SPRING 2010

TR AR

Design of Real-Time Control Systems

Lecture 13
Task Assignment & Scheduling

Feng-Li Lian
NTU-EE
Feb10 — Jun10

Feng-Li Lian © 2010

Outline NTUEE-RTCS13-Scheduling-2

= Introduction

= Characterizing Real-Time Systems & Tasks

= Task Assignment & Scheduling

= Real-Time Programming Languages and Tools
= Real-Time Database

= Real-Time Communications

= Fault-Tolerance Techniques

= Reliability Evaluation Techniques

= Clock Synchronization

04/07/03

Feng-Li Lian © 2010
NTUEE-RTCS13-Scheduling-3

Task Assignment & Scheduling

= An Example:

[- []
[¥] 5 15 21
a b
10 5 10
a | d e l
d 0 10 20 26
10)
(a) Infeasible schedule
63 f6 1] 10 16
Deadline 31 Deadline 16
| b l a d e
0 5 15 25 31

(b) Feasible schedule

Shin & Ramanathan 94 05/07/03

Feng-Li Lian © 2010
NTUEE-RTCS13-Scheduling-4

Task Assignment & Scheduling

» The Question:

* Will my real-time application
really meet its timing constraints or requirements?

= The Problem:

* Given a set of tasks, precedence constraints,
resource requirements, their execution times,
release times, and deadlines, and
one or more processing systems

» Assign tasks to different processing systems

» Design a feasible/optimal allocation/scheduling
on the processing system

Krishna & Shin 97 04/08/03

Feng-Li Lian © 2010
NTUEE-RTCS13-Scheduling-5

Task Assignment & Scheduling

= Definitions:

e Tasks:

— Consume resources
(e.g., processor time, memory, input data), and

— Put out one or more results
* Precedence Constraints:
— Specify if any task(s) needs to precede other tasks
— Represented by the means of a precedence graph
* Resource Requirements:
— All tasks require
> some execution time on a processor,
> a certain amount of memory or
> access to a bus (network)
— Exclusive or non-exclusive

Krishna & Shin 97 03/13/04

Feng-Li Lian © 2010
NTUEE-RTCS13-Scheduling-6

Task Assignment & Scheduling

= Definitions:
* Release Time:

— The time at which
all the data that are required to begin executing the task
are available

* Deadline:
— The time by which the task must complete its execution

— Hard or soft,
depending on the nature of the corresponding task

* Relative Deadline:

— The absolute deadline minus the release time

Krishna & Shin 97 04/08/03

Feng-Li Lian © 2010
NTUEE-RTCS13-Scheduling-7

Task Assignment & Scheduling

= Definitions:
* Periodic:

— The task is released periodically

— Only to run exactly once every period,;
not required for being run exactly one period apart

» Sporadic:
— Not periodic, but at irregular intervals

— Characterized by an upper bound on the rate
at which the tasks may be invoked

* Aperiodic:
— Same as sporadic, OR
— For not periodic and w/o upper bound on the invocation time

Krishna & Shin 97 04/08/03

Feng-Li Lian © 2010
NTUEE-RTCS13-Scheduling-8

Task Assignment & Scheduling

= Definitions:
* Feasible:

— A task assignment/schedule is said to be feasible
if all tasks start after their release times
and complete before their deadlines

* A-Feasible:

— If an assignment/schedule algorithm A
results in a feasible schedule

» Offline or Online Scheduling:
— Schedule in advance
— Schedule as the tasks arrive

Krishna & Shin 97 04/08/03

Feng-Li Lian © 2010
NTUEE-RTCS13-Scheduling-9

Task Assignment & Scheduling

= Definitions:

* Priority:

— A function of the nature of the tasks themselves and
the current state of the controlled process

* Static- & Dynamic-Priority Algorithms:
— Task priority does not change within a mode
— Task priority can change with time

* Preemptive & Non-preemptive Schedule:

— Tasks can be interrupted by other tasks (and then resumed)
> Flexibility
— Task schedule must be run to completion
or until it gets blocked over a resource

> Causing anomalies

Krishna & Shin 97 04/08/03

Feng-Li Lian © 2010
NTUEE-RTCS13-Scheduling-10

Task Assignment & Scheduling

= Objective in Scheduling:

* For non-real-time applications

— Minimize the total time required
to execute all the tasks in the application

* For real-time applications

— Meet the timing constraints of the individual tasks

Shin & Ramanathan 94 04/08/03

Feng-Li Lian © 2010
NTUEE-RTCS13-Scheduling-11

Task Assignment & Scheduling

» Characteristics in RT Scheduling Algorithms:

* Uniprocessor or multiprocessor

— For multi-processors,
shared memory or message-passing system

 Periodic or aperiodic

* Preemptible or non-preemptible
* Criticality

* Independence

* Resource

* Placement constraints

e Strictness of deadlines

Shin & Ramanathan 94 04/08/03

Feng-Li Lian © 2010
NTUEE-RTCS13-Scheduling-12

Task Assignment & Scheduling

= Terminologies:

* Feasibility

* Optimality

* Lateness

* Absolute/relative/effective deadlines
* Absolute/effective release times

» Periodic, sporadic, aperiodic

Krishna & Shin 97 04/08/03

Feng-Li Lian © 2010
NTUEE-RTCS13-Scheduling-13

Task Assignment & Scheduling

= Components of Task Model: T,
« Precedence relation: < (7') /f\
— Set of tasks that must be completed T Ty

T
before task T can begin its execution \)/\ /

* Resource requirements: J T
— Processor, memory, bus, disk, etc. 5 o T
— Exclusive
— Shared (read-only, read-write) ° Ty
» Schedule S:

— { set of processors } X { time } — { set of tasks }
— Off-line or online

— Static or dynamic priority algorithm

— Preemptive or non-preemptive

— Uniprocessor or multiprocessor

Krishna & Shin 97 04/08/03

Feng-Li Lian © 2010
NTUEE-RTCS13-Scheduling-14

Task Assignment & Scheduling

= Commonly Used RT Scheduling Approaches:
e Time-driven:
— Determines when to execute which job
— All parameters of hard RT jobs are fixed and known
— A schedule is computed off-line and stored for use at runtime
» Weighted round-robin:
— For high-speed networks,
where length of a round = sum of all weights
* Priority-driven:
— Assigns priorities to jobs and executes jobs in priority order
— Static priority assignment:
> Rate or Deadline Monotonic (RM or DM)
— Dynamic priority assignment:
> Earliest Deadline First (EDF), Minimum Laxity First (MLF)

Krishna & Shin 97 04/08/03

Feng-Li Lian © 2010
NTUEE-RTCS13-Scheduling-15

Task Assignment & Scheduling

= Four Paradigms of Scheduling Approaches:
* Static table-driven scheduling:
 Static priority preemptive scheduling:
» Dynamic planning-based scheduling:
* Dynamic best effort scheduling:

Impact of:
— Quality-timeliness tradeoffs
— Fault-tolerance constraints
— Resource reclaiming on scheduling

Ramamritham & Stankovic 94 04/08/03

Feng-Li Lian © 2010
NTUEE-RTCS13-Scheduling-16

Task Assignment & Scheduling

= RTOS should have:
* CPU scheduling
* Resource allocation

 Predictability, requiring bounded OS primitives

= RT Scheduling involves
the allocation of resources and time to tasks

Ramamritham & Stankovic 94 04/08/03

Feng-Li Lian © 2010
NTUEE-RTCS13-Scheduling-17

Task Assignment & Scheduling

= Analyzing Scheduling Algorithms:

* Performance metrics

Scheduling paradigms

Scheduling algorithms

Other important scheduling issues

Ramamritham & Stankovic 94 05/08/03

Feng-Li Lian © 2010
NTUEE-RTCS13-Scheduling-18

Task Assignment & Scheduling

= Performance metrics

 Static non-real-time systems

— Minimize schedule length

* Dynamic non-real-time systems
— Minimize response time
— Increase throughput

* Both static & dynamic real-time systems

— Achieve timeliness

Ramamritham & Stankovic 94 05/08/03

Feng-Li Lian © 2010
NTUEE-RTCS13-Scheduling-19

Task Assignment & Scheduling

= Performance metrics

» Task characteristics:
— Computation times
— Resource requirements
— Importance levels (or priorities, criticalness)
— Precedence relationships
— Communication requirements

— Timing constraints

Ramamritham & Stankovic 94 05/08/03

Feng-Li Lian © 2010
NTUEE-RTCS13-Scheduling-20

Task Assignment & Scheduling

= Performance metrics

* In static scheduling:
— Since schedule off-line
— So, meet all deadlines
— If exists,
> Maximize average earliness
— If not,

> Minimize average tardiness
* In dynamic scheduling:

— Since information is not known a priori

— So, maximize number of arrivals meeting deadlines

Ramamritham & Stankovic 94 05/08/03

Feng-Li Lian © 2010
NTUEE-RTCS13-Scheduling-21

Task Assignment & Scheduling

= Performance metrics
 Levels of predictability:

— Using a particular approach
how well can we predict that
the tasks will meet their deadlines?

» Schedulability analysis or feasibility checking

— Statically or dynamically

Ramamritham & Stankovic 94 05/08/03

Feng-Li Lian © 2010
NTUEE-RTCS13-Scheduling-22

Task Assignment & Scheduling

» Four Paradigms of Scheduling Approaches:

 Static table-driven scheduling:
— Static schedulability analysis
— Resulting schedule (or table) used at run time
« Static priority-based preemptive scheduling:
— Static schedulability analysis
— No explicit schedule
— Highest priority task first
* Dynamic planning-based scheduling:
— Feasibility checked at run time
> Dynamically accept arriving task if feasible schedule found
» Dynamic best effort scheduling
— No feasibility check
— Try its best to meet deadlines & may be aborted

Ramamritham & Stankovic 94 05/08/03

Feng-Li Lian © 2010
NTUEE-RTCS13-Scheduling-23

Task Assignment & Scheduling

= Static table-driven scheduling:
* For periodic tasks
e Given task characteristics,

— Table is constructed by using , e.g., search heuristics
— With Identifying start & completion times
— Tasks dispatched according to table

 Highly predictable, but highly inflexible

Ramamritham & Stankovic 94 05/08/03

Feng-Li Lian © 2010
NTUEE-RTCS13-Scheduling-24

Task Assignment & Scheduling

= Static priority-based preemptive scheduling:
 Traditionally used for non-real-time systems

» Tasks have priorities
— Assigned maybe statically or dynamically or at any time
— Execute highest-priority task
— Preemption:

> Arrival of higher-priority tasks preempt
the execution of low-priority task

— If priorities are assigned systematically in such a way that
timing constraints can be taken into account,
then the resulting scheduler can also be used for real-time systems

Ramamritham & Stankovic 94 05/08/03

. H Feng-Li Lian © 2010
Task Assignment & Scheduling NTUEE RTCS13.Scheduling.25

= Dynamic planning-based scheduling:
* With flexibility and predictability
* For new arrival,

— Try to create a schedule
containing previously guaranteed tasks as well as the new arrival

— If fail, take other actions

Ramamritham & Stankovic 94 05/08/03

: . Feng-Li Lian © 2010
Task Assignment & Scheduling NTUEE RTCS13.Schedulng.26

= Dynamic best effort scheduling
— A priority-driven preemptive approach
> e.g., use deadlines as priorities & without any planning
— Priority is computed based on task’s characteristics
— Schedule based on priority

— Confidence via extensive simulations
— Lack of predictability and sub-optimality

— Try its best to meet deadlines
— But, do NOT know whether a timing constraint will be met

Ramamritham & Stankovic 94 05/08/03

. : Feng-Li Lian © 2010
Task Assignment & Scheduling NTUEE RTCS13.Scheduling.27

= Uniprocessor Scheduling Algorithms:
* When to execute (scheduling)

= Multiprocessor Scheduling Algorithms:
* Where to execute (assignment), and

* When to execute (scheduling)

* They are NP-hard;
so, need heuristics to find suboptimal solutions

Krishna & Shin 97; Shin & Ramanathan 94 05/17/03

Feng-Li Lian © 2010
NTUEE-RTCS13-Scheduling-28

= Notations: T; = (I, P, e, d;)

* n: Number of tasks in the task set

Uniprocessor Scheduling Algorithms

+ e;: Execution time of task T,

» P, Period of task T,, if it is periodic

. kth period of (periodic) task T; begins at time
I, + (k-1)P;, where [, is call the phasing of task T;

* d;: Relative deadline of task T;
* D;: Absolute deadline of task T,
* 1 Release time of task T;

* h.(t): Sum of the execution times of task iterations
in task set T that have their absolute deadlines <=t

Krishna & Shin 97 04/08/03

Feng-Li Lian © 2010

Uniprocessor Scheduling Algorithms NTUEE-RTCS13.Scheduling 29

= Assumptions:

* Al: Fully preemptible with negligible costs

— Can preempt any task at any time and
resume it later without penalty

A2: CPU is the only resource to deal with

— i.e., don’t care with memory, I/O, etc.

A3: Independent task

— i.e., no precedence constraints between tasks

A4: All periodic tasks

A5: Relative deadline = period

Krishna & Shin 97 04/08/03

Uniprocessor Scheduling Algorithms

= Example: (a two-task system)

Feng-Li Lian © 2010

NTUEE-RTCS13-Scheduling-30

Time\Task T1 T2
Release Time 1 2
Deadline 9 6
Execution Time 3.25 2
1 1
I|||T|||T|||I|||I|||I|||||||I|||I||||
0 1 2 3 4 5 6 7 8 ?
1
S1 1
1 1
1
1
1 1
1
5 = I |
1 T
Krishna & Shin 97 04/08/03

Feng-Li Lian © 2010

Uniprocessor Scheduling Algorithms NTUEE-RTCS13.Scheduling 31

» Rate Monotonic (RM) Algorithm:

 Assign higher priorities to tasks with lower periods
(or higher rates)
— The priority of a task is inversely related to its period

— Higher-priority tasks can preempt lower-priority tasks

» Optimal fixed priority scheduling algorithm

 Sufficient schedulability condition:
n_ .
U=>Y" E* <nY"-1) =069 asn— oo
i=1"1

Krishna & Shin 97 04/08/03

Feng-Li Lian © 2010

Uniprocessor Scheduling Algorithms NTUEE.RTCS13 Schedyjing.32

= Example: (a 3-task system)

Time\Task T1 T2 T3
I 0 1 3
P 2 6 10
e 0.5 2 1.75

= Since P1 < P2 < P3, priority: T1 >T2>T3

IIII!III!III!IIIIIIIélll!lll!lll!lllé

Krishna & Shin 97 04/08/03

Uniprocessor Scheduling Algorithms Feng'Li Lian © 2010

NTUEE-RTCS13-Scheduling-33

= Example: (a 3-task system)

= Check sufficient schedulability condition

Utilization Bound for the RM algorithm

1+ @
09
2 s 0.7798
N IEIumber of Taskso
05 2 1.75
U=——"+—-4+—=0.7583
2 T 6 T 10

Krishna & Shin 97 04/08/03

Uniprocessor Scheduling Algorithms Feng'Li Lian © 2010

NTUEE-RTCS13-Scheduling-34

= Necessary (& Sufficient) Schedulability Conditions

e 17: feasibly scheduled

Krishna & Shin 97 03/13/04

Uniprocessor Scheduling Algorithms Feng'Li Lian © 2010

NTUEE-RTCS13-Scheduling-35

= Necessary (& Sufficient) Schedulability Conditions

e 15: feasibly scheduled

P2
€,

e, e t
0 P 2P,

= t = [Pi1-|61+62 & t e [0,Ps]

— tZ[pLﬂel-l-ez & t < P

Check only t at multiples of P;

Krishna & Shin 97 03/13/04

Uniprocessor Scheduling Algorithms FengrLi Lian © 2010

NTUEE-RTCS13-Scheduling-36

» Necessary (& Sufficient) Schedulability Conditions

e T3: feasibly scheduled []
P, Ps
) e
t
0 P,
— t =

[Fler+ [5leates & t € [0,P3

= t > [Pil—|81+[},i2—|82+63 & t < P3

Check only t at multiples of P, & P>

Krishna & Shin 97 03/13/04

Feng-Li Lian © 2010

Uniprocessor Scheduling Algorithms NTUEE-RTCS13.Scheduling. 37

= Necessary (& Sufficient) Schedulability Conditions
o ={T1,To, -+ ,Tn} Where T; = (P;, ¢e;)
e WLOG, assume P < P, < ... < Py
o1 released at t =0
e T;'s completion time: t.
e Within time t., 7Tj is preempted

by each higher priority task T}
i—1

t . te
exactly [-<] times = te= Y ej[~|+e
P; =1 b
J_
Krishna & Shin 97 04/08/03

Feng-Li Lian © 2010

Uniprocessor Scheduling Algorithms NTUEE.RTCS13 Schedujing.33

= Necessary (& Sufficient) Schedulability Conditions

e For schedulability, we must have t. < F;

1
¢
e Vi, 3t. € [0, ;] such that te = > e;[—]
j=1 P
[i t
f(t) = Z ej[FW C)=t
j=1 J |
zelg]
! t
te P, —
Krishna & Shin 97 04/08/03

Feng-Li Lian © 2010

Uniprocessor Scheduling Algorithms NTUEE-RTCS13.Scheduling. 39

= Theorem:
Given n periodic tasks
with Py < P, <..- < Py, &
Wi(t) = _17.':1 ejfp%]
THEN, task 7;: feasibly scheduled using RM
IFF L; = minge<p, Wil < 1
= In fact, only need to compute W;(t) at

. .. P
'r.i:{kPj ‘ j=1,2,---,i; k=1,--- :L?;‘J}

Krishna & Shin 97 04/08/03

Feng-Li Lian © 2010

Uniprocessor Scheduling Algorithms NTUEE.RTCS13 Scheduiing 40

= Example: (a 4-task system)

Time\Task T1 T2 T3
P 100 150 210
e 20 30 80

= Set of points of interest:

1 = {100}

75> = {100,150}

3 = {100,150,200,210}

42 = {100,150,200,210, 300,400}

Krishna & Shin 97 04/08/03

Feng-Li Lian © 2010

Uniprocessor Scheduling Algorithms NTUEE-RTCS13.Scheduling 41

= Example: (a 4-task system)

= Schedulability Conditions:

e T is RM-Schedulable iff
e1 < 100

e 5 is RM-Schedulable iff

e1+e> < 100 OR
2e1 +ex < 150

e T3 is RM-Schedulable iff

e1t+ex+ez3 < 100 OR
26]_ +€2 +63 S 150 OR
2e1 4+ 2ex4+e3 < 200 OR
3e1 +2e0+e3 < 210
e T, is RM-Schedulable iff .
Krishna & Shin 97 04/08/03

Feng-Li Lian © 2010

Uniprocessor Scheduling Algorithms NTUEE.RTCS13 Scheduiing-42

= Example: (a 4-task system)

W, Wy
100
70+ i
50 — 50

20 p—r——————

100 50 100 150
Time Time

50 100 150 200 100 200 300 400
Time Time

Krishna & Shin 97 04/08/03

Feng-Li Lian © 2010

Uniprocessor Scheduling Algorithms NTUEE-RTCS13.Scheduling 43

= With Sporadic Tasks:

 Define fictitious highest-periodic task & execution time

I‘III|IIII‘III|IIIlIIII|III!III|III!III|
0 5 10 15 20 25 30 35 40 45

* RM with Deferred Server (DS):

Lt b b b b b gy
0 5 10 15 20 25 30 35 40 45

Krishna & Shin 97 03/13/04

Feng-Li Lian © 2010

Uniprocessor Scheduling Algorithms NTUEE.RTCS13 Scheduiin 44

= Earliest Deadline First (EDF) Algorithm:

* Assign higher priorities to tasks
whose absolute deadline is the earliest

* Optimal dynamic-priority scheduling algorithm
» Tasks: periodic or aperiodic

» Schedulable on a uniprocessor by the EDF iff:

Krishna & Shin 97 04/08/03

Feng-Li Lian © 2010

Uniprocessor Scheduling Algorithms NTUEE-RTCS13 Sehedulng 45

= Example: (a 3-task system)

Time\Task T1 T2 T3
Arrival Time 0 4 5
Execution Time 10 3 10
Absolute Deadline 30 10 25

T|||TT||I|||I|||I|||I|||I|||I
0 4 8 12 16 20 24 28

. o s o
att =4, Do < D1, To preempts T4
at t =5, Dy < D3, To continues, T3 waits
att =7, D3 < Dy, 1I3's term
at t =17, T7 resumes
Krishna & Shin 97 04/08/03

Feng-Li Lian © 2010

Uniprocessor Scheduling Algorithms NTUEERTCS13.Scheduing. 46

= Allowing for Precedence & Exclusion Conditions:

TaskT,| 1 | 2 | 3 5|6 . }.\‘ :
e 31312 6| 6 ‘\ s
D | 6|7 |20 27 | 28 l i Ts
= All released at time 0 Tﬁ&

Krishna & Shin 97 05/26/03

Feng-Li Lian © 2010

Uniprocessor Scheduling Algorithms NTUEE-RTCS13.Scheduling 47

= Multiple Task Versions: Primary & Alternative
» Better-quality service v.s. just-acceptable service

Time\Task Primary | Alternative
Worst-case run time 20 5
Average run time 7 4
Period 15 15
/ Run-time limit
Lot bttt bttt bttt b bt
0 2 4 6 8 10 12 14 16

Primary Alternative

Krishna & Shin 97 05/26/03

Feng-Li Lian © 2010

Uniprocessor Scheduling Algorithms NTUEE.RTCS13 Scheduiing-43

= Multiple Task Versions: 5-task system

TaskT;| 1 | 2 | 3 5
I(i) 10 | 10 | 15 5 Run-time limit of primary version
OL(i) 3 2 1 4 Worst-case run-time of alternative version
P@ |20 20|20 40 Period
A(3)
Pr(1) A(l) A2 |3
| | | | 1 | | | | | | | | | | | | |
T T T 1 1 T T T 1 T T T T L] T T T 1
10 2p 30 4

A(3) A(3)
Pr(1) A@) A2 |3 Pr(1) A@@) A2 |8

A(3) A3
Pr(1) A@) A2 |8 Q) AS| A1) A2 A5

Krishna & Shin 97 03/13/04

Feng-Li Lian © 2010

Uniprocessor Scheduling Algorithms NTUEE-RTCS13 Scheduling 49

= Increased Reward with Increased Service (IRIS):

Mandatory — Optional Identical Linear Reward Function

Task | m | o | r. | D 0 if . <m;
Ri(z)={ z—m; ifm; <z<o0;4+m;
1 1 4 0 10 0; if o, +m; <z
2 1 2 1 12
3 3 3 1 15
« By EDF
M1 M2 M3 |
|
Lol bbb bbbttt b bbbttt bl
0 2 4 6 8 10 12 14 16 18 20
Krishna & Shin 97 05/26/03

Feng-Li Lian © 2010

Uniprocessor Scheduling Algorithms NTUEE RTCS13.Schedulng 50

= Rate Monotonic (RM, static priority):
— Task set: periodic, preemptible, deadline = period
— Statically assign higher priorities to task with lower periods

— It is schedulable under RM
if its total processor utilization <= n(2¥n — 1)

— RM is an optimal static-priority uniprocessor scheduling algorithm

» Rate Monotonic Deferred Server (DS):
— Similar to RM
— Handle both periodic and aperiodic tasks
— Allot some time slots for aperiodic tasks

Krishna & Shin 97; Liu & Layland 73 04/08/03

Feng-Li Lian © 2010

Uniprocessor Scheduling Algorithms NTUEE-RTCS13.Scheduling 51

= Earliest Deadline First (EDF, dynamic priority):
— Tasks: preemptible
— The earliest the deadline, the higher the priority

— Optimal if preemption is allowed and
jobs do not contend for resources

— If a task set is not schedulable on a single processor by EDF,
no other processor can successfully schedule that task set

= Precedence and Exclusion Conditions:

— Take precedence conditions into account

— Algorithm might be with exclusion conditions
such as some tasks are not allowed to interrupt some,
irrespective of priority

Krishna & Shin 97 04/08/03

Feng-Li Lian © 2010

Uniprocessor Scheduling Algorithms NTUEE.RTCS13 Schedyiing 52

= Multiple Task Versions:

— In some cases,
the system has primary and alternative versions of some tasks

— Varying in execution time or quality of output they provide

— Primary version for top-quality output,
alternative for lower-quality

» Increased Reward with Increased Service (IRIS):
— Algorithm can be stopped early and output still useful

— Quality of output:
a monotonically nondecreasing function of the execution time

Krishna & Shin 97 04/08/03

Feng-Li Lian © 2010

Uniprocessor Scheduling Algorithms NTUEE-RTCS13 Scheduling 53

= Rate Monotonic (RM, static priority):

= Earliest Deadline First (EDF, dynamic priority):

» C.L. Liuand J. W. Layland, “Scheduling algorithms for multiprogramming in a hard-
real-time environment,” Journal of ACM, 20(1):46-61, 1973

= Rate Monotonic Deferred Server (DS):

Multiple Task Versions:
* J.P. Lehoczky, L. Sha, and J.K. Strosnider, “Enhanced aperiodic responsiveness in
hard real-time environments,” Proc. IEEE Real-Time Systems Symposium, pp. 261-
270, Los Alamitos, CA, 1987

= Precedence and Exclusion Conditions:

« J. Xu and D.L. Parnas, “Scheduling processes with release times, deadlines,
precedence, and exclusion properties,” IEEE Trans. Software Engineering, 16(3):
360-369, Mar. 1990

Increased Reward with Increased Service (IRIS):

¢ JW.S. Liu, K.J. Lin, W.-K. Shih, A.C. Yu, J.Y. Chung, and W. Zhao, “Imprecise
computations,” Proc. IEEE, 82(1): 83-94, Jan. 1994

Krishna & Shin 97; Liu & Layland 73 04/08/03

Feng-Li Lian © 2010

Multiprocessor Scheduling Algorithms NTUEE.RTCS13.Schedulng 54

= Task Assignment:
* The optimal assignment of tasks to processors is,
in almost all practical cases, an NP-complete problem

* Do with heuristic procedures:
— Allocate the tasks
— Check their feasibility
— If not feasible, modify the allocation
* CANNOT guarantee that
a feasibly scheduled allocation can be found

* Need to account for communication costs

Shin & Ramanathan 94 03/14/04

Feng-Li Lian © 2010

Multiprocessor Scheduling Algorithms NTUEE-RTCS13.Scheduling 55

= Utilization Balancing Algorithm:

= Next-Fit Algorithm for RM Scheduling:

= Bin-Packing Algorithm for EDF:

= Myopic Offline Scheduling (MOS) Algorithm:

» Focused Addressing & Bidding (FAB) Algorithm:
= Buddy Strategy:

= Assignment with Precedence Constraints:

Krishna & Shin 97 03/14/04

Feng-Li Lian © 2010

Multiprocessor Scheduling Algorithms NTUEE.RTCS13 Schedyiing.56

= Utilization Balancing Algorithm:
— Tasks: preemptible

— Assign tasks to processors one by one
such that at the end of each step
utilizations of various processors nearly balanced

9
< 2. P . 1.125
8

p—r—+1 PSST

r . Copies of the same tasks

wr Utilization by using minimizing the sum
t of squares of process utilization
uf} . Utilization under the best-fit algorithm
Krishna & Shin 97 03/14/04

Feng-Li Lian © 2010

Multiprocessor Scheduling Algorithms NTUEE-RTCS13.Scheduling 57

= Next-Fit Algorithm for RM Scheduling:

— Tasks: preemptible

— With RM uniprocessor scheduling algorithm
— Set of tasks — Various classes

— Set of processors — Each task class

Krishna & Shin 97 03/14/04

Feng-Li Lian © 2010

Multiprocessor Scheduling Algorithms NTUEE.RTCS13 Scheduiing.53

= Example: 4-Class & 11-Task

Task | T | T2 | T3 | T4 T6 | T7 | T8 | T9 | T10
€ 5 7 3 1 161 1 3 9 17
P; 10 | 21 | 22 | 24 40 | 50 | 55 | 70 | 90
u(i) |0.50|0.33|0.14|0.04 0.4010.02 {0.05(0.13|0.19
Class| C1 | C2 c2 | C2 C3
= By RM on each processor
Class Bound Processor Tasks
C1 (0.41,1.00] pl T1
Cc2 (0.26,0.41] p2 T2 15 |76
C3 | (0.19, 0.26]
p3 T11
p5 T6
Krishna & Shin 97 03/14/04

Feng-Li Lian © 2010

Multiprocessor Scheduling Algorithms NTUEE-RTCS13.Scheduling 59

= Bin-Packing Algorithm for EDF:

— Tasks: preemptible
— Total utilizations <= a given threshold
— Threshold: the uniprocessor scheduling algorithm is able
to schedule the tasks assigned to each processor
— Minimize the number of processors needed
> Many algorithms exist for solving it
> The First Fit Decreasing (FFD) algorithm

Number of processors used by the FFD algorithm 11 199
—_— —_— = .
Number of processors used by optimal algorithm 9

Krishna & Shin 97 03/14/04

Feng-Li Lian © 2010

Multiprocessor Scheduling Algorithms NTUEE.RTCS13 Schedyiin.60

= Example: 4-Class & 11-Task

Task | T1 | T2 | T3 | T4 T6 | T7 | T8 | T9 | T10
€ 5 7 3 1 16 1 3 9 17
P; 10 | 21 | 22 | 24 40 | 50 | 55 | 70 | 90

u(i) |0.50|0.33|0.14 | 0.04 0.4010.02 | 0.05|0.13|0.19

L = (T1,T6, T2, T5, T11, T10, T3, T9, T8, T4, T7)

U = (U1,U2,U3, U4, ..),
containing the total utilizations of processor p; in Ui

Krishna & Shin 97 03/14/04

Multiprocessor Scheduling Algorithms

Krishna & Shin 97

Feng-Li Lian © 2010
NTUEE-RTCS13-Scheduling-61

L = (T1,T6,T2, T5, T11, T10, T3, T9, T8, T4, T7)

Step | Ti | u() | Pi U= (U, Uy, Uy)
1 | T1]050] pl |(0.50)

2 | T6 |0.40 | P1 | (0.90)

3 | T2 |0.33]| p2 |(0.90,0.33)

4 | T5 |0.33| p2 |(0.90, 0.66)

5 |T11|0.22| p2 |(0.90, 0.88)

6 |T10[0.18| p3 |(0.90, 0.88, 0.18)
7 | T3 [0.14| p3 |(0.90, 0.88, 0.32)
8 | T9 [0.13| p3 |(0.90, 0.88, 0.45)
9 | T8 [0.06| p1 |(0.96,0.88, 0.45)
10 | T4 |0.04 | p1 |(1.00, 0.88, 0.45)
11 | T7 |0.02| p2 | (1.00, 0.90, 0.45)

03/14/04

Feng-Li Lian © 2010
NTUEE-RTCS13-Scheduling-62

= Myopic Offline Scheduling (MOS) Algorithm:

— Can deal with nonpreemptible tasks

Multiprocessor Scheduling Algorithms

— Build up a schedule tree and
based on a search process
to find feasible schedule minimizing a heuristic function H
such as execution time, deadline, start time, laxity, etc.

— For n tasks,
the schedule tree has n+1 levels (including the root)

Krishna & Shin 97 04/08/03

Multiprocessor Scheduling Algorithms

Feng-Li Lian © 2010
NTUEE-RTCS13-Scheduling-63

= Example: 5-(nonpreemptive)-Task & 2-Processor

Feng-Li Lian © 2010

Multiprocessor Scheduling Algorithms NTUEE.RTCS13 Scheduyiing. 64

Task |T1| T2 | T3 | T4 po
I 0|10 O | 15 pl
e |15 5 |16 9 4
! 0 10 20 30
D, 15| 20 | 18 | 25
H() =T,
R R
0 10 20 30
—
0 10 20 30
Krishna & Shin 97 03/14/04

| I T S I s T Y O
T T T T T LI T T T L] T T T T T T T U U L U I I 1 U U I T
0 10 20 30 0 10 20 30
/s w]
11 | [[| N I I I I S Ty |
— LU R B R T T T 11 L T
0 10 20 30 0 10 20 30

Krishna & Shin 97

03/14/04

Feng-Li Lian © 2010

Multiprocessor Scheduling Algorithms NTUEE-RTCS13 Scheduling 65

» Focused Addressing & Bidding Algorithm:
— Tasks arrive at the individual processors

— If one processor finds itself unable to meet the deadline
or other constraints,

— Then it tries to offload some of its workload
onto other processors

— By announcing which task(s) it would like to offload and waiting for
other processors to offer to take them up

= Buddy Strategy:
— Roughly the same as the focused addressing algorithm
— Processor load: under-loaded, fully loaded, overloaded
— Overloaded ask under-loaded to take over some

Krishna & Shin 97 04/08/03

Feng-Li Lian © 2010

Multiprocessor Scheduling Algorithms NTUEE.RTCS13 Scheduiing. 65

= Assignment with Precedence Constraints:
— Take precedence into account

— Use a trial-and-error process to assign tasks
that communicate heavily with one another

— So that communication costs are minimized

Krishna & Shin 97 04/08/03

Feng-Li Lian © 2010

Multiprocessor Scheduling Algorithms NTUEE-RTCS13.Scheduling 67

= Example: 1-Task & 8-Subtask, 2-Processor

LFT: Latest finishing time

Subtask i D; LFT
s0O 4 - 7
si 10 | - 24 /\
s2 15 22 22 0
s3 4 - 26 / \ 12J
. 6
s5 3 - 42 \ / J
16
s6 6 - 32 ® Sg
s7 3 45 45
s8 8 40 40
Krishna & Shin 97 03/14/04

Feng-Li Lian © 2010

Multiprocessor Scheduling Algorithms NTUEE.RTCS13 Schedyjing. 63

Pair sisj | e+e | ¢ (eite)/c; eitej < ke
s0 sl 14 10 1.40 Cij
s0 s2 19 22 0.86
s0 s3 8 8 1.00
sl 28 14 2.00
s1s5 13 3 4.33
s7 21 6 3.50
S5 s7 6 8 0.75
s3 s6 10 12 0.83
s6 s8 14 16 0.88
ke =1.5
po 0 1 2
pl
bus

[|
| L
10
Krishna & Shin 97 20 30 40 03/15)/84

Feng-Li Lian © 2010
NTUEE-RTCS13-Scheduling-69

ke=1.0

0 IR 2 3
p1
S T T

Multiprocessor Scheduling Algorithms

p0) 2 3 6 5
i I

bus

Y © 2 3 6 5 8
n I

bus

i
0 10 20 30 40 50
Krishna & Shin 97 03/14/04

Feng-Li Lian © 2010

Multiprocessor Scheduling Algorithms NTUEE.RTCS13-Scheduiing.70

= Static algorithms:
— Periodic tasks with hard deadlines
— Not applicable to aperodic tasks b/c timing info unknown

= Dynamic algorithms:

— Centralized

> All tasks distributed by one central processor into others

> So, processors’ load is known and deadlines are guaranteed
— Distributed

> Tasks arrive independently at each processor

> Transfer policy: guarantee constraints of incoming tasks

> Location policy: find other processors if not schedulable

> Information policy: collect & maintain state info of others

Shin & Ramanathan 94 04/08/03

Feng-Li Lian © 2010

Multiprocessor Scheduling Algorithms NTUEE-RTCS13.Scheduling 71

= Utilization Balancing Algorithm:
— Tasks: preemptible

— Assign tasks to processors one by one
such that at the end of each step
utilizations of various processors nearly balanced

= Next-Fit Algorithm for RM Scheduling:
— Tasks: preemptible
— With RM uniprocessor scheduling algorithm
— Set of tasks — Various classes
— Set of processors — Each task class

Krishna & Shin 97 04/08/03

Feng-Li Lian © 2010

Multiprocessor Scheduling Algorithms NTUEE.RTCS13 Scheduiing.72

= Bin-Packing Algorithm for EDF:
— Tasks: preemptible
— Total utilizations <= a given threshold

— Threshold: the uniprocessor scheduling algorithm
is able to schedule the tasks assigned to each processor

= Myopic Offline Scheduling (MOS) Algorithm:

— Can deal with nonpreemptible tasks

— Build up a schedule tree and based on a search process
to find feasible schedule minimizing a heuristic function
such as execution time, deadline, start time, laxity, etc.

Krishna & Shin 97 04/08/03

Feng-Li Lian © 2010
NTUEE-RTCS13-Scheduling-73

» Focused Addressing & Bidding (FAB) Algorithm:

— Tasks arrive at the individual processors

Multiprocessor Scheduling Algorithms

— If one processor finds itself unable to meet the deadline
or other constraints,

> Then it tries to offload some of its workload
onto other processors

— By announcing which task(s) it would like to offload and
waiting for other processors to offer to take them up

= Buddy Strategy:
— Roughly the same as the focused addressing algorithm
— Processor load: under-loaded, fully loaded, overloaded
— Overloaded ask under-loaded to take over some

Krishna & Shin 97 04/08/03

Feng-Li Lian © 2010

Multiprocessor Scheduling Algorithms NTUEE.RTCS13 Scheduing.74

= Assignment with Precedence Constraints:
— Take precedence into account

— Use a trial-and-error process to assign tasks
that communicate heavily with one another

— So that communication costs are minimized

Krishna & Shin 97 04/08/03

Feng-Li Lian © 2010

Multiprocessor Scheduling Algorithms NTUEE-RTCS13.Scheduling. 75

Utilization Balancing Algorithm:
< J.A. Bannister and K.S. Trivedi, “Task allocation in fault-tolerant distributed systems,”
Acta Informatica, 20(3): 261-281, Sep. 1983
Next-Fit Algorithm for RM Scheduling:
+ S. Davari and S.K. Dhall, “An on line algorithm for real-time tasks allocation,” Proc.
|IEEE Real-Time Systems Symposium, pp. 194-200, Los Alamitos, CA, 1986
= Bin-Packing Algorithm for EDF:
» E.G. Coffman, Computer and Job-Shop Scheduling Theory, Wiley, New York, 1976

Myopic Offline Scheduling (MOS) Algorithm:

« K.J. Ramamritham, A. Stankovic, and P.-F. Shiah, “Efficient scheduling algorithms
for real-time multiprocessor systems,” IEEE Trans. on Parallel and Distributed
Systems, 1(2): 184-194, Apr. 1990

= Focused Addressing & Bidding (FAB) Algorithm:

» K.J. Ramamritham, A. Stankovic, and W. Zhao, “Distributed scheduling of tasks with
deadlines and resource requirements,” IEEE Trans. on Computers, 38(8): 1110-
1123, Aug. 1989

Buddy Strategy:

» K.G. Shin and Y.-C. Chang, “Load sharing in distributed real-time systems with state-
change broadcasts,” IEEE Trans. on Computers, 38(8): 1124-1142, Aug. 1989

Krishna & Shin 97 03/14/04

