- Discrete-Time Linear Time-Invariant Systems
 - The convolution sum
- Continuous-Time Linear Time-Invariant Systems
 - The convolution integral
- Properties of Linear Time-Invariant Systems
- Causal Linear Time-Invariant Systems
 Described by Differential & Difference Equations
- Singularity Functions

Problem 2.38, 2.39 (p.148) – Block Diagram [SS2:86]

Feng-Li Lian © 2015 NTUEE-SS2-LTI-21

2.38. Draw block diagram representations for causal LTI systems described by the following difference equations:

(a)
$$y[n] = \frac{1}{3}y[n-1] + \frac{1}{2}x[n]$$

(b)
$$y[n] = \frac{1}{3}y[n-1] + x[n-1]$$

2.39. Draw block diagram representations for causal LTI systems described by the following differential equations:

(a)
$$y(t) = -(\frac{1}{2}) dy(t)/dt + 4x(t)$$

(b)
$$dy(t)/dt + 3y(t) = x(t)$$

5. (10%) Consider the following block diagram. Assume that the system is linear and time-invariant and initially at rest.

a) (3%) Show that the above diagram is equivalent to the following block diagram:

- b) (4%) Find the difference equation relating x[n] and y[n].
- c) (3%) Find r[n], for all n if $x[n] = \delta[n]$.

Midterm 2013-7

Feng-Li Lian © 2015 NTUEE-SS2-LTI-23

7. (12%) Consider that the input and output of an LTI system are related by the following linear constant coefficient differential equation (LCCDE):

$$\frac{d^{2}y(t)}{dt^{2}} + 4\frac{dy(t)}{dt} + 3y(t) = \frac{dx(t)}{dt} + 2x(t)$$

- a) Find the impulse response h(t) of the LTI system. (3%)
- b) Is this system causal? Justify your answer. (3%)
- c) Is this system stable? Justify your answer. (3%)
- d) Find the output y(t) of the LTI system when the input signal $x(t) = e^{-t}u(t)$, where u(t) is the unit step function. (3%)

2. [12] The following block diagram depicts two LTI subsystems in parallel that are cascaded with a third LTI sub system. The impulse response of each subsystem is written within each block of the diagram.

- (a) What is the impulse response of the overall system? [4]
- (b) What should the time delay t_d be chosen so that the overall system is causal? [4]
- (c) Which subsystems are stable? Is the overall system stable? [4]
- 5. [10] Let an LTI system have its input x[n] and output y[n] characterized by the following difference equation

$$y[n] - y[n-1]/2 = x[n]$$

with the condition of initial rest.

- (a) Find the unit impulse response of the system. [6]
- (b) Is this system stable? Justify your answer. [4]