Nonlinear Systems Analysis

Lecture Note

Section 8.3
Invariance-like Theorems

(Advanced Stability Analysis)

Feng-Li Lian NTU-EE Sep05 – Jan06

Outline
Feng-Li Lian © 2005
NTUEE-NSA-Ch8.3-2

- The Center Manifold Theorem (8.1)
- Region of Attraction (8.2)
- Invariance-Like Theorems (8.3)
- Stability of Periodic Systems (8.4)

• For autonomous systems

LaSalle's invariance theorem shows that

trajectory
$$\longrightarrow$$
 $E = \{\dot{V}(x) = 0\}$

• For non-autonomous systems

$$\{\dot{V}({\color{blue}t},x)\}$$

• If it can be shown that

$$\dot{V}(t,x) \leq -W(x) \leq 0$$

$$E = \{W(x) = 0\}$$

trajectory \longrightarrow E as $t \to \infty$

Barbalat's Lemma

Feng-Li Lian © 2005 NTUEE-NSA-Ch8.3-4

• Lemma 8.2

• Let $\phi:R \to R$ be a unif. cont. func. on $[0,\infty)$.

Suppose that

$$\lim_{t\to\infty}\int_0^t\phi(\tau)d\tau$$

exists and is finite.

• Then,

$$\phi(t) \to 0$$
 as $t \to \infty$

• Proof:

- If is not true, then there is a positive constant k_1 such that for every T>0, we can find $T_1\geq T$ with $|\phi(T_1)|\geq k_1$.
- Since $\phi(t)$ is unif. cont., there is a positive constant k_2 such that $|\phi(t+\tau)-\phi(t)|< k_1/2$ for all $t\geq 0$ and all $0\leq \tau \leq k_2$.
- Hence,

$$|\phi(t)| = |\phi(t) - \phi(T_1) + \phi(T_1)|$$
 $\geq |\phi(T_1)| - |\phi(t) - \phi(T_1)|$
 $> k_1 - \frac{1}{2}k_1$
 $= \frac{1}{2}k_1, \ \forall t \in [T_1, T_1 + k_2]$

Barbalat's Lemma

Feng-Li Lian © 2005 NTUEE-NSA-Ch8.3-6

• Since $\phi(t)$ retains the same sign for $T_1 \leq t \leq T_1 + k_2$, then

$$\left| \int_{T_1}^{T_1+k_2} \phi(t) dt
ight| = \int_{T_1}^{T_1+k_2} |\phi(t)| dt > rac{1}{2} k_1 k_2$$

• Thus $\int_0^t \phi(\tau) d\tau$ cannot converge to a finite limit as $t \to \infty$, a contradiction.

• Theorem 8.4

- Let $D \subset R^n$ be a domain containing x=0 and suppose f(t,x) is piecewise cont. in t and locally Lipschitz in x, uniformly in t, on $[0,\infty) \times D$.
- Furthermore, $\forall t \geq 0$, suppose f(t,0) is unif. bdd.

Theorem 8.4

Feng-Li Lian © 2005 NTUEE-NSA-Ch8.3-8

• Let $V:[0,\infty)\times D\to R$ be a cont. diff. func such that

$$W_1(x) \leq V(t,x) \leq W_2(x)$$

$$\dot{V}(t,x) = rac{\partial V}{\partial t} + rac{\partial V}{\partial x} f(t,x) \leq -W(x)$$

 $\forall t\geq 0, \forall x\in D,$ where $W_1(x),W_2(x)$ are cont. P.D. func. and W(x) is cont. P.S.D. func. on D.

ullet Choose r>0 such that $B_r\subset D$ and let $ho<\min_{||x||=r}W_1(x).$

• Then, with $x(t_0) \in \{x \in B_r \mid W_2(x) \le \rho\}$ all sol. of $\dot{x} = f(t,x)$ are bdd and satisfy

$$W(x(t)) o 0$$
 as $t o \infty$

• Moreover, if all the assumptions hold globallly and $W_1(x)$ is radially unbounded, the statement is true for all $x(t_0) \in \mathbb{R}^n$.

Theorem 8.4: Part of Proof

Feng-Li Lian © 2005 NTUEE-NSA-Ch8.3-10

- Part of Proof:
- Since V(t,x(t)) is monotonically nonincreasing and bounded from below by zero, it converges as $t \to \infty$.
- ullet So, for W(x),

$$\int_{t_0}^t W(x(\tau))d\tau \leq -\int_{t_0}^t \dot{V}(\tau, x(\tau))d\tau$$
$$= V(t_0, x(t_0)) - V(t, x(t))$$

• Therefore, $\lim_{t \to \infty} \int_{t_0}^t W(x(\tau)) d\tau$ exists and is finite.

- Since x(t) is bdd., $\forall t \geq t_0$ $\dot{x} = f(t, x(t))$ is bdd., uniformly in t.
- Hence, x(t) is unif. cont. in t on $[t_0, \infty)$.
- So, because W(x) is unif. cont. in x on the compact set B_r , consequently, W(x(t)) is unif. cont. in t on $[t_0, \infty)$.

W(x(t)) is unif. cont. in t on $[t_0,\infty)$.

- ullet Therefore, by Lemma 8.2, W(x(t))
 ightarrow 0 as $t
 ightarrow \infty$.
- ullet The limit W(x(t))
 ightarrow 0 implies that x(t) approaches E as $t
 ightarrow \infty$, where

$$E = \{x \in D \mid W(x) = 0\}$$

• Therefore, the positive limit set of x(t) is a subset of E.

Theorem 8.5: U.A.S.

Feng-Li Lian © 2005 NTUEE-NSA-Ch8.3-12

- Theorem 8.5
- ullet Let $D\subset R^n$ be a domain containing x=0 and suppose f(t,x) is piecewise cont. in t and locally Lipschitz in x for all $t\geq 0$ and $x\in D$.
- Let x=0 be an E.P. for $\dot{x}=f(t,x)$ at t=0.

• Let $V:[0,\infty)\times D\to R$ be a cont. diff. func such that

$$W_1(x) \leq V(t,x) \leq W_2(x)$$

$$\dot{V}(t,x) = \frac{\partial V}{\partial t} + \frac{\partial V}{\partial x} f(t,x) \le 0$$

$$V(t+\delta,\phi(t+\delta;t,x)) - V(t,x) \le -\lambda V(t,x), \qquad 0 < \lambda < 1$$

 $\forall t \geq 0, \forall x \in D$, for some $\delta > 0$,

where

 $W_1(x), W_2(x)$ are cont. P.D. func.

on D

and $\phi(\tau;t,x)$ is the sol. of the system

starts at (t,x).

• Then, the origin is U.A.S.

Theorem 8.5: U.A.S.

Feng-Li Lian © 2005 NTUEE-NSA-Ch8.3-14

- If all assumptions hod globally and $W_1(x)$ is radially unbounded, then the origin is G.U.A.S.
- If

$$W_1(x) \ge k_1 ||x||^c, \quad W_2(x) \le k_2 ||x||^c,$$

where $k_1, k_2, c > 0$,

then the origin is E.S.

- Example 8.11
- Consider the LTV system

$$\dot{x} = A(t)x$$

where A(t) is cont. for all $t \geq 0$.

Suppose that there is a cont. diff. symm.
 P(t) that satisfies

$$0 < c_1 I < P(t) < c_2 I, \forall t > 0$$

as well as matrix diff. eq.

$$-\dot{P}(t) = P(t)A(t) + A^{T}(t)P(t) + C^{T}(t)C(t)$$

where C(t) is cont. in t.

Example 8.11: L.T.V.

Feng-Li Lian © 2005 NTUEE-NSA-Ch8.3-16

• The derivative of the quadratic func.

$$V(t,x) = x^T P(t)x$$

along the traj. of the system is

$$\dot{V} = -x^T C^T(t) C(t) x \le 0$$

- Let the sol. be $\phi(\tau;t,x)=\Phi(\tau,t)x$, where $\Phi(\tau,t)$ is state transition matrix.
- Therefore,

$$egin{aligned} V(t+\delta,\phi(t+\delta;t,x)) - V(t,x) &= \int_t^{t+\delta} \dot{V}(au,\phi(au;t,x)) d au \ &= -x^T \int_t^{t+\delta} \Phi^T(au,t) C^T C \Phi(au,t) d au \ &= -x^T W(t,t+\delta) x \end{aligned}$$
 where $egin{aligned} W(t,t+\delta) &= \int_t^{t+\delta} \Phi^T(au,t) C^T(au) C(au) \Phi(au,t) d au \end{aligned}$

• Suppose there is positive a constant

$$k \leq c_2$$
 such that

$$W(t, t + \delta) \ge kI, \ \forall t \ge 0$$

then

$$|V(t+\delta,\phi(t+\delta;t,x)) - V(t,x)| \le -k||x||_2^2 \le -\frac{k}{c_2}V(t,x)$$

 Thus, all assumptions of Thm 8.5 are satisfied globally with

$$W_i(x) = c_i ||x||_2^2, \; i = 1, 2, \; \lambda = \frac{k}{c_2} < 1$$

- Then, x = 0 is G.E.S.
- Note that

 $W(t,t+\delta)$ is the obvervability Gramian of (A(t),C(t)) and $W(t,t+\delta)\geq kI$ is implied by

uniform observability of (A(t), C(t)).

Example 8.12: Adaptive Control

Feng-Li Lian © 2005 NTUEE-NSA-Ch8.3-18

- Example 8.12 (from Sec 1.2.6)
- Model reference adaptive control:

plant model: $\dot{y}_p = a_p y_p + k_p u$ reference model: $\dot{y}_m = a_m y_m + k_m r$

- If $\gamma>0$ is the adaptation gain, $e_o=y_p-y_m$ is the output error, and ϕ_1,ϕ_2 are the parameter errors.
- The closed-loop eq.

$$\dot{e}_o = a_m e_o + k_p \phi_1 r(t) + k_p \phi_2 [e_o + y_m(t)]$$

$$\dot{\phi}_1 = -\gamma e_o r(t)$$

$$\dot{\phi}_2 = -\gamma e_o [e_o + y_m(t)]$$

• Assume that $k_p > 0$, $a_m < 0$

ullet r(t) is piecewise cont. and bdd.

Using

$$V = rac{1}{2} \left[rac{e_o^2}{k_p} + rac{1}{\gamma} (\phi_1^2 + \phi_2^2)
ight]$$

as a Lyapunov function candidate,

We obtain

$$\dot{V} = \frac{a_m}{k_p} e_o^2 + e_o(\phi_1 r + \phi_2 e_o + \phi_2 y_m) - \phi_1 e_o r - \phi_2 e_o(e_o + y_m)$$

$$= \frac{a_m}{k_p} e_o^2 \le 0$$

Example 8.12: Adaptive Control

Feng-Li Lian © 2005 NTUEE-NSA-Ch8.3-20

• By applying Thm 8.4, we conclude that for any c>0 and for all initial states in $\{V\leq c\}$, all state variables are bounded for all $t\geq t_0$ and $\lim_{t\to\infty}e_o(t)=0$.

- ullet This shows that $y_p o y_m$, but it says nothing about $\phi_1, \phi_2 o 0!$
- In fact, they may not converge to zero.
- If r, y_m are nonzero constant signals, the closed-loop system will have an equilibrium subspace $\{e_0 = 0, \phi_2 = (a_m/k_p)\phi_1\}.$

- Hence, we need to apply Thm 8.5 to derive the conditions of $\phi_1, \phi_2 \to 0$. That is, the conditions which the origin $(e_0 = 0, \phi_1 = 0, \phi_2 = 0)$ is U.A.S.
- Reformulate the system as:

$$\dot{x} \; = \; \left[egin{array}{ccc} a_m & k_p r(t) & k_p y_p(t) \ -\gamma r(t) & 0 & 0 \ -\gamma y_p(t) & 0 & 0 \end{array}
ight] x,$$

where
$$x = \left[egin{array}{c} e_o \ \phi_1 \ \phi_2 \end{array}
ight]$$

Example 8.12: Adaptive Control

Feng-Li Lian © 2005 NTUEE-NSA-Ch8.3-22

• Suppose $\lim_{t\to\infty}[r(t)-r_{ss}(t)]=0$, Then, $\lim_{t\to\infty}[y_m(t)-y_{ss}(t)]=0$, Together with $\lim_{t\to\infty}e_o(t)=0$, the above linear system can be represented by

$$\dot{x} = [A(t) + B(t)]x$$

where

$$A(t) = \left[egin{array}{ccc} a_m & k_p r_{ss}(t) & k_p y_{ss}(t) \ -\gamma r_{ss}(t) & 0 & 0 \ -\gamma y_{ss}(t) & 0 & 0 \end{array}
ight]$$

and
$$\lim_{t\to\infty} B(t) = 0$$

ullet Because $\lim_{t o\infty}B(t)=0$, if $\dot x=A(t)x$ is U.A.S., then $\dot x=[A(t)+B(t)]x$ is U.A.S..

ullet Using V as a Lypunov function candidate, we obtain

$$\dot{V}~=~rac{a_m}{k_p}e_o^2=-x^TC^TCx,$$
 where $C=\sqrt{rac{-a_m}{k_p}}[1~0~0]$

- From Example 8.11, if (A(t), C) is uniformly observable, then the origin will be U.A.S.
- And, uniform observability of (A(t), C) implies uniform observability of (A(t) K(t)C, C) for any piecewise cont., bdd K(t).

Example 8.12: Adaptive Control

Feng-Li Lian © 2005 NTUEE-NSA-Ch8.3-24

Take

$$K(t) = \sqrt{rac{k_p}{-a_m}} \left[a_m \ - \gamma r_{ss}(t) \ - \gamma t_{ss}(t)
ight]^T$$

and obtain

$$A(t) - K(t)C = \left[egin{array}{ccc} 0 & k_p r_{ss}(t) & k_p y_{ss}(t) \ 0 & 0 & 0 \ 0 & 0 & 0 \end{array}
ight]$$
 $C = \sqrt{rac{-a_m}{k_p}} \left[egin{array}{ccc} 1 & 0 & 0
ight]$

Hence, by investigating observability
 of this pair for a given reference signal,
 we can determine whether
 the conditions of Thm 8.5 are satisfied.

For example,

if r is a nonzero constant signal, it can be easily seen that the pair is not observable.

On the other hand,

if $r(t)=a\sin wt$ with positive a,w, we have $r_{ss}(t)=r(t) \text{ and } y_{ss}=aM\sin(wt+\delta),$ where M,δ are determined

by the transfer func. of the ref. model.

Example 8.12: Adaptive Control

It can be verified that

Feng-Li Lian © 2005 NTUEE-NSA-Ch8.3-26

the pair is uniformly observable; hence, the origin $(e_o=0,\phi_1=0,\phi_2=0)$ is U.A.S. and the parameter errors $\phi_1(t),\phi_2(t)\to 0$ as $t\to\infty$.

• Note that $r(t) = a \sin wt$ is said to be persistently exciting, while a constant reference is not persistently exciting.

• Consider zero-input LTV system

$$\begin{split} \dot{x}(t) &=& A(t)x(t), \quad x(t_0) = x_0 \\ y(t) &=& C(t)x(t) \end{split}$$

and let $\phi_i(t,t_0,x_0^i)$ the associated sol. or,

$$x(t) = \left[\begin{array}{c} \phi_1(t,t_0,x_0^1) \\ \vdots \\ \phi_n(t,t_0,x_0^n) \end{array} \right] \in R^{n \times 1}$$

Note that

$$x(t) \text{ or } [\phi_i(t,t_0,x_0^i)] = \Phi(t,t_0)x(t_0)$$

where $\Phi(t,t_0)$ is the state transition matrix from t_0 to t.

Observability of Time-Varying Systems

Feng-Li Lian © 2005 NTUEE-NSA-Ch8.3-28

• Let

$$y^i(t) = C(t) \phi_i(t, t_0, x_o^i)$$

So, over $[t_0,t_1]$ the pair (C(t),A(t)) is observable iff $y^i(\cdot)$ are linear indep. vector func.

- Note that $y(t) = C(t)\Phi(t,t_0)x(t_0)$
- That is, the columns of $C(t)\Phi(t,t_0)$ are linear indep.

ullet That is, there are distint points $t_1,...,t_p$ such that

$$\operatorname{rank}\left[\begin{array}{c}C(t_1)\Phi(t_1,t_0)\\C(t_2)\Phi(t_2,t_0)\\\vdots\\C(t_p)\Phi(t_p,t_0)\end{array}\right]=n$$

• For LTI systems, because

$$\Phi(t_i, t_0) = \exp(A(t_i - t_0))$$

$$=I+A(t_i-t_0)+\frac{A^2}{2!}(t_i-t_0)^2+...$$

the Obervability Matrix becomes

$$\begin{bmatrix} C \\ CA \\ \vdots \\ CA^{n-1} \end{bmatrix}$$