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Input-to-State Stability, ISS NTUEE-NSA-Ch4.7-3
e Consider the system

&= f(t,o,u) (4.44)

where f:[0,00) X R X R™ — R"™ is
piecewise continuous in ¢t and

locally Lipschitz in £ and .

e The input u(t) is a piecewise continu-

ous, bdd function of ¢t for all t > 0.
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Input-to-State Stability, ISS NTUEE-NSA-Ch4.7-4
e Suppose the unforced system

= f(t,z,0) (4.45)

has a G.U.A.S. E.P. at = 0.

e What can we say about
the behavior of the system (4.44)

in the presence of a bounded input u(t)?
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Input'tO'State Stablllty, ISS NTUEE-NSA-Ch4.7-5
e For the L. T.I. system

r = Ax + Bu

with a Hurwitz matrix A,

the solution is

t
z(t) = et Az (¢)) —|—/ et=TABu(r)dr
to

Feng-Li Lian © 2005

Input-to-State Stability, ISS NTUEE-NSA-Ch4.7-6

e And use the bound ||e(t—t0)A|| < ge—Alt—to)

to estimate the solution by

t
le@I < ke ADla(t)| + | ke | B [[u(r)ldr
o

k|| B
< ke M=) |12 (20) || + 1B]] sup ||u(7)]|]

to<t<t




Input-to-State Stability, ISS Feng-Li Lian © 2005

NTUEE-NSA-Ch4.7-7

e This estimate shows that
the zero-input response
decays to zero exponentially fast,
while the zero-state response is bounded

for every bounded input.

e In fact, the estimate shows more than
a bounded-input-bounded-state (BIBO)

property.

Input-to-State Stability, 1SS o 2%

NTUEE-NSA-Ch4.7-8
e It shows that

the bound on the zero-state response

IS proportional to

the bound on the input.
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For General Nonlinear Systems NTUEE-NSA. Cha 7.6

e For a general nonlinear system,
it should not be surprising that
these properties may not hold even when

the origin of the unforced syst. is G.U.A.S.

e €.d., consider the scalar system

z=—-3x+ (1+ 2:1:2)u

which has a G.E.S. origin when u = 0.
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For General Nonlinear Systems NTUEE-NSA.Gha 7-10

e When z(0) =2 and u(t) =1,

(3—e’)
(3—2et)

the solution z(t) =
IS unbounded,;

it even has a finite escape time.

e Let us view the system
= f(t,x,u) as
a perturbation of the unforced syst

z = f(t,x,0).
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For General Nonlinear Systems NTUEE-NSA.Gha 7-11

e Supose we have a Lyapunov func V (¢, x)
for the unforced system and
let us calculate the derivative of V

in the presence of u.

e Due to the boundedness of u,
it is plausible that in some cases
it should be possible to show that
V is negative outside a ball of radius p,

where p depends on sup ||ul|.
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For General Nonlinear Systems NTUEE-NSA.Gha 7-15

e This would be expected, for example,
when the functon f(t,x,u) satisfies

the Lipschitz condition

||f(t,ﬂ?,u)—f(t,il?,0)|| SL”“’”S (446)

e Showing that V is negative
outside a ball of radius pu
would enable us to apply Thm 4.18
to show that x(t) satisfies (4.42), (4.43).

|z < B(llz(to)l], t — to), Vio <t < to+ T (4.42)

llz(t)]] < a7 t(aa(w)), Vt > to+ T (4.43)




For General Nonlinear Systems

e These inequalities show that
||x(t)|| is bdd by a class KL function
B(llx(to)|[,t — to) over [tg,to + T] and
by a class K function O{]__l(a’.g(p,))

fort > tg+T.

e Consequently,

|lz(®)|| < B(||z(to)|], t — to) + a] *(az(p))

is valid for all t > .
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NTUEE-NSA-Ch4.7-13

Definition of ISS

e The system & = f(t,x,u) is said to be
input-to-state stable
if there exist a class KL function 3
and a class K function ~
such that for any initial state x(tg)
and any bdd input u(t),
the sol. «x(t) exists for all t > ty and

satisfies

[z ()|l < B([[z(to)|l, t—to)+v( sup |[|u(7)]),
to<t<t
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NTUEE-NSA-Ch4.7-14

(4.47)
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Definition of ISS NTUeglg-NISAI\a-\?:h4.7-15

e Inequality (4.47) guarantees that
for any bdd input u(t),
the state z(t) will be bounded.

e Furthermore, as ¢ increases,
the state x(t) will be ultimately bounded

by a class K function of sup;>;, ||u(t)||-

Definition of 1SS T o220
e Since, with u(t) = 0,

(4.47) reduces to

()] < B(||z(to)[];t — to)

input-to-state stability implies that
the origin of the unforced system (4.45)
iIs G.U.A.S.

= f(t,z,u) (4.44)

& = f(t,2,0) (4.45)




. . F -Li Lian © 2005
Definition of ISS NTUeglg-NISAI\a-\?:h4.7-l7

e The notion of input-to-state stability
iIs defined for the global case
where the initial state and the input

can be arbitrarily large.

e A local version of this notion

is presented in Ex 4.60.
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Theorem 4.19 NTUEE-NSA-Ch4.7-18

e Let V:[0,00) X R" > R
be a cont. diff. func. such that

V(t,xz,u) € [0,00) X R x R™

ar([|z]]) < V(t,z) < ax(||z]]) (4.48)

ov oV

where a1, a9 are class K functions,

p is a class K function, and

Ws(x) is a cont. P.D. func. on R".

e Then, the system (4.44) is ISS

with v = a; ' o az o p.
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Lemma 4.6: Converse Theorem for G.E.S. NTUEENSA Gha 7-19

e Suppose f(t,z,u) is cont. diff. and
globally Lipshitz in (z,u),

uniformly in ¢. &= f(t,z,u) (4.44)
& = f(t,x,0) (4.45)
e If the unforced syst (4.45), i.e., u =0

has a GES EP at the origin x = 0,
then the system (4.44) is ISS.
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Discussion of Lemma 4.6 NTUZ”S-N'S,EEMJ-ZO

e Lemma 4.6 requires
a globally Lipschitz function f and
G.E.S. of & = 0 of the unforced system

to conclude input-to-state stability.

e It is easy to construct examples
where the lemma does not hold

in absence of one of these 2 conditions.
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Discussion of Lemma 4.6 NTUGES-N'S/LG.‘?;hz;J.ﬂ

e The system & = —3z + (1 + z?)u,
which we discussed earlier in the Sec,

doesn’t satisfy the global Lipschitz cond.

e The system & = —-" +u =def f(x,u)

has a globally Lipschitz f

since the partial derivatives of f

w.r.t. * & u are globally bounded.
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Discussion of Lemma 4.6 NTUeE”S-N's,fEW-ZZ

A S
e The origin of = = 102 1S G.A.S,,
as it can be seen by the Lyapunov func-

tion V(x) = x2/2,
2

whose derivative V(x) = —117

iIs N.D. for all x.

e It is locally E.S.
because the linearization at the origin

IS = —x.

e However, it is not G.E.S.
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Discussion of Lemma 4.6 NTUGES-N'S/LG.‘?;hz;J.zg

e It is easiest seen through the fact that

the system is not 1.S.S..

e Notice that with u(t) =1, f(x,u) > 1/2.
Hence, x(t) > x(tg) +t/2 for all t > 0,

which shows that the sol. is unbounded.

e In the absence of
G.E.S. or globally Lipschitz functions,
we may still be able to show ISS

by applying Thm 4.19.
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Example 4.25 NTUEE-NSA-Ch4.7-24

e The system & = f(x,u) = —x3 +u

has a GAS origin when u = 0.

e Taking V = jx?
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Example 4.26 NTUEE-NSA-Ch4.7-25

e The system

&= f(x,u) = —x — 225 + (1 + 2?)u?

has a GES origin when u = 0,
but Lemma 4.6 does not apply
since f is not globally Lipschitz.

e Taking V = 1a?
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Examples 4.25 & 4.26 NTUEE-NSA-Ch4.7-26

e Note that, in examples 4.25 & 4.26,
V(x) = 22 /2 satisfies
(4.48) of Thm 4.19

with aq(r) = as(r) = r?/2.

e Hence, ael_l(ag(r)) =7

and ~(r) reduces to p(r).

ai(llz]]) < V(t,z) < ax([|z]]) (4.48)

ov oV
ot + af(tamau) < —Ws(z), Vllz|| = p(||ul]) >0, (4.49)
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Cascade System NTUEE-NSA-Ch4.7-27

e Applications of I.S.S. to

stability analysis of cascade systems

e Consider

1 = f1(t,x1,22) (4.51)

@y = fa(t,x2) (4.52)

where

f1:[0,00) X R™" x R — R™ and
f2:]0,00) X R"2 — R™2

are piecewise cont. in t

and locally Lipschitz in z = Eé ]
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Cascade System NTUEE-NSA-Ch4.7-28

e Suppose both

1 = fi1(t,x1,0)
o = fa(t,x2)
have G.U.A.S. E.P.

at their respective origins.

e Under what condition
- - o I . 0
will the origin x = !932] = lO]
of the cascade system

posses the same property?
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Lemma 4.7: GUAS of Cascade System NTUEE-NSA-Ch4.7-29

Under the stated assumptions,

and with xo as input

if 1 = f1(t,x1,x2) is ISS

and xo = 0 of &9 = fo(t,x2) iIs GUAS,

then = 0 of the cascade system:

1 = fi(t,z1,2x2) (4.51)

ry = fa(t,x2) (4.52)
IS GUAS.
Lemma 4.7: GUAS of Cascade System: Proof o e 2008
e Let typ > 0 be the initial time. 1 = fi(t,x1,x2) (4.51)

Ty = fg(f;,xg) (4.52)
The sol. of (4.51) & (4.52) satisfy

ey ()] < 51(||m1(s)|[,t—s) +'Y1< sup ||m2(r)||) (4.53)

s<7t<i

2Ol < B2 (na:z(s)u,t _ ) (4.54)

globally, where t > s > t,
31, (32 are class KL functions

and ~; is a class K function.




Lemma 4.7: GUAS of Cascade System: Proof T a0 o 209

e Apply (4.53) with s = (t + tg)/2

t+to t— 1y
@l < g (|fon (57| 557) # | s lleaoll | a58)
Hyi<r<t

e To estimate ml_(%l),

apply (4.53) with s =ty and

t replaced by %ﬂ to obtain

t+ tg t— 1t
o (50| < o (e @Il 50 4 | s el (456)
to<T<UH0

Lemma 4.7: GUAS of Cascade System: Proof N e 2908

e Using (4.54), we obtain

sup ||za(7)|| < Ba(||za(to)ll,0) (4.57)
to<T<H0

t— 1o

sup ||z2(7)|| < Ba2(l|z2(to)ll,

) (4.58)
Hlo<r<t




Lemma 4.7: GUAS of Cascade System: Proof N a0 o 2%

e Substituting (4.56) through (4.58)

into (4.55) and using the inequalities
llz1(to)|| < [lz(to)ll,
e2(to)]| < [l (to)ll, o= |
e < llz1(@®)[] + [[z2(2)]]
yield

()] < B (nw(to)n,t—to)

where

N\, 7/ N, 7 N\, 7/

16 (7‘, s) = 31 (,81 ('r, s/2) + 7 ([32(1‘*, 0)), s/2 )—I—'yl ([32 (7‘, s/2))—|—ﬁ2 ('r, s\)

e SO, B is a class KL func for all » > 0.

Hence, =0 is GUAS




