cases} a_k = a_{-k}^* \\ \Re e_k a_k \} = \Re e_k a_{-k} \end{cases}$ Conjugate Symmetry for Real Signals $\begin{cases} a_k = a_{-k}^* \\ \Re e_k a_k \} = -\Im e_k a_{-k} \end{cases}$ Real and Even Signals $\begin{cases} 3.5.6 \\ x(t) \text{ real and even} \end{cases}$ Real and Odd Signals $\begin{cases} 3.5.6 \\ x(t) \text{ real and odd} \end{cases}$ $\begin{cases} x_e(t) = 8v\{x(t)\} \\ x_o(t) = 0d\{x(t)\} \end{cases} \begin{bmatrix} x(t) \text{ real} \end{bmatrix}$ $\begin{cases} \Re e_k a_k \} = -\Im e_k a_{-k} \end{cases}$ Real and even $\begin{cases} a_k = a_{-k}^* \\ \Re e_k a_k \} = -\Im e_k a_{-k} \end{cases}$ Real and Odd Signals $\begin{cases} x_e(t) = 8v\{x(t)\} \\ x_o(t) = 0d\{x(t)\} \end{cases} \begin{bmatrix} x(t) \text{ real} \end{bmatrix}$ $\begin{cases} \Re e_k a_k \} = -\Im e_k a_{-k} \end{cases}$ $\begin{cases} \pi_k = a_{-k}^* \\ \Re e_k a_k \} = -\Im e_k a_{-k} \end{cases}$ $\begin{cases} \pi_k = a_{-k}^* \\ \Re e_k a_k \} = -\Im e_k a_{-k} \end{cases}$ $\begin{cases} \pi_k = a_{-k}^* \\ \Re e_k a_k \} = -\Im e_k a_{-k} \end{cases}$ $\begin{cases} \pi_k = a_{-k}^* \\ \Re e_k a_k \} = -\Im e_k a_{-k} \end{cases}$ $\begin{cases} \pi_k = a_{-k}^* \\ \Re e_k a_k \} = -\Im e_k a_{-k} \end{cases}$ $\begin{cases} \pi_k = a_{-k}^* \\ \Re e_k a_k \} = -\Im e_k a_{-k} \end{cases}$ $\begin{cases} \pi_k = a_{-k}^* \\ \Re e_k a_k \} = -\Im e_k a_{-k} \end{cases}$ $\begin{cases} \pi_k = a_{-k}^* \\ \Re e_k a_k \} = -\Im e_k a_{-k} \end{cases}$ $\begin{cases} \pi_k = a_{-k}^* \\ \Re e_k a_k \} = -\Im e_k a_{-k} \end{cases}$ $\begin{cases} \pi_k = a_{-k}^* \\ \Re e_k a_k \} = -\Im e_k a_{-k} \end{cases}$ $\begin{cases} \pi_k = a_{-k}^* \\ \Re e_k a_k \} = -\Im e_k a_{-k} \end{cases}$ $\begin{cases} \pi_k = a_{-k}^* \\ \Re e_k a_k \} = -\Im e_k a_{-k} \end{cases}$ $\begin{cases} \pi_k = a_{-k}^* \\ \Re e_k a_k \} = -\Im e_k a_{-k} \end{cases}$ $\begin{cases} \pi_k = a_{-k}^* \\ \Re e_k a_k \} = -\Im e_k a_{-k} \end{cases}$ $\begin{cases} \pi_k = a_{-k}^* \\ \Re e_k a_k \} = -\Im e_k a_{-k} \end{cases}$ $\begin{cases} \pi_k = a_{-k}^* \\ \Re e_k a_k \} = -\Im e_k a_{-k} \end{cases}$ $\begin{cases} \pi_k = a_{-k}^* \\ \Re e_k a_k \} = -\Im e_k a_{-k} \end{cases}$ $\begin{cases} \pi_k = a_{-k}^* \\ \Re e_k a_k \} = -\Im e_k a_{-k} \end{cases}$ $\begin{cases} \pi_k = a_{-k}^* \\ \Re e_k a_k \} = -\Im e_k a_{-k} \end{cases}$ $\begin{cases} \pi_k = a_{-k}^* \\ \Re e_k a_k \} = -\Im e_k a_{-k} \end{cases}$ $\begin{cases} \pi_k = a_{-k}^* \\ \Re e_k a_k \} = -\Im e_k a_{-k} \end{cases}$ $\begin{cases} \pi_k = a_{-k}^* \\ \Re e_k a_k \} = -\Im e_k a_{-k} \end{cases}$ $\begin{cases} \pi_k = a_{-k}^* \\ \Re e_k a_{-k} \} = -\Im e_k a_{-k} \end{cases}$ $\begin{cases} \pi_k = a_{-k}^* \\ \Re e_k a_{-k} \} = -\Im e_k a_{-k} \end{cases}$ $\begin{cases} \pi_k = a_{-k}^* \\ \Re e_k a_{-k} \} = -\Im e_k a_{-k} \end{cases}$ $\begin{cases} \pi_k = a_{-k}^* \\ \Re e_k a_{-k} \} = -\Im e_k a_{-k} \end{cases}$ $\begin{cases} \pi_k = a_{-k}^* \\ \Re e_k a_{-k} \} =$			1.40		
Integration $\int_{-\infty}^{t} x(t) dt \frac{\text{(finite valued and periodic only if } a_0 = 0)}{\int_{-\infty}^{t} x(t) dt} \frac{1}{\text{periodic only if } a_0 = 0}$ $\begin{cases} a_k = a_{-k}^* \\ \Re e_k a_k \} = \Re e_k a_{-k} \end{cases}$ Conjugate Symmetry for Real Signals $\begin{cases} a_k = a_{-k}^* \\ \Re e_k a_k \} = -\Im e_k a_{-k} \end{cases}$ Real and Even Signals $\begin{cases} 3.5.6 \\ x(t) \text{ real and even} \end{cases}$ Real and Odd Signals $\begin{cases} 3.5.6 \\ x(t) \text{ real and odd} \end{cases}$ $\begin{cases} x_e(t) = 8v\{x(t)\} \\ x_o(t) = 0d\{x(t)\} \end{cases} \begin{bmatrix} x(t) \text{ real} \end{bmatrix}$ $\begin{cases} \Re e_k a_k \} = -\Im e_k a_{-k} \end{cases}$ Real and even $\begin{cases} a_k = a_{-k}^* \\ \Re e_k a_k \} = -\Im e_k a_{-k} \end{cases}$ Real and Odd Signals $\begin{cases} x_e(t) = 8v\{x(t)\} \\ x_o(t) = 0d\{x(t)\} \end{cases} \begin{bmatrix} x(t) \text{ real} \end{bmatrix}$ $\begin{cases} \Re e_k a_k \} = -\Im e_k a_{-k} \end{cases}$ $\begin{cases} \pi_k = a_{-k}^* \\ \Re e_k a_k \} = -\Im e_k a_{-k} \end{cases}$ $\begin{cases} \pi_k = a_{-k}^* \\ \Re e_k a_k \} = -\Im e_k a_{-k} \end{cases}$ $\begin{cases} \pi_k = a_{-k}^* \\ \Re e_k a_k \} = -\Im e_k a_{-k} \end{cases}$ $\begin{cases} \pi_k = a_{-k}^* \\ \Re e_k a_k \} = -\Im e_k a_{-k} \end{cases}$ $\begin{cases} \pi_k = a_{-k}^* \\ \Re e_k a_k \} = -\Im e_k a_{-k} \end{cases}$ $\begin{cases} \pi_k = a_{-k}^* \\ \Re e_k a_k \} = -\Im e_k a_{-k} \end{cases}$ $\begin{cases} \pi_k = a_{-k}^* \\ \Re e_k a_k \} = -\Im e_k a_{-k} \end{cases}$ $\begin{cases} \pi_k = a_{-k}^* \\ \Re e_k a_k \} = -\Im e_k a_{-k} \end{cases}$ $\begin{cases} \pi_k = a_{-k}^* \\ \Re e_k a_k \} = -\Im e_k a_{-k} \end{cases}$ $\begin{cases} \pi_k = a_{-k}^* \\ \Re e_k a_k \} = -\Im e_k a_{-k} \end{cases}$ $\begin{cases} \pi_k = a_{-k}^* \\ \Re e_k a_k \} = -\Im e_k a_{-k} \end{cases}$ $\begin{cases} \pi_k = a_{-k}^* \\ \Re e_k a_k \} = -\Im e_k a_{-k} \end{cases}$ $\begin{cases} \pi_k = a_{-k}^* \\ \Re e_k a_k \} = -\Im e_k a_{-k} \end{cases}$ $\begin{cases} \pi_k = a_{-k}^* \\ \Re e_k a_k \} = -\Im e_k a_{-k} \end{cases}$ $\begin{cases} \pi_k = a_{-k}^* \\ \Re e_k a_k \} = -\Im e_k a_{-k} \end{cases}$ $\begin{cases} \pi_k = a_{-k}^* \\ \Re e_k a_k \} = -\Im e_k a_{-k} \end{cases}$ $\begin{cases} \pi_k = a_{-k}^* \\ \Re e_k a_k \} = -\Im e_k a_{-k} \end{cases}$ $\begin{cases} \pi_k = a_{-k}^* \\ \Re e_k a_k \} = -\Im e_k a_{-k} \end{cases}$ $\begin{cases} \pi_k = a_{-k}^* \\ \Re e_k a_k \} = -\Im e_k a_{-k} \end{cases}$ $\begin{cases} \pi_k = a_{-k}^* \\ \Re e_k a_k \} = -\Im e_k a_{-k} \end{cases}$ $\begin{cases} \pi_k = a_{-k}^* \\ \Re e_k a_k \} = -\Im e_k a_{-k} \end{cases}$ $\begin{cases} \pi_k = a_{-k}^* \\ \Re e_k a_k \} = -\Im e_k a_{-k} \end{cases}$ $\begin{cases} \pi_k = a_{-k}^* \\ \Re e_k a_{-k} \} = -\Im e_k a_{-k} \end{cases}$ $\begin{cases} \pi_k = a_{-k}^* \\ \Re e_k a_{-k} \} = -\Im e_k a_{-k} \end{cases}$ $\begin{cases} \pi_k = a_{-k}^* \\ \Re e_k a_{-k} \} = -\Im e_k a_{-k} \end{cases}$ $\begin{cases} \pi_k = a_{-k}^* \\ \Re e_k a_{-k} \} = -\Im e_k a_{-k} \end{cases}$ $\begin{cases} \pi_k = a_{-k}^* \\ \Re e_k a_{-k} \} =$	Differentiation		$\frac{dx(t)}{dt}$	$jk\omega_0 a_k = jk \frac{2\pi}{T} a_k$	
Conjugate Symmetry for Real Signals 3.5.6 $x(t)$ real $\begin{cases} a_k = a_{-k}^* \\ \Re \{a_k\} = \Re \{a_{-k}\} \\ \Im \{a_k\} = -\Im \{a_{-k}\} \\ a_k = a_{-k} \\ a_k = a_{-k} \end{cases}$ Real and Even Signals 3.5.6 $x(t)$ real and even a_k real and even Real and Odd Signals 3.5.6 $x(t)$ real and odd a_k purely imaginary and odd Even-Odd Decomposition of Real Signals $\begin{cases} x_e(t) = \$ \{a_k\} \} \\ x_o(t) = \Im \{a_k\} \end{cases}$			***	*	
Conjugate Symmetry for Real Signals 3.5.6 $x(t)$ real $\begin{cases} a_k = a_{-k}^* \\ \Re \{a_k\} = \Re \{a_{-k}\} \\ \Im \{a_k\} = -\Im \{a_{-k}\} \\ a_k = a_{-k} \\ a_k = a_{-k} \end{cases}$ Real and Even Signals 3.5.6 $x(t)$ real and even a_k real and even Real and Odd Signals 3.5.6 $x(t)$ real and odd a_k purely imaginary and odd Even-Odd Decomposition of Real Signals $\begin{cases} x_e(t) = \$ \{a_k\} \} \\ x_o(t) = \Im \{a_k\} \end{cases}$	Integration		$\int_{-\infty}^{t} r(t) dt$ (finite valued and	$\left(\frac{1}{a_k}\right)a_k = \left(\frac{1}{a_k}\right)a_k$	
Conjugate Symmetry for Real Signals $x(t)$ real $\begin{cases} \Re e\{a_k\} = \Re e\{a_{-k}\} \\ \Im m\{a_k\} = -\Im m\{a_{-k}\} \\ a_k = a_{-k} \\ a_k = a_{-k} \end{cases}$ Real and Even Signals $3.5.6$ $x(t)$ real and even $x(t)$ real and odd $x(t)$ real and odd $x(t)$ real and odd $x(t)$ real and odd $x(t)$ real $x(t)$ re	integration		$\int_{-\infty}^{\infty} A(t) dt$ periodic only if $a_0 = 0$)	$\left(jk\omega_0\right)^{\alpha_k} \left(jk(2\pi/T)\right)^{\alpha_k}$	
Conjugate Symmetry for Real Signals $x(t)$ real $\begin{cases} \Re e\{a_k\} = \Re e\{a_{-k}\} \\ \Im m\{a_k\} = -\Im m\{a_{-k}\} \\ a_k = a_{-k} \\ a_k = a_{-k} \end{cases}$ Real and Even Signals $3.5.6$ $x(t)$ real and even $x(t)$ real and odd $x(t)$ real and odd $x(t)$ real and odd $x(t)$ real and odd $x(t)$ real $x(t)$ re				$a_k = a^*$	
Conjugate Symmetry for Real Signals 3.5.6 $x(t)$ real $\begin{cases} g_{mk}(a_k) = -g_m(a_{-k}) \\ a_k = a_{-k} \\ 4a_k = -4a_{-k} \end{cases}$ Real and Even Signals 3.5.6 $x(t)$ real and even $x(t)$ real and odd $x(t)$ real $x(t)$					
Real Signals $\begin{vmatrix} a_k = a_{-k} \\ \forall a_k = - \not \in a_{-k} \end{vmatrix}$ Real and Even Signals 3.5.6 $x(t)$ real and even $\begin{cases} a_k \text{ real and even} \\ a_k \text{ real and even} \end{cases}$ Real and Odd Signals 3.5.6 $x(t)$ real and odd $\begin{cases} x_c(t) = \mathcal{E}\nu\{x(t)\} \\ x_o(t) = \mathcal{O}d\{x(t)\} \end{cases}$ $\begin{cases} x_c(t) \text{ real} \end{cases}$			()		
Real and Even Signals 3.5.6 $x(t)$ real and even a_k real and even a_k real and even Real and Odd Signals 3.5.6 $x(t)$ real and odd a_k purely imaginary and odd Even-Odd Decomposition of Real Signals $\begin{cases} x_c(t) = \mathcal{E}\nu\{x(t)\} & [x(t) \text{ real}] \\ x_o(t) = \mathcal{O}d\{x(t)\} & [x(t) \text{ real}] \end{cases}$ $\mathcal{H}e\{a_k\}$		3.5.6	x(t) real		
Real and Even Signals 3.5.6 $x(t)$ real and even a_k real and even Real and Odd Signals 3.5.6 $x(t)$ real and odd a_k purely imaginary and odd Even-Odd Decomposition of Real Signals $\begin{cases} x_c(t) = \mathcal{E}\nu\{x(t)\} & [x(t) \text{ real}] \\ x_o(t) = \mathcal{O}d\{x(t)\} & [x(t) \text{ real}] \end{cases}$ $\mathcal{H}e\{a_k\}$	Real Signals			$ a_k = a_{-k} $	
Real and Odd Signals 3.5.6 $x(t)$ real and odd a_k purely imaginary and odd Even-Odd Decomposition of Real Signals $\begin{cases} x_c(t) = \delta v\{x(t)\} & [x(t) \text{ real}] \\ x_o(t) = Od\{x(t)\} & [x(t) \text{ real}] \end{cases}$				$ \langle a_k = - \langle a_{-k} \rangle $	
Real and Odd Signals 3.5.6 $x(t)$ real and odd a_k purely imaginary and odd Even-Odd Decomposition of Real Signals $\begin{cases} x_c(t) = \delta v\{x(t)\} & [x(t) \text{ real}] \\ x_o(t) = Od\{x(t)\} & [x(t) \text{ real}] \end{cases}$	Real and Even Signals	3.5.6	x(t) real and even	as real and even	
Even-Odd Decomposition $\begin{cases} x_c(t) = \mathcal{E}\nu\{x(t)\} & [x(t) \text{ real}] \\ x_o(t) = \mathcal{O}d\{x(t)\} & [x(t) \text{ real}] \end{cases}$ $\Re e\{a_k\}$				The state of the s	
of Real Signals		51510			
Personal's Polation for Periodic Signals	or Roar Digitals		$\{x_0(t) = Oa\{x(t)\} [x(t) \text{ real}]$	Jone(ak)	
Parseval's Relation for Periodic Signals		P	arseval's Relation for Periodic Signals		



Example 3.7:



$$g(t) \overset{\mathcal{FS}}{\longleftrightarrow} d_k$$

$$y(t) \stackrel{\mathcal{FS}}{\longleftrightarrow} e_k$$

$$\frac{d}{dt}y(t) \stackrel{\mathcal{FS}}{\longleftrightarrow} jkw_0 e_k$$

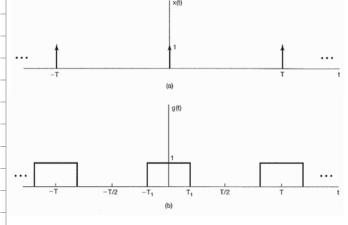
$$g(t) = \frac{d}{dt}y(t) \iff d_k = jk(\pi/2)e_k$$

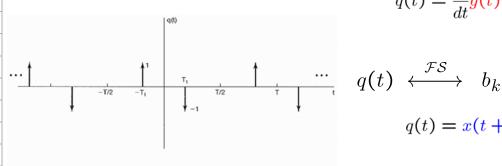
$$e_{k} = \begin{cases} \frac{2}{jk\pi} d_{k} = \frac{2\sin(\pi k/2)}{j(k\pi)^{2}} e^{-jk\pi/2}, & \text{for } k \neq 0 \\ \frac{1}{2}, & \text{for } k = 0 \end{cases}$$

Properties of CT Fourier Series

Feng-Li Lian © 2015 NTUEE-SS3-FS-58

Example 3.8:





$$a_k = \frac{1}{T} \int_T x(t) e^{-jk w_0 t} dt$$

$$x(t) \stackrel{\mathcal{FS}}{\longleftrightarrow} a_k = \frac{1}{T}$$

$$g(t) \stackrel{\mathcal{FS}}{\longleftrightarrow} c_k$$

$$q(t) = \frac{d}{dt}g(t) \iff b_k = jkw_0c_k$$

$$q(t) \stackrel{\mathcal{FS}}{\longleftrightarrow} b_k$$
$$q(t) = x(t+T_1) - x(t-T_1)$$

$$\iff b_k = e^{jkw_0T_1}a_k - e^{-jkw_0T_1}a_k$$

Example 3.8:

$$b_k = e^{jkw_0T_1}a_k - e^{-jkw_0T_1}a_k$$

$$= \frac{1}{T} \left[e^{jkw_0T_1} - e^{-jkw_0T_1} \right]$$

$$= \frac{2j\sin(kw_0T_1)}{T}$$

$$b_k = jkw_0 c_k$$

$$k \neq 0$$
 $c_k = \frac{b_k}{jkw_0} = \frac{2j\sin(kw_0T_1)}{jkw_0T} = \frac{\sin(kw_0T_1)}{k\pi}$

$$k = 0 \qquad c_0 = \frac{2T_1}{T}$$

Outline

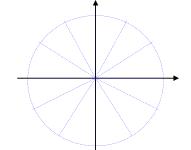
- A Historical Perspective
- The Response of LTI Systems to Complex Exponentials
- Fourier Series Representation of Continuous-Time Periodic Signals
- Convergence of the Fourier Series
- Properties of Continuous-Time Fourier Series
- Fourier Series Representation of Discrete-Time Periodic Signals
- Properties of Discrete-Time Fourier Series
- Fourier Series & LTI Systems
- Filtering & Examples of CT & DT Filters

Harmonically related complex exponentials

$$\phi_k[n] = e^{jkw_0n} = e^{jk\left(\frac{2\pi}{N}\right)n}, \qquad k = 0, \pm 1, \pm 2, \dots$$

$$\phi_{k+N}[n] = e^{j(k+N)\left(\frac{2\pi}{N}\right)n} = e^{jk\left(\frac{2\pi}{N}\right)n}e^{jN\left(\frac{2\pi}{N}\right)n}$$

$$\Rightarrow \phi_k[n] = \phi_{k+N}[n] = \cdots = \phi_{k+rN}[n]$$



The Fourier Series Representation:

$$x[n] = \sum_{k=< N>} a_k \phi_k[n] = \sum_{k=< N>} a_k e^{jkw_0 n} = \sum_{k=< N>} a_k e^{jk\left(\frac{2\pi}{N}\right)n}$$

Fourier Series Representation of DT Periodic Signals

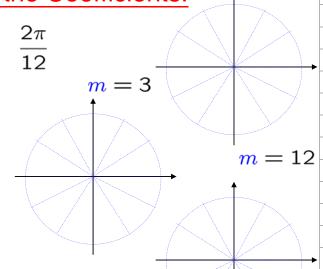
Feng-Li Lian © 2015 NTUEE-SS3-FS-62

m = 1

Procedure of Determining the Coefficients:

 $x[0] = \sum_{k=\langle N \rangle} a_k$ $x[1] = \sum_{k=\langle N \rangle} a_k e^{jk\left(\frac{2\pi}{N}\right)}$

$$x[2] = \sum_{k=\langle N \rangle} a_k e^{jk2\left(\frac{2\pi}{N}\right)}$$



$$x[N-1] = \sum_{k=\langle N\rangle} a_k e^{jk(N-1)\left(\frac{2\pi}{N}\right)}$$

$$x[N] = \sum_{k=\langle N \rangle} a_k e^{jk(N) \left(\frac{2\pi}{N}\right)}$$

and
$$\sum_{n=< N>} e^{jm\left(\frac{2\pi}{N}\right)n} = \begin{cases} N, & m=0,\pm N,\pm 2N, \dots \\ 0, & \text{otherwise} \end{cases}$$

Procedure of Determining the Coefficients:

$$x[n] = \sum_{k=\langle N \rangle} a_k e^{jk\left(\frac{2\pi}{N}\right)n}$$

$$\sum_{n=\langle N \rangle} e^{-jr\left(\frac{2\pi}{N}\right)n} \sum_{n=\langle N \rangle} e^{-jr\left(\frac{2\pi}{N}\right)n}$$

$$\sum_{n=< N>} x[n]e^{-jr\left(\frac{2\pi}{N}\right)n} = \sum_{n=< N>} \sum_{k=< N>} a_k e^{j(k-r)\left(\frac{2\pi}{N}\right)n}$$

$$\sum_{n=\langle N\rangle} x[n]e^{-jr\left(\frac{2\pi}{N}\right)n} = \sum_{k=\langle N\rangle} a_k \sum_{n=\langle N\rangle} e^{j(k-r)\left(\frac{2\pi}{N}\right)n} = a_r N$$

$$\Rightarrow a_r = \frac{1}{N} \sum_{n=< N>} x[n] e^{-jr\left(\frac{2\pi}{N}\right)n}$$

Properties of DT Fourier Series

Feng-Li Lian © 2015 NTUEE-SS3-FS-64

In Summary:

• The synthesis equation:

$$x[n] = \sum_{k=\langle N \rangle} a_k e^{jk \mathbf{w_0} n} = \sum_{k=\langle N \rangle} a_k e^{jk \left(\frac{2\pi}{N}\right) n}$$

• The analysis equation:

$$a_k = \frac{1}{N} \sum_{n=\langle N \rangle} x[n] e^{-jk w_0 n} = \frac{1}{N} \sum_{n=\langle N \rangle} x[n] e^{-jk \left(\frac{2\pi}{N}\right) n}$$

$$a_k = a_{k+N}$$

- $x[n] \stackrel{\mathcal{FS}}{\longleftrightarrow} a_k$: DT Fouries series pair
- $\{a_k\}$: the Fourier series coefficients or the spectral coefficients of x[n]

Example 3.11:

$$x[n] = 1 + \sin\left(\frac{2\pi}{N}\right)n + 3\cos\left(\frac{2\pi}{N}\right)n + \cos\left(\frac{4\pi}{N}n + \frac{\pi}{2}\right)$$

$$\Rightarrow x[n] = 1 + \frac{1}{2j} \left[e^{j\left(\frac{2\pi}{N}\right)n} - e^{-j\left(\frac{2\pi}{N}\right)n} \right] + \frac{3}{2} \left[e^{j\left(\frac{2\pi}{N}\right)n} + e^{-j\left(\frac{2\pi}{N}\right)n} \right] + \frac{1}{2} \left[e^{j\left(\frac{4\pi}{N}n + \frac{\pi}{2}\right)} + e^{-j\left(\frac{4\pi}{N}n + \frac{\pi}{2}\right)} \right]$$

$$\Rightarrow x[n] = 1 + \left(\frac{3}{2} + \frac{1}{2j}\right) e^{j\left(\frac{2\pi}{N}\right)n} + \left(\frac{3}{2} - \frac{1}{2j}\right) e^{-j\left(\frac{2\pi}{N}\right)n}$$

$$+ \frac{1}{2} e^{j(\frac{\pi}{2})} e^{j2(\frac{2\pi}{N})n} + \frac{1}{2} e^{-j(\frac{\pi}{2})} e^{-j2(\frac{2\pi}{N})n}$$

Fourier Series Representation of DT Periodic Signals

Feng-Li Lian © 2015 NTUEE-SS3-FS-66

Example 3.11:

$$\Rightarrow \begin{cases} a_0 = 1 \\ a_1 = \left(\frac{3}{2} + \frac{1}{2j}\right) = \frac{3}{2} - \frac{1}{2}j \\ a_{-1} = \left(\frac{3}{2} - \frac{1}{2j}\right) = \frac{3}{2} + \frac{1}{2}j \end{cases}$$

$$= b + jc = \sqrt{b^2 + c^2} \left[\frac{b}{\sqrt{b^2 + c^2}} + j \frac{c}{\sqrt{b^2 + c^2}} \right]$$

$$= a_2 = \frac{1}{2}j$$

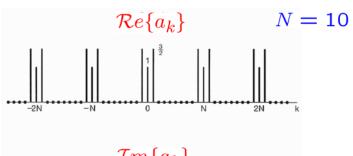
$$= a_{-2} = -\frac{1}{2}j$$

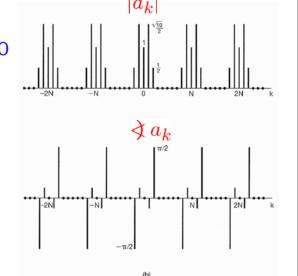
$$= a_k = 0, \text{ others in } < N >$$

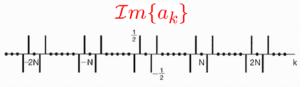
$$= a_k$$

 $a = |a| \left[\cos(3 a) + j \sin(3 a) \right]$

$$a = b + jc = \sqrt{b^2 + c^2} \left[\frac{b}{\sqrt{b^2 + c^2}} + j \frac{c}{\sqrt{b^2 + c^2}} \right]$$







Fourier Series Representation of DT Periodic Signals

Feng-Li Lian © 2015 NTUEE-SS3-FS-67

Example 3.12:
$$a_k = \frac{1}{N} \sum_{n=< N>} x[n] e^{-jk \left(\frac{2\pi}{N}\right)n}$$

$$x[n] = \left\{ egin{array}{ll} 1, & -N_1 \leq n \leq N_1 \\ 0, & ext{others in } < N > \end{array}
ight.$$

$$a_k = \frac{1}{N} \sum_{n = -N_1}^{N_1} 1 \cdot e^{-jk(\frac{2\pi}{N})n} = \frac{1}{N} \sum_{n = -N_1}^{N_1} \left(e^{-jk(\frac{2\pi}{N})} \right)^n$$

$$=\frac{1}{N}\sum_{n=-N_1}^{N_1} \left(e^{-jk\left(\frac{2\pi}{N}\right)}\right)^n$$

$$= \frac{1}{N} \left[(\cdot)^{-N_1} + (\cdot)^{-N_1+1} + \dots + (\cdot)^{N_1} \right]$$

$$=rac{1}{N}(\cdot)^{-N_1}\left[rac{1-\left(\cdot
ight)^{(2N_1+1)}}{1-\left(\cdot
ight)}
ight]\quad\left(\cdot
ight)
eq 1$$

$$=\frac{1}{N}(\cdot)^{-N_1}\left[\mathbf{1}+(\cdot)^{\mathbf{1}}+\cdots+(\cdot)^{\mathbf{2}N_1}\right]$$

• Let $m = n + N_1$ or $n = m - N_1$

$$a_k = \frac{1}{N} \sum_{m=0}^{2N_1} e^{-jk(\frac{2\pi}{N})(m-N_1)} = \frac{1}{N} e^{jk(\frac{2\pi}{N})N_1} \sum_{m=0}^{2N_1} e^{-jk(\frac{2\pi}{N})m}$$

Fourier Series Representation of DT Periodic Signals

Feng-Li Lian © 2015 NTUEE-SS3-FS-68

Example 3.12:

•
$$k = 0, \pm N, \pm 2N, ...$$

$$a_k = \frac{2N_1 + 1}{N}$$

$$1 - e^{-j\theta}$$

$$= e^{-j\frac{\theta}{2}}e^{j\frac{\theta}{2}} - e^{-j\frac{\theta}{2}}e^{-j\frac{\theta}{2}}$$

$$= e^{-j\frac{\theta}{2}}\left(e^{j\frac{\theta}{2}} - e^{-j\frac{\theta}{2}}\right)$$

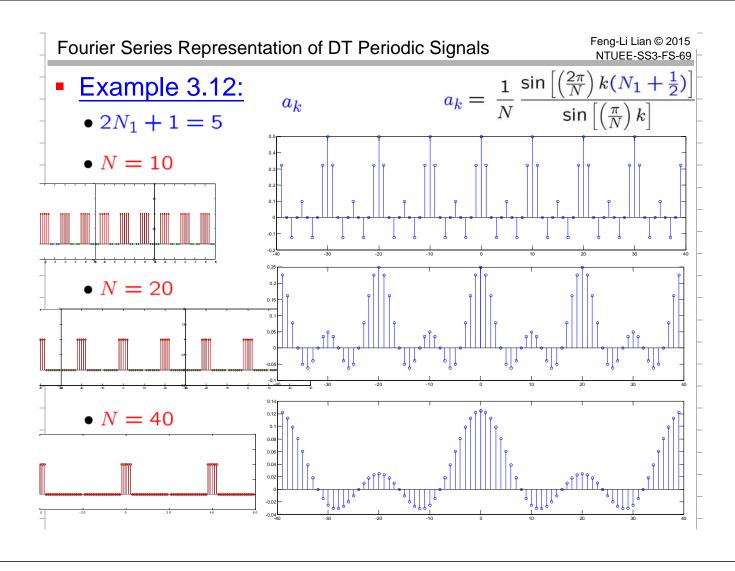
• $k \neq 0, \pm N, \pm 2N, ...$

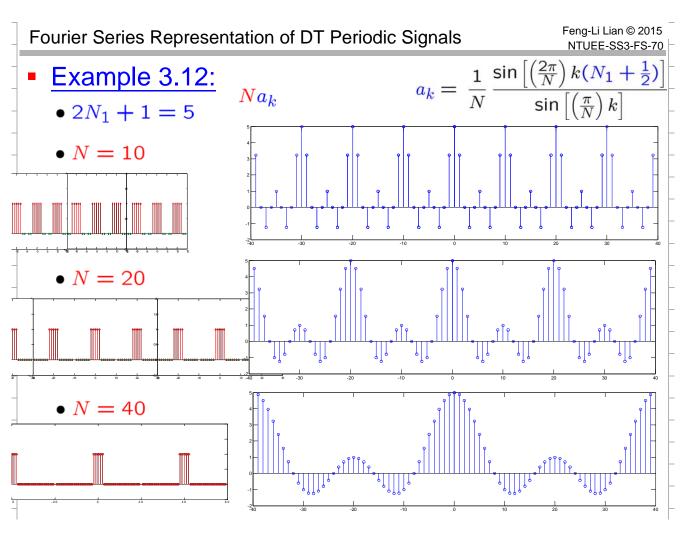
$$a_{k} = \frac{1}{N} e^{jk(\frac{2\pi}{N})N_{1}} \left(\frac{1 - e^{-jk(\frac{2\pi}{N})(2N_{1}+1)}}{1 - e^{-jk(\frac{2\pi}{N})}} \right) \qquad (N_{1} + \frac{1}{2})$$

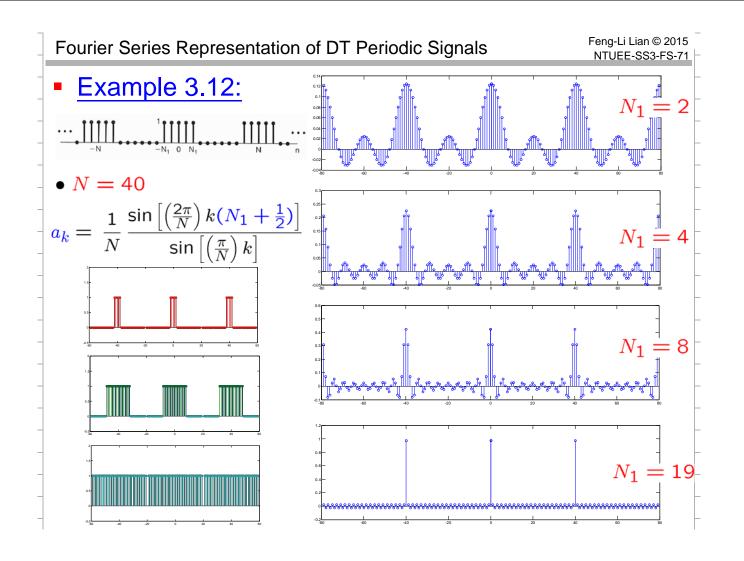
$$(\frac{1}{2})$$

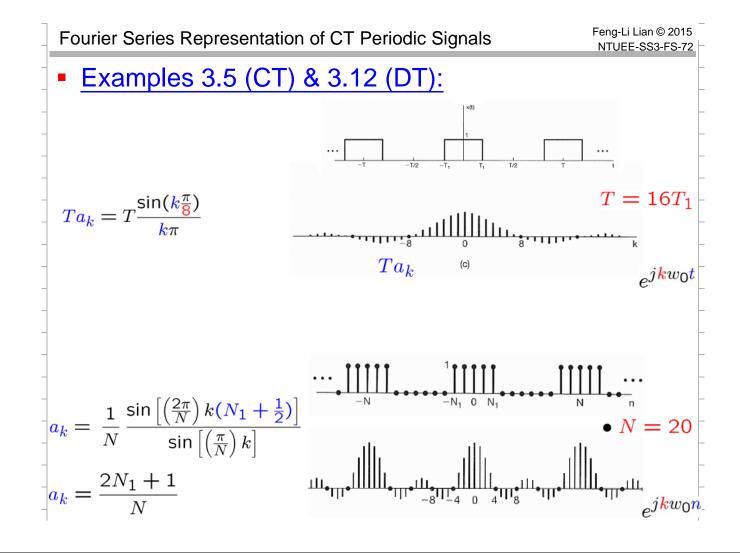
$$= \frac{1}{N} \frac{e^{-jk\left(\frac{2\pi}{2N}\right)} \left[e^{jk\left(\frac{2\pi}{2N}\right)(2N_1+1)} - e^{-jk\left(\frac{2\pi}{2N}\right)(2N_1+1)} \right]}{e^{-jk\left(\frac{2\pi}{2N}\right)} \left[e^{jk\left(\frac{2\pi}{2N}\right)} - e^{-jk\left(\frac{2\pi}{2N}\right)} \right]}$$

$$= \frac{1}{N} \frac{\sin\left[\left(\frac{2\pi}{N}\right)k(N_1 + \frac{1}{2})\right]}{\sin\left[\left(\frac{\pi}{N}\right)k\right]}$$









Feng-Li Lian © 2015 NTUEE-SS3-FS-73

Partial Sum:

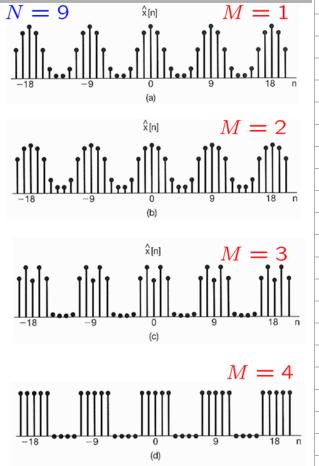
$$x[n] = \sum_{k = < N >} a_k e^{jk \left(\frac{2\pi}{N}\right)n}$$

• If N is odd

$$\widehat{x}[n] = \sum_{k=-M}^{M} a_k e^{jk\left(\frac{2\pi}{N}\right)n}$$

• If N is even

$$\widehat{x}[n] = \sum_{k=-M+1}^{M} a_k e^{jk\left(\frac{2\pi}{N}\right)n}$$



Outline

- A Historical Perspective
- The Response of LTI Systems to Complex Exponentials
- Fourier Series Representation of Continuous-Time Periodic Signals
- Convergence of the Fourier Series
- Properties of Continuous-Time Fourier Series
- Fourier Series Representation of Discrete-Time Periodic Signals
- Properties of Discrete-Time Fourier Series
- Fourier Series & LTI Systems
- Filtering & Examples of CT & DT Filters

Feng-Li Lian © 2015 NTUEE-SS3-FS-75

Outline

Section	Property Linearity	
	Time Shifting	
	Frequency Shifting	
	Conjugation	
	Time Reversal	
	Time Scaling	
	Periodic Convolution	
3.7.1	Multiplication	
3.7.2	First Difference	
	Running Sum	
	Conjugate Symmetry for Real Signals	
	Symmetry for Real and Even Signals	
	Symmetry for Real and Odd Signals	
	Even-Odd Decomposition for Real Signals	
3.7.3	Parseval's Relation for Periodic Signals	

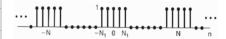
Properties of DT Fourier Series

Property	Periodic Signal	Fourier Series Coefficients
	$x[n]$ Periodic with period N and $y[n]$ fundamental frequency $\omega_0 = 2\pi/N$	$\begin{bmatrix} a_k \\ b_k \end{bmatrix}$ Periodic with
Linearity Time Shifting Frequency Shifting Conjugation Time Reversal	Ax[n] + By[n] $x[n - n_0]$ $e^{jM(2\pi iN)n}x[n]$ $x^*[n]$ x[-n]	$Aa_k + Bb_k$ $a_k e^{-jk(2\pi lN)n_0}$ a_{k-M} a^k a^k
Time Scaling	$x_{(m)}[n] = \begin{cases} x[n/m], & \text{if } n \text{ is a multiple of } m \\ 0, & \text{if } n \text{ is not a multiple of } m \end{cases}$ (periodic with period mN)	$\frac{1}{m}a_k \left(\begin{array}{c} \text{viewed as periodic} \\ \text{with period } mN \end{array} \right)$
Periodic Convolution	$\sum_{r \in \mathcal{F}} x[r]y[n-r]$	Na_kb_k
Multiplication	x[n]y[n]	$\sum_{l=\langle N\rangle} a_l b_{k-l}$
First Difference	x[n] - x[n-1]	$(1-e^{-jk(2\pi/N)})a_k$
Running Sum	$\sum_{k=-\infty}^{n} x[k] \left(\text{finite valued and periodic only} \right)$	$\left(\frac{1}{(1-e^{-jk(2\pi i/N)})}\right)a_k$
Conjugate Symmetry for Real Signals	x[n] real	$\left\{egin{array}{l} a_k = a_{-k}^* \ \Re e\{a_k\} = \Re e\{a_{-k}\} \ \Im m\{a_k\} = -\Im m\{a_{-k}\} \ a_k = a_{-k} \ orall a_k = - \sphericalangle a_{-k} \end{array} ight.$
Real and Even Signals Real and Odd Signals	x[n] real and even $x[n]$ real and odd	a_k real and even a_k purely imaginary and odd
Even-Odd Decomposition of Real Signals	$\begin{cases} x_e[n] = \mathcal{E}_{t}\{x[n]\} & [x[n] \text{ real}] \\ x_o[n] = \mathcal{O}d\{x[n]\} & [x[n] \text{ real}] \end{cases}$	$\Re\{a_k\}$ $j \Im\{a_k\}$
	Parseval's Relation for Periodic Signals	
	$\frac{1}{N} \sum_{n \in M} x[n] ^2 = \sum_{k \in M} a_k ^2$	

In Summary:

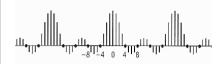
• The synthesis equation:

$$x[n] = \sum_{k=\langle N \rangle} a_k e^{jk w_0 n}$$
 $= \sum_{k=\langle N \rangle} a_k e^{jk \left(\frac{2\pi}{N}\right) n}$



• The analysis equation:

$$a_k = \frac{1}{N} \sum_{n=< N>} x[n] e^{-jkw_0 n} = \frac{1}{N} \sum_{n=< N>} x[n] e^{-jk\left(\frac{2\pi}{N}\right)n}$$



$$a_k = a_{k+N}$$

$$ullet$$
 $x[n] \overset{\mathcal{FS}}{\longleftrightarrow} a_k$: DT Fouries series pair

Properties of DT Fourier Series

Feng-Li Lian © 2015

Linearity:

$$x[\mathbf{n}] = \sum_{k=< N>} a_k e^{jkw_0\mathbf{n}}$$

• x[n], y[n]: periodic signals with period N

$$x[n] \stackrel{\mathcal{FS}}{\longleftrightarrow} a_k$$

$$y[n] \stackrel{\mathcal{FS}}{\longleftrightarrow} b_k$$

$$\Rightarrow z[n] = Ax[n] + By[n] \stackrel{\mathcal{FS}}{\longleftrightarrow} c_k = Aa_k + Bb_k$$

Time Shifting:

$$x[n] \stackrel{\mathcal{FS}}{\longleftrightarrow} a_k$$

$$\Rightarrow x[n-n_0] \stackrel{\mathcal{FS}}{\longleftrightarrow} e^{-jkw_0n_0}a_k = e^{-jk\left(\frac{2\pi}{N}\right)n_0}a_k$$

Multiplication:

• x[n], y[n]: periodic signals with period N

$$x[n] \stackrel{\mathcal{FS}}{\longleftrightarrow} a_k$$

$$x[n] = \sum_{l=\langle N \rangle} a_l e^{jlw_0 n}$$

$$y[n] \stackrel{\mathcal{FS}}{\longleftrightarrow} b_k$$

$$y[n] = \sum_{m=} b_m e^{jmw_0 n}$$

 $\Rightarrow x[n]y[n]$: also periodic with N

$$c_k = \sum_{l=-\infty}^{\infty} a_l b_{k-l}$$

$$x[n]y[n] \overset{\mathcal{FS}}{\longleftrightarrow} d_k = \sum_{l=< N>} a_l b_{k-l}$$

⇒ a periodic convolution

Add

Properties of DT Fourier Series

Feng-Li Lian © 2015 NTUEE-SS3-FS-80

First Difference:

$$x[n] = \sum_{l=} a_k e^{jkw_0 n}$$

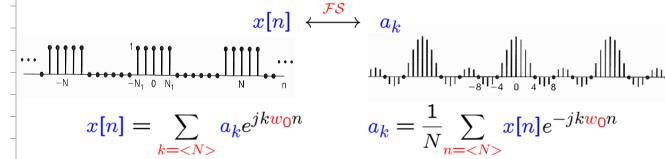
$$x[n] \stackrel{\mathcal{FS}}{\longleftrightarrow} a_k$$

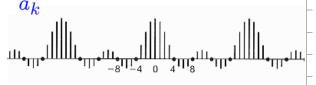
$$\Rightarrow x[n-n_0] \stackrel{\mathcal{FS}}{\longleftrightarrow} e^{-jkw_0n_0}a_k = e^{-jk\left(\frac{2\pi}{N}\right)n_0}a_k$$

$$\Rightarrow x[n-1] \stackrel{\mathcal{FS}}{\longleftrightarrow} e^{-jkw_0}a_k = e^{-jk\left(\frac{2\pi}{N}\right)}a_k$$

$$x[n] - x[n-1] \stackrel{\mathcal{FS}}{\longleftrightarrow} \left(1 - e^{-jk\left(\frac{2\pi}{N}\right)}\right) a_k$$

- Parseval's relation for DT periodic signals:
 - As shown in Problem 3.57:





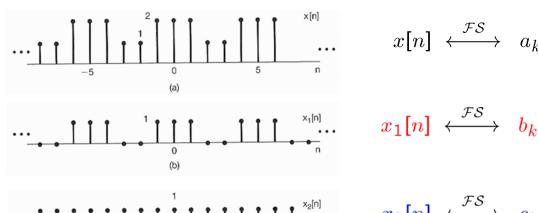
$$\frac{1}{N} \sum_{n=\langle N \rangle} \left| x[n] \right|^2 = \sum_{k=\langle N \rangle} \left| a_k \right|^2$$

Parseval's relation states that the total average power in a periodic signal equals the sum of the average powers in all of its harmonic components (only N distinct harmonic components in DT)

Properties of DT Fourier Series

Feng-Li Lian © 2015

Example 3.13:



$$a_k = \frac{1}{N} \sum_{n=\langle N \rangle} x[n] e^{-jkw_0 n}$$

$$x[n] \stackrel{\mathsf{x}[n]}{\longleftarrow} a_k$$

$$x_1[n] \stackrel{\mathcal{FS}}{\longleftrightarrow} b_k$$

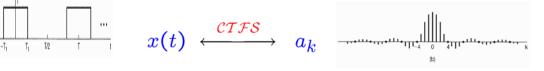
$$x_2[n] \overset{1}{\longleftrightarrow} c_k$$

$$\Rightarrow c_k = \begin{cases} 0, & \text{for } k \neq 0, \pm 5, \pm 10, \dots \Rightarrow a_k = b_k + c_k \\ 1, & \text{for } k = 0, \pm 5, \pm 10, \dots \end{cases}$$

CT & DT Fourier Series Representation:

$$x(t) = \sum_{k=-\infty}^{+\infty} a_k e^{jkw_0 t}$$

$$a_k = \frac{1}{T} \int_T x(t) e^{-jkw_0 t} dt$$



$$x[n] \xleftarrow{\mathcal{DTFS}}$$

$$x[n] = \sum_{k = < N >} a_k e^{jkw_0 n}$$

$$a_k = \frac{1}{N} \sum_{n = \langle N \rangle} x[n] e^{-jk \mathbf{w_0} n}$$

Outline

- A Historical Perspective
- The Response of LTI Systems to Complex **Exponentials**
- Fourier Series Representation of Continuous-Time Periodic Signals
- Convergence of the Fourier Series
- Properties of Continuous-Time Fourier Series
- Fourier Series Representation of Discrete-Time Periodic Signals
- Properties of Discrete-Time Fourier Series
- Fourier Series & LTI Systems
- Filtering & Examples of CT & DT Filters

The Response of an LTI System:

On pages 12-14

$$in
ightarrow egin{array}{c} ext{LTI}
ightarrow out \ & ext{DT:} & e^{st}
ightarrow H(s)e^{st} \ & ext{DT:} & z^n
ightarrow H(z)z^n \end{array}$$

$$H(s) = \int_{-\infty}^{+\infty} h(t)e^{-st}dt$$

$$\frac{H(z)}{H(z)} = \sum_{k=-\infty}^{+\infty} h[k]z^{-k}$$

⇒ the system functions

• If s = jw or $z = e^{jw}$:

$$H(jw) = \int_{-\infty}^{+\infty} h(t)e^{-jwt}dt$$

$$H(e^{jw}) = \sum_{n=-\infty}^{+\infty} h[n]e^{-jwn}$$

⇒ the frequency response

Fourier Series & LTI Systems

Feng-Li Lian © 2015 NTUEE-SS3-FS-86

In Summary:

$$a = |a|e^{j \not \star a}$$
$$H = |H|e^{j \not \star H}$$

(
$$s_i = jw_i$$
 or $z_i = e^{jw_i}$)

$$in o egin{array}{c} \mathsf{LTI} \ \mathsf{H}(\mathsf{s}/\mathsf{z}/\mathsf{w}) \end{array} o out \ \left\{ egin{array}{c} \mathsf{CT:} & e^{s_i t} \longrightarrow H(s_i) e^{s_i t} \ \\ \mathsf{DT:} & z_i^n \longrightarrow H(z_i) z_i^n \end{array}
ight.$$

$$x(t) = \sum_{k=-\infty}^{+\infty} a_k e^{jkw_0t} \qquad \longrightarrow y(t) = \sum_{k=-\infty}^{+\infty} a_k H(jkw_0) e^{jkw_0t}$$

$$x[n] = \sum_{k=< N>} a_k \ e^{jk\left(\frac{2\pi}{N}\right)n} \longrightarrow y[n] = \sum_{k=< N>} a_k \ H(e^{j\left(\frac{2\pi}{N}\right)k}) \ e^{jk\left(\frac{2\pi}{N}\right)n}$$

- A Historical Perspective
- The Response of LTI Systems to Complex Exponentials
- Fourier Series Representation of Continuous-Time Periodic Signals
- Convergence of the Fourier Series
- Properties of Continuous-Time Fourier Series
- Fourier Series Representation of Discrete-Time Periodic Signals
- Properties of Discrete-Time Fourier Series
- Fourier Series & LTI Systems
- Filtering & Examples of CT & DT Filters

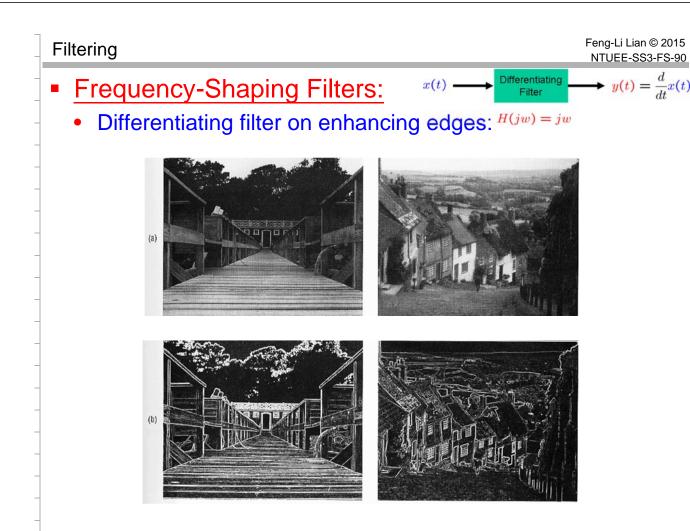
Filtering

Filtering:

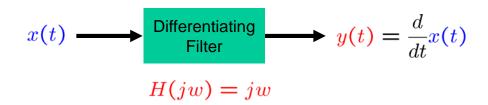
Feng-Li Lian © 2015

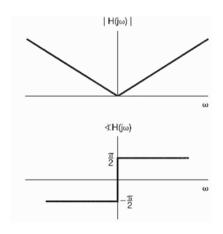
NTUEE-SS3-FS-88

- Change the relative amplitudes of the frequency components in a signal,
 - Frequency-shaping filters
- OR, significantly attenuate or eliminate some frequency components entirely
 - Frequency-selective filters



- Frequency-Shaping Filters:
 - Differentiating filter:





Filtering

Feng-Li Lian © 2015 NTUEE-SS3-FS-92

Frequency-Shaping Filters:

$$1 \pm e^{-j\theta} = e^{-j\frac{\theta}{2}} \left(e^{j\frac{\theta}{2}} \pm e^{-j\frac{\theta}{2}} \right)$$

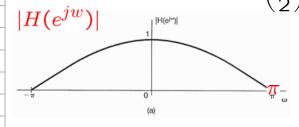
 $x[n] = H(e^{jw}) x[n]$

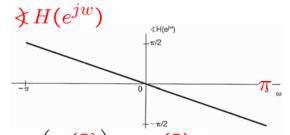
A simple DT filter: Two-point average

$$y[n] = \frac{1}{2} (x[n] + x[n-1]) =$$

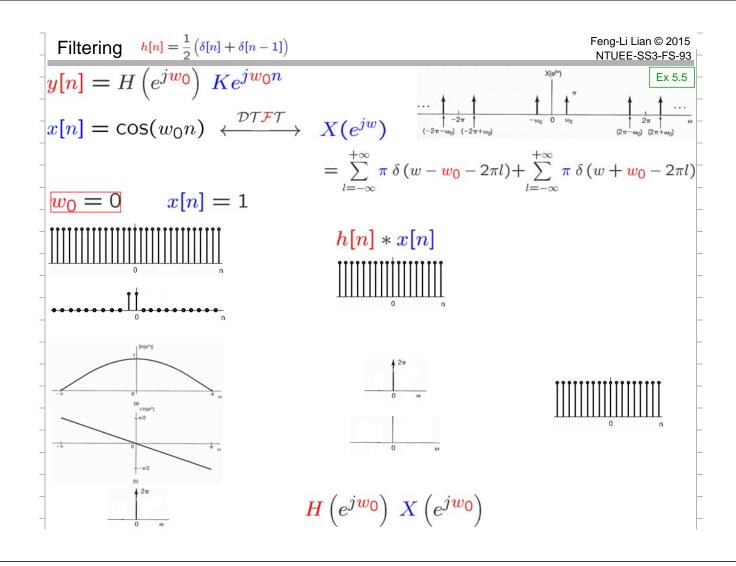
$$\Rightarrow h[n] = \frac{1}{2} (\delta[n] + \delta[n-1])$$

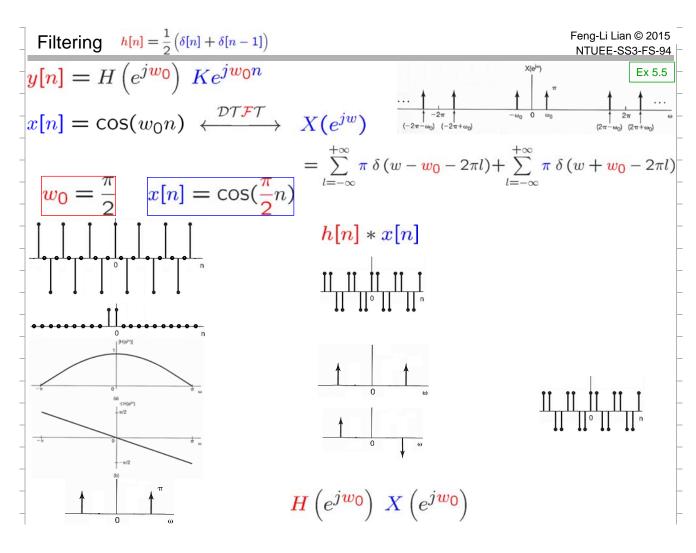
$$\Rightarrow H(e^{jw}) = \frac{1}{2} \left[1 + e^{-jw} \right] = \frac{1}{2} e^{-j(\frac{w}{2})} \left[e^{j(\frac{w}{2})} + e^{-j(\frac{w}{2})} \right]$$
$$= e^{-j(\frac{w}{2})} \cos\left(\frac{w}{2}\right)$$

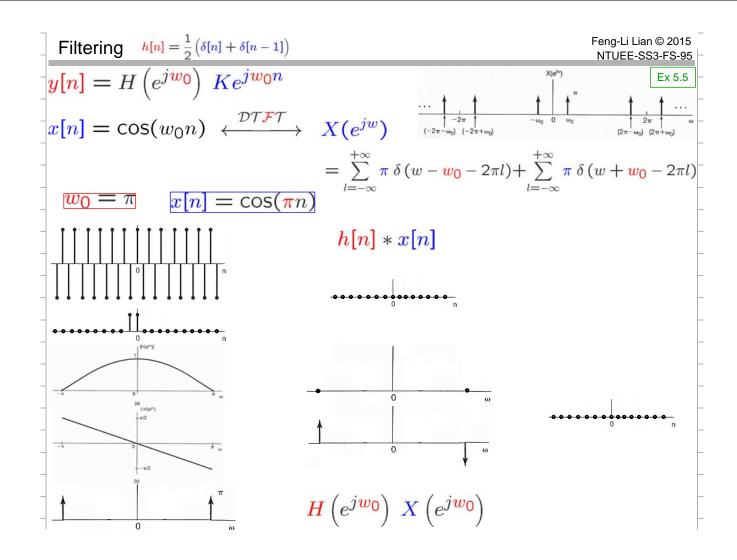




if
$$x[n] = Ke^{j(\frac{\pi}{2}) \cdot n}$$
 then $y[n] = H\left(e^{j(\frac{\pi}{2})}\right) Ke^{j(\frac{\pi}{2}) \cdot n}$





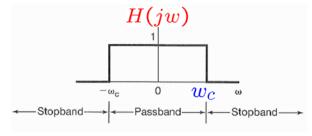


Filtering: Frequency-Selective Filters

Feng-Li Lian © 2015 NTUEE-SS3-FS-96

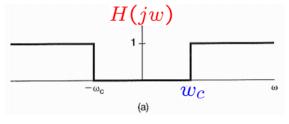
Frequency-Selective Filters:

• Select some bands of frequencies and reject others



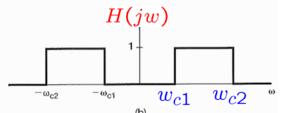
CT ideal lowpass filter

$$H(jw) = \begin{cases} 1, & |w| \le w_c \\ 0, & |w| > w_c \end{cases}$$



CT ideal highpass filter

$$H(jw) = \left\{ egin{array}{ll} 0, & |w| < w_c \ 1, & |w| \ge w_c \end{array}
ight.$$

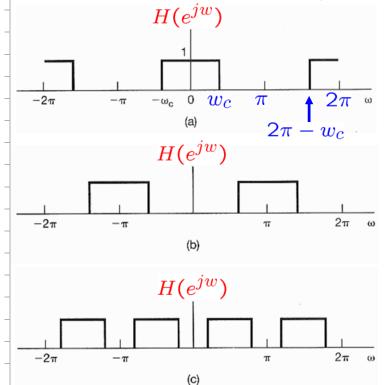


CT ideal bandpass filter

$$H(jw) = \left\{ egin{array}{ll} 1, & w_{c1} \leq |w| \leq w_{c2} \\ 0, & ext{otherwise} \end{array}
ight.$$

Frequency-Selective Filters:

Select some bands of frequencies and reject others



DT ideal lowpass filter

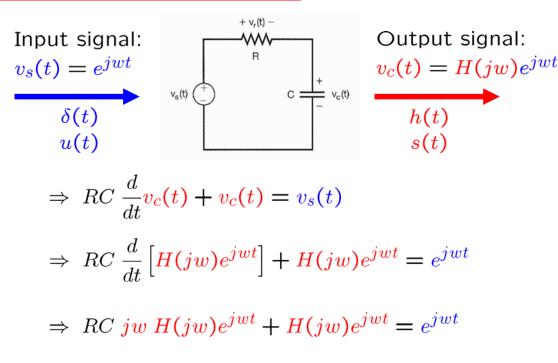
DT ideal highpass filter

DT ideal bandpass filter

Outline

- A Historical Perspective
- The Response of LTI Systems to Complex Exponentials
- Fourier Series Representation of Continuous-Time Periodic Signals
- Convergence of the Fourier Series
- Properties of Continuous-Time Fourier Series
- Fourier Series Representation of Discrete-Time Periodic Signals
- Properties of Discrete-Time Fourier Series
- Fourier Series & LTI Systems
- Filtering & Examples of CT & DT Filters

A Simple RC Lowpass Filter:



 $\Rightarrow H(jw)e^{jwt} = \frac{1}{1 + RCiw}e^{jwt}$

CT Filters by Differential Equations

Feng-Li Lian © 2015

$H(jw) = \int_{-\infty}^{+\infty} h(t)e^{-jwt}dt$ A Simple RC Lowpass Filter:

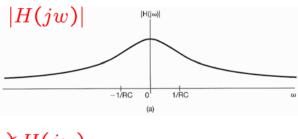
$$\Rightarrow H(jw) = \frac{1}{1 + RCjw}$$

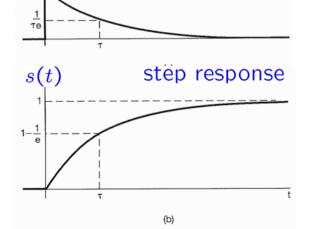
$$\Rightarrow H(jw) = \frac{1}{1 + RCjw} \qquad \Rightarrow h(t) = \frac{1}{RC} e^{-t/RC} u(t)$$

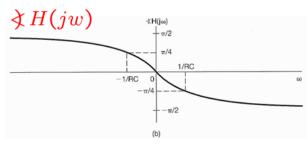
$$H = |H|e^{j \cdot H}$$

$$\Rightarrow s(t) = \left[1 - e^{-t/RC}\right] u(t)$$

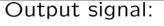
impulse response



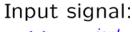




A Simple RC Highpass Filter:

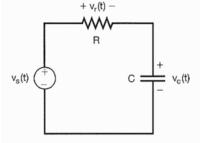


$$v_r(t) = G(jw)e^{jwt}$$



$$v_s(t) = e^{jwt}$$

$$\delta(t)$$



$$\Rightarrow RC \frac{d}{dt}v_r(t) + v_r(t) = RC \frac{d}{dt}v_s(t)$$

$$\Rightarrow RC \frac{d}{dt} \left[\frac{G(jw)e^{jwt}}{g^{jwt}} \right] + \frac{G(jw)e^{jwt}}{g^{jwt}} = RC \frac{d}{dt} e^{jwt}$$

$$\Rightarrow RC jw G(jw)e^{jwt} + G(jw)e^{jwt} = RC jw e^{jwt}$$

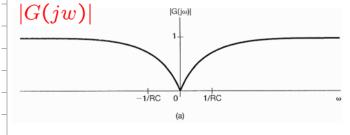
$$\Rightarrow G(jw)e^{jwt} = \frac{jw RC}{1 + jw RC}e^{jwt}$$

CT Filters by Differential Equations

Feng-Li Lian © 2015 NTUEE-SS3-FS-102

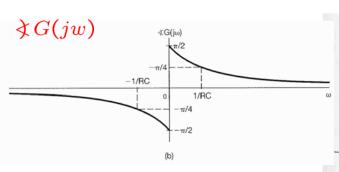
A Simple RC Highpass Filter:

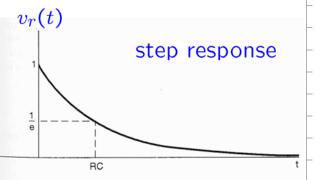
$$\Rightarrow G(jw) = \frac{jw \ RC}{1 + jw \ RC}$$



$$v_r(t) = v_s(t) - v_c(t)$$

$$\Rightarrow v_r(t) = e^{-t/RC} u(t)$$





First-Order Recursive DT Filters:

$$y[n] - ay[n-1] = x[n]$$

• If $x[n] = e^{jwn}$, then $y[n] = H(e^{jw})e^{jwn}$

where $H(e^{jw})$: the frequency response

$$\Rightarrow H(e^{jw}) e^{jwn} - a H(e^{jw}) e^{jw(n-1)} = e^{jwn}$$

$$\Rightarrow \left[1 - a e^{-jw}\right] H(e^{jw}) e^{jwn} = e^{jwn}$$

$$\Rightarrow H(e^{jw}) = \frac{1}{1 - a e^{-jw}}$$

DT Filters by Difference Equations

Feng-Li Lian © 2015 NTUEE-SS3-FS-104

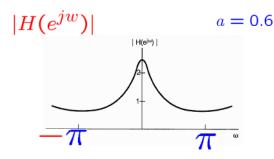
First-Order Recursive DT Filters:

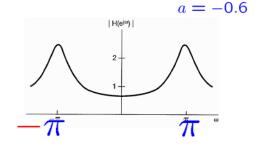
$$H(e^{jw}) = \frac{1}{1 - a e^{-jw}}$$

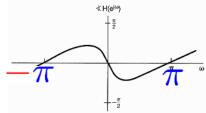
$$y[n] = ay[n-1] + x[n]$$

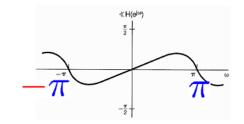
lowpass filter: 0 < a < 1

highpass filter: -1 < a < 0



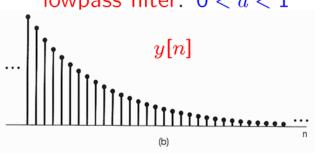


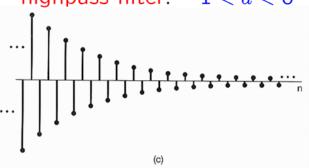


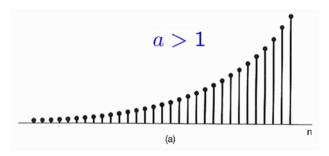


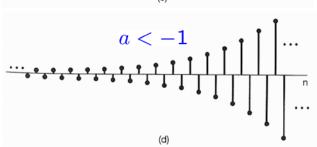
First-Order Recursive DT Filters:

$$y[n] = ay[n-1] + x[n]$$









DT Filters by Difference Equations

Feng-Li Lian © 2015 NTUEE-SS3-FS-106

Nonrecursive DT Filters:

An FIR nonrecursive difference equation:

$$y[n] = \sum_{k=-N}^{M} b_k x[n-k]$$

$$= b_{-N} x[n+N] + b_{-N+1} x[n+N-1] + \dots +$$

$$+b_{-1} x[n+1] + b_0 x[n] + b_1 x[n-1] + \dots + b_M x[n-M]$$

$$b_k =$$

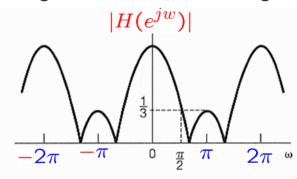
$$b_k =$$

- Nonrecursive DT Filters:
 - Three-point moving average (lowpass) filter:

$$y[n] = \frac{1}{3} (x[n+1] + x[n] + x[n-1])$$

$$\Rightarrow h[n] = \frac{1}{3} \left(\delta[n+1] + \delta[n] + \delta[n-1] \right)$$

$$\Rightarrow H(e^{jw}) = \frac{1}{3} \left(e^{jw} + 1 + e^{-jw} \right) = \frac{1}{3} \left(1 + 2\cos w \right)$$



DT Filters by Difference Equations

Feng-Li Lian © 2015 NTUEE-SS3-FS-108

Nonrecursive DT Filters:

• N+M+1 moving average (lowpass) filter:

$$y[n] = \frac{1}{N+M+1} \sum_{k=-N}^{M} x[n-k]$$

$$\Rightarrow H(e^{jw}) = \frac{1}{N+M+1} \sum_{k=-N}^{M} e^{-jwk}$$

NTUEE-SS3-FS-108

$$\cos(\theta) = \frac{1}{2}(e^{j\theta} + e^{-j\theta})$$

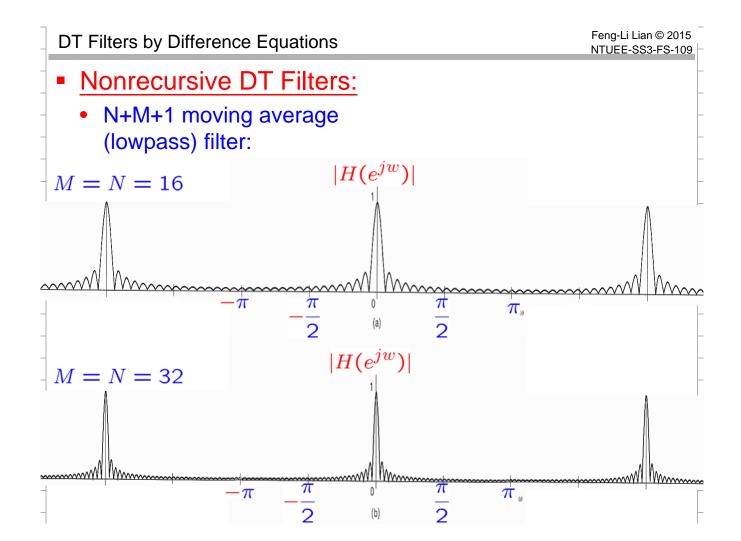
$$\sin(\theta) = \frac{1}{2j}(e^{j\theta} - e^{-j\theta})$$

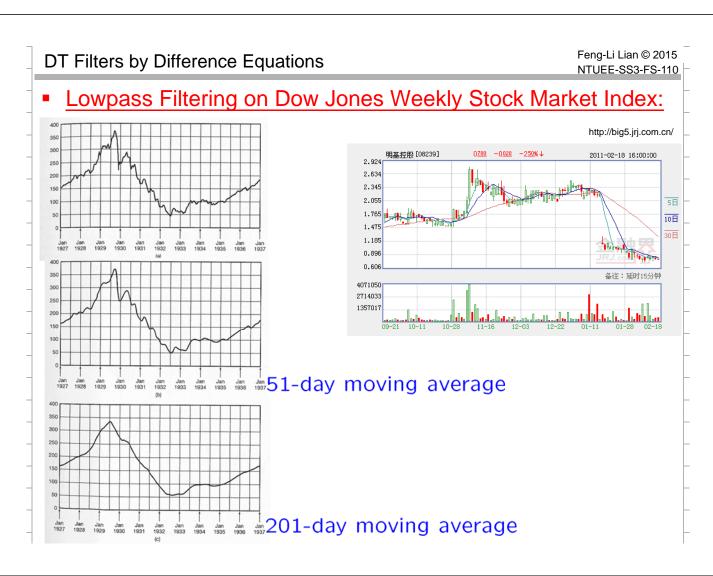
ss3-67

 $1 \qquad i_w(N-M)\sin((M+N+1)\frac{w}{2})$

 $\Rightarrow H(e^{jw}) = \frac{1}{N+M+1} e^{jw\left(\frac{N-M}{2}\right)} \frac{\sin\left((M+N+1)\frac{w}{2}\right)}{\sin\left(\frac{w}{2}\right)}$

$$\frac{1 - e^{-ja}}{1 - e^{-jb}} = \frac{e^{-j\frac{a}{2}} \left(e^{j\frac{a}{2}} - e^{-j\frac{a}{2}}\right)}{e^{-j\frac{b}{2}} \left(e^{j\frac{b}{2}} - e^{-j\frac{b}{2}}\right)}$$





Nonrecursive DT Filters:

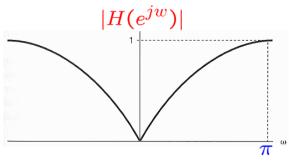
$$1 \pm e^{-j\theta} = e^{-j\frac{\theta}{2}} \left(e^{j\frac{\theta}{2}} \pm e^{-j\frac{\theta}{2}} \right)$$

· Highpass filters:

$$y[n] = \frac{x[n] - x[n-1]}{2}$$

$$\Rightarrow h[n] = \frac{1}{2} \left\{ \delta[n] - \delta[n-1] \right\}$$

$$\Rightarrow H(e^{jw}) = \frac{1}{2} \left[1 - e^{-jw} \right] = \frac{1}{2} e^{-j(\frac{w}{2})} \left[e^{j(\frac{w}{2})} - e^{-j(\frac{w}{2})} \right]$$
$$= j e^{-j(\frac{w}{2})} \sin\left(\frac{w}{2}\right)$$



Correction

On page 235, Eq. 3.139

$$1 \pm e^{-j\theta} = e^{-j\frac{\theta}{2}} \left(e^{j\frac{\theta}{2}} \pm e^{-j\frac{\theta}{2}} \right)$$

$$\Rightarrow H(e^{jw}) = \frac{1}{2} \left[1 + e^{-jw} \right] = \frac{1}{2} e^{-j(\frac{w}{2})} \left[e^{j(\frac{w}{2})} + e^{-j(\frac{w}{2})} \right]$$

$$= e^{-j\left(\frac{w}{2}\right)}\cos\left(\frac{w}{2}\right)$$

On page 249, Eq. 3.164

$$\Rightarrow H(e^{jw}) = \frac{1}{2} \left[1 - e^{-jw} \right] = \frac{1}{2} e^{-j(\frac{w}{2})} \left[e^{j(\frac{w}{2})} - e^{-j(\frac{w}{2})} \right]$$
$$= j e^{-j(\frac{w}{2})} \sin\left(\frac{w}{2}\right)$$

Parseval's Relation for Periodic Signals

- A Historical Perspective
- The Response of LTI Systems to Complex Exponentials
- FS Representation of CT Periodic Signals
- Convergence of the FS
- Properties of CT FS

Linearity Time Shifting Frequency Shifting Conjugation
 Time Reversal Time Scaling Periodic Convolution Multiplication
 Differentiation Integration Conjugate Symmetry for Real Signals
 Symmetry for Real and Odd Signals

- FS Representation of DT Periodic Signals
- Properties of DT FS
- FS & LTI Systems
- Filtering
 - Frequency-shaping filters & Frequency-selective filters
- Examples of CT & DT Filters

Even-Odd Decomposition for Real Signals

