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= Stability of Periodic Systems (8.4)
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e For autonomous systems
LaSalle’s invariance theorem shows that

trajectory — E = {V(z)=0}

e For non-autonomous systems

{V(t,z)}

e If it can be shown that

V(t,z) < —W(z) <0
E = {W(z) = 0}

trajectory — FE as t — oo
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e Lemma 8.2

e Let ¢o: R — R be a unif. cont. func.
on [0, 00).

e Suppose that

t
lim /[} o(T)dr

t—oo

exists and is finite.

e Then,

¢(t) - 0ast — oo
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e Proof:
e If is not true,

then there is a positive constant k;
such that for every T > 0,
we can find T} > T with |¢(T})| > k1.

e Since ¢(t) is unif. cont.,
there is a positive constant ks
such that |¢p(t 4+ 7) — ¢(t)| < k1/2
forallt >0 and all 0 < 71 < ks.

e Hence,
lp(t)| = |o(t) — &(T1) + (1)
> |6(T)| — |6(5) — 6(T)]
1

k1 — -k

> K1 5 1
1

= Ekla Vt € [Th, T1 + k2]
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e Since ¢(t) retains the same sign
for 71 <t <Ty+ ko, then

T1+k2
[ e

T1+k2 1
=/ B(b)|dt > K1k
Ty 2

Ty

t
e Thus ¢(T)dT cannot converge to

JO
a finite limit as t — oo,
a contradiction.




Theorem 8.4

e Theorem 8.4

e Let D C R™ be a domain
containing x =0
and suppose f(t,x) is
piecewise cont. in ¢
and locally Lipschitz in z,
uniformly in ¢, on [0,00) X D.

e Furthermore, Vt > 0,
suppose f(t,0) is unif. bdd.
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Theorem 8.4

e Let V:[0,0) x D — R be
a cont. diff. func such that

Wi(z) < V(t,z) < Wa(a)

. ov ov
V(taw) = E + %f(tam) < _W(w)

vVt > 0,Vz € D,

where Wy (x), Wa(x) are cont. P.D. func.

and W (z) is cont. P.S.D. func. on D.

e Choose r» > 0 such that B, C D
and let p < min| =, Wi(z).
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e Then, with z(tg) € {x € B, | Wa(x) < p}
all sol. of ¢ = f(t,x) are bdd
and satisfy

Wi(x(t)) - 0as t — o

e Moreover, if all the assumptions hold
globallly and W7y (x) is radially unbounded,
the statement is true for all z(tg) € R".
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e Part of Proof:

e Since V(t,x(t)) is
monotonically nonincreasing
and bounded from below by zero,
it converges as t — oo.

e So, for W(x),

[‘Wnar < — [ VinwE)dr

AN J1p

= V{(to,x(tg)) — V(¢t,x(t))

e Therefore, lim;_, oo ftto W (x(7))dr
exists and is finite.
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e Since z(t) is bdd., Vt > tg
& = f(t,x(t)) is bdd., uniformly in t.

e Hence, z(t) is unif. cont. int on [ty, o0).

e So, because W (x) is unif. cont. in x
on the compact set B,,
consequently,

W (x(t)) is unif. cont. in t on [tg,c0).

e Therefore, by Lemma 8.2,
W(x(t)) — 0 as t — oo.

e The limit W(x(t)) — 0 implies that
xz(t) approaches FE as t — oo,

where e Therefore, the positive limit set of z(t)
E={xe€ D|W(x)=0} is a subset of E.
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e Theorem 8.5
e Let D C R"™ be a domain containing

=0

and suppose f(t,x) is piecewise cont.
int

and locally Lipschitz in x
forallt>0and x € D.

e Let x =0 be an E.P. for & = f(t,x)
at t = 0.
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e Let V:[0,00) x D — R be
a cont. diff. func such that

Wi(z) < V(t,z) < Wa(x)
. vV oV
V(t9$) = E +£f(t7m) <0
V(t+6,0(t+8;tx) —V(t,z) =AV(t,z), 0<A<1

vt > 0,Vx € D, for some é > 0,

where

Wi(x), Wa(x) are cont. P.D. func.

on D

and ¢(7;t,x) is the sol. of the system
starts at (¢, ).

e Then, the origin is U.A.S.
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e If all assumptions hod globally and
Wi () is radially unbounded,
then the origin is G.U.A.S.

o If
Wi(z) > kil|z||¢, Wa(z) < ka|x||¢,

where ki, k2,c > 0,
then the origin is E.S.




Example 8.11: L.T.V.
e Example 8.11

e Consider the LTV system

T = A(t)x

where A(t) is cont. for all ¢t > 0.

e Suppose that thereis a cont. diff. symm.

P(t) that satisfies

0< eI <P(t)<co, Vt>0

as well as matrix diff. eq.

—P(t) = P(t)A(t) + AT(t)P(t) + CT(t)C(t)

where C(t) is cont. in t.
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Example 8.11: L.T.V.

e The derivative of the quadratic func.
V(t,x) =zl P(t)x
along the traj. of the system is

Vv =—2TcT@t)cit)z <0

e Let the sol. be ¢(7;t,x) = (7, t)x,
where ®(1,t) is state transition matrix.

e Therefore,

V(t+8,0+5t,x)) — V(t,z) = V(r, ¢(r;t,x))dr

t
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t+6
E— / &7 (1,£)CT C®(r, t)dr
t

= —aTW(t,t+ 6z

t+0
where W (t,t+6) = [ T (r,t)CT(r)C(7)® (1, t)dT
Ji
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e Suppose there is positive a constant
k < co such that

W(t,t+906) > kI, Vt>0
then

k
V(t+0,p(t+ 0t ,x)) — V(t,e) < —k|z||2 <-——V(tz)
Cc2

e Thus, all assumptions of Thm 8.5 are
satisfied globally with

k
Wi(z) = cjlla|[3, i = 1,2, A= ~<1
2

e Then, z =0is G.E.S.

e Note that
W (t,t 4 9) is the obvervability Gramian
of (A(t),C(t)) and
Wi(t,t +6) > kI is implied by
uniform observability of (A(t),C(t)).
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e Example 8.12 (from Sec 1.2.6)

e Model reference adaptive control:

plant model: 3y, = apyp + kpu

reference model: y,

amym + Emr

e If v+ > 0 is the adaptation gain,
eo = Yp — Ym IS the output error,
and ¢, ¢ are the parameter errors.

e T he closed-loop eq.
€o = ameo+ kpd’lr(t) + k’p¢2 [eo + ym(t)]

ﬁbl —veor(t)
@2 = —7eoleo + ym(t)]
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e Assume that kp > 0, an, <0

e r(t) is piecewise cont. and bdd.

e Using
I = S R
2|k, TH1T 2

as a Lyapunov function candidate,

e \We obtain
. a
V = k_meg + eo(P17 + P2e0 + P2ym) — P1€0T — P2€0(€0 + Ym)
D
am o
= k—peo S 0
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e By applying Thm 8.4, we conclude that
for any ¢ > 0 and
for all initial states in {V < ¢},
all state variables are bounded
for all t > tg and lim¢_, eo(t) = 0.

e This shows that yp, — ym,
but it says nothing about ¢, ¢3 — 0!

e In fact, they may not converge to zero.

e If r,y,, are nonzero constant signals,
the closed-loop system will have
an equilibrium subspace

{eo = 0, p2 = (am/kp)P1}-




Example 8.12: Adaptive Control

e Hence, we need to apply Thm 8.5
to derive the conditions of ¢, ¢ — 0.
That is, the conditions which the origin
(eo = 0,01 = 0,¢2 = 0) is U.A.S.

e Reformulate the system as.:
am kpr(t) kpyp(t)

x = —~yr(t) 0 0 x,
—YYp(t) 0 0
€o
where r= | ¢
P2
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Example 8.12: Adaptive Control

e Suppose lim;_oo[r(t) — rss(t)] = 0,
Then, limy o [ym(t) — yss(t)] = 0,
Together with lim;_.o eo(t) = 0,
the above linear system can be
represented by

& = [A(t) + B(t)]z

where

am kprss(t) kpyss(t)
A(t) = _'Yrss(t) O O
—’szs(t) 0 0

and limy o B(t) =0

e Because lim;_,, B(t) =0,
if £ = A(t)z is U.A.S.,
then & = [A(t) + B(t)]x is U.A.S..
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Example 8.12: Adaptive Control

e Using V as a Lypunov function
candidate, we obtain

a
V = —meg = .’BTC’TC’:D,
kp
am
where C = [1 0 0]
kp

e From Example 8.11,
if (A(t),C) is uniformly observable,
then the origin will be U.A.S.

e And, uniform observability of (A(t),C)
implies uniform observability of
(A(t) — K(t)C,C)
for any piecewise cont., bdd K(t).

Feng-Li Lian © 2005
NTUEE-NSA-Ch8.3-23

Example 8.12: Adaptive Control
e Take

K(t) = [~ fam = yras(®) — 1tus®)

and obtain

0 k:prss(t) kpyss(t)

A)—K@®C=|0 0 0
0 0 0
— —am
C=,/Zm=[1 0 0

e Hence, by investigating observability
of this pair for a given reference signal,
we can determine whether
the conditions of Thm 8.5 are satisfied.
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e For example,
if » is @ nonzero constant signal,
it can be easily seen that
the pair is not observable.

e On the other hand,
if »(t) = asin wt with positive a, w,
we have
rss(t) = r(t) and yss = aM sin(wt + §),
where M, are determined
by the transfer func. of the ref. model.
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e It can be verified that
the pair is uniformly observable;
hence, the origin (ep = 0,1 = 0, ¢p2 = 0)
is U.A.S. and
the parameter errors ¢(t), ¢p2(t) — 0

ast — oo.

e Note that r(t) = asinwt is said to be
persistently exciting,
while a constant reference is
not persistently exciting.
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e Consider zero-input LTV system
B(t) = A(t)z(t), =(to) =g
y(t) = C(t)=(t)

and let qbi(t,tg,wf)) the associated sol.
or,

(bl (ta to, w(l))

¢n(t7 to, 5'33)

(B(t) — c Rnxl

e Note that

z(t) or [¢;(t, to, zh)] = B(t, to)z(to)
where ®(t,1g) is
the state transition matrix
from tg to t.
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e Let
y'(t) = C(t)d;(t, to, =)
So, over [tg,t1]

the pair (C(t), A(t)) is observable
iff y*(-) are linear indep. vector func.

e Note that y(t) = C(t)®(t, to)z(to)

e That is,
the columns of C(t)®(t,ty) are
linear indep.
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e That is, there are distint points ¢q,...
such that
C(t1)®(t1,t0)

C(tp) ®(tp, o)

e For LTI systems, because

®(t;,to) = exp(A(t; — to))

2

A
= I+ At — to) + - (ti — to)? + ...

the Obervability Matrix becomes

C
CA

CA:Q—I

»tp




