Nonlinear Systems Analysis

Lecture Note 17

Section 4.9
Input-to-State Stability
(Lyapunov Stability)

Feng-Li Lian NTU-EE Sep05 – Jan06

Outline Feng-Li Lian © 2005 NTUEE-NSA-Ch4.7-2

- Introduction (L9)
- Autonomous Systems (4.1 L9)
 - · Basic stability definitions
 - Lyapunov's stability theorems
 - Variable gradient method
 - Region of attraction
 - Instability
- The Invariance Principle (4.2, L10)
 - LaSalle's theorem
- Linear Systems and Linearization (4.3, L11)
- Comparison Functions (4.4, L12)
- Non-autonomous Systems (4.5, L13)
- Linear Time-Varying Systems & Linearization (4.6, L14)
- Converse Theorems (4.7, L15)
- Boundedness & Ultimate Boundedness (4.8, L16)
- Input-to-State Stability (4.9, L17)

• Consider the system

$$\dot{x} = f(t, x, \mathbf{u}) \quad (4.44)$$

where $f:[0,\infty) \times R^n \times R^m \to R^n$ is piecewise continuous in t and locally Lipschitz in x and u.

• The input u(t) is a piecewise continuous, bdd function of t for all $t \ge 0$.

Input-to-State Stability, ISS

Feng-Li Lian © 2005 NTUEE-NSA-Ch4.7-4

Suppose the unforced system

$$\dot{x} = f(t, x, 0)$$
 (4.45)

has a G.U.A.S. E.P. at x = 0.

• What can we say about the behavior of the system (4.44) in the presence of a bounded input u(t)?

For the L.T.I. system

$$\dot{x} = Ax + Bu$$

with a Hurwitz matrix A,

the solution is

$$x(t) = e^{(t-t_0) extbf{A}} x(t_0) + \int_{t_0}^t e^{(t- au) extbf{A}} Bu(au) d au$$

Input-to-State Stability, ISS

Feng-Li Lian © 2005 NTUEE-NSA-Ch4.7-6

ullet And use the bound $||e^{(t-t_0)A}|| \leq ke^{-\lambda(t-t_0)}$ to estimate the solution by

$$||x(t)|| \leq ke^{-\lambda(t-t_0)}||x(t_0)|| + \int_{t_0}^t ke^{-\lambda(t- au)}||B|| \, ||u(au)||d au|$$

$$\leq ke^{-\lambda(t-t_0)}||x(t_0)|| + rac{k||B||}{\lambda} \sup_{t_0 \leq au \leq t} ||u(au)||$$

This estimate shows that

the zero-input response

decays to zero exponentially fast,

while the zero-state response is bounded

for every bounded input.

 In fact, the estimate shows more than a bounded-input-bounded-state (BIBO) property.

Input-to-State Stability, ISS

Feng-Li Lian © 2005 NTUEE-NSA-Ch4.7-8

It shows that
 the bound on the zero-state response
 is proportional to
 the bound on the input.

For General Nonlinear Systems

- For a general nonlinear system,
 it should not be surprising that
 these properties may not hold even when
 the origin of the unforced syst. is G.U.A.S.
- e.g., consider the scalar system

$$\dot{x} = -3x + (1 + 2x^2)u$$

which has a G.E.S. origin when u = 0.

For General Nonlinear Systems

Feng-Li Lian © 2005 NTUEE-NSA-Ch4.7-10

- When x(0)=2 and $u(t)\equiv 1$, the solution $x(t)=\frac{(3-e^t)}{(3-2e^t)}$ is unbounded; it even has a finite escape time.
- Let us view the system

$$\dot{x} = f(t, x, u)$$
 as

a perturbation of the unforced syst

$$\dot{x} = f(t, x, 0).$$

- Supose we have a Lyapunov func V(t,x) for the unforced system and let us calculate the derivative of V in the presence of u.
- Due to the boundedness of u, it is plausible that in some cases it should be possible to show that \dot{V} is negative outside a ball of radius μ , where μ depends on $\sup ||u||$.

For General Nonlinear Systems

Feng-Li Lian © 2005 NTUEE-NSA-Ch4.7-12

ullet This would be expected, for example, when the function f(t,x,u) satisfies the Lipschitz condition

$$||f(t,x,u) - f(t,x,0)|| \le L||u||,$$
 (4.46)

• Showing that \dot{V} is negative outside a ball of radius μ would enable us to apply Thm 4.18 to show that x(t) satisfies (4.42), (4.43).

$$||x(t)|| \le \beta(||x(t_0)||, t - t_0), \ \forall t_0 \le t \le t_0 + T \ (4.42)$$
$$||x(t)|| \le \alpha_1^{-1}(\alpha_2(\mu)), \ \forall t \ge t_0 + T \ (4.43)$$

These inequalities show that

```
||x(t)|| is bdd by a class \mathcal{KL} function \beta(||x(t_0)||,t-t_0) over [t_0,t_0+T] and by a class \mathcal{K} function \alpha_1^{-1}(\alpha_2(\mu)) for t\geq t_0+T.
```

• Consequently,

$$||x(t)|| \le \beta(||x(t_0)||, t - t_0) + \alpha_1^{-1}(\alpha_2(\mu))$$

is valid for all $t \geq t_0$.

Definition of ISS

Feng-Li Lian © 2005 NTUEE-NSA-Ch4.7-14

• The system $\dot{x}=f(t,x,u)$ is said to be input-to-state stable if there exist a class \mathcal{KL} function β and a class \mathcal{K} function γ such that for any initial state $x(t_0)$

and any bdd input u(t),

the sol. x(t) exists for all $t \geq t_0$ and satisfies

$$||x(t)|| \le \beta(||x(t_0)||, t-t_0) + \gamma(\sup_{t_0 \le \tau \le t} ||u(\tau)||), \quad (4.47)$$

- Inequality (4.47) guarantees that for any bdd input u(t), the state x(t) will be bounded.
- ullet Furthermore, as t increases, the state x(t) will be ultimately bounded by a class ${\cal K}$ function of $\sup_{t \geq t_0} ||u(t)||$.

Definition of ISS

Feng-Li Lian © 2005 NTUEE-NSA-Ch4.7-16

• Since, with $u(t) \equiv 0$, (4.47) reduces to

$$||x(t)|| \le \beta(||x(t_0)||, t - t_0)$$

input-to-state stability implies that the origin of the unforced system (4.45) is G.U.A.S.

$$\dot{x} = f(t, x, \mathbf{u}) \quad (4.44)$$

$$\dot{x} = f(t, x, 0)$$
 (4.45)

- The notion of input-to-state stability is defined for the global case where the initial state and the input can be arbitrarily large.
- A local version of this notion is presented in Ex 4.60.

Theorem 4.19

Feng-Li Lian © 2005 NTUEE-NSA-Ch4.7-18

ullet Let ${f V}:[0,\infty) imes R^n o R$

be a cont. diff. func. such that

$$\forall (t, x, u) \in [0, \infty) \times \mathbb{R}^n \times \mathbb{R}^m$$

$$\alpha_1(||x||) \le V(t,x) \le \alpha_2(||x||)$$
 (4.48)

$$rac{\partial oldsymbol{V}}{\partial t} + rac{\partial oldsymbol{V}}{\partial x} f(t,x,u) \leq -W_3(x), \quad orall ||x|| \geq
ho(||u||) > 0,$$
 (4.49)

where α_1, α_2 are class \mathcal{K}_{∞} functions,

 ρ is a class K function, and

 $W_3(x)$ is a cont. P.D. func. on \mathbb{R}^n .

• Then, the system (4.44) is ISS with $\gamma = \alpha_1^{-1} \circ \alpha_2 \circ \rho$.

• Suppose f(t,x,u) is cont. diff. and globally Lipshitz in (x,u), uniformly in t.

$$\dot{x} = f(t, x, \mathbf{u}) \quad (4.44)$$

$$\dot{x} = f(t, x, 0)$$
 (4.45)

• If the unforced syst (4.45), i.e., $u \equiv 0$ has a GES EP at the origin x = 0, then the system (4.44) is ISS.

Discussion of Lemma 4.6

Feng-Li Lian © 2005 NTUEE-NSA-Ch4.7-20

- Lemma 4.6 requires
 a globally Lipschitz function f and
 G.E.S. of x = 0 of the unforced system
 to conclude input-to-state stability.
- It is easy to construct examples where the lemma does not hold in absence of one of these 2 conditions.

- The system $\dot{x}=-3x+(1+x^2)u$, which we discussed earlier in the Sec, doesn't satisfy the global Lipschitz cond.
- The system $\dot{x} = -\frac{x}{1+x^2} + u = ^{def} f(x,u)$ has a globally Lipschitz f since the partial derivatives of f w.r.t. $x \ \& \ u$ are globally bounded.

Discussion of Lemma 4.6

Feng-Li Lian © 2005 NTUEE-NSA-Ch4.7-22

- The origin of $\dot{x}=-\frac{x}{1+x^2}$ is G.A.S., as it can be seen by the Lyapunov function $V(x)=x^2/2$, whose derivative $\dot{V}(x)=-\frac{x^2}{1+x^2}$ is N.D. for all x.
- It is locally E.S. because the linearization at the origin is $\dot{x}=-x$.
- However, it is not G.E.S.

 It is easiest seen through the fact that the system is not I.S.S..

- Notice that with $u(t) \equiv 1, \ f(x,u) \geq 1/2.$ Hence, $x(t) \geq x(t_0) + t/2$ for all $t \geq 0$, which shows that the sol. is unbounded.
- In the absence of
 G.E.S. or globally Lipschitz functions,
 we may still be able to show ISS
 by applying Thm 4.19.

Example 4.25

Feng-Li Lian © 2005 NTUEE-NSA-Ch4.7-24

- The system $\dot{x} = f(x,u) = -x^3 + u$ has a GAS origin when u = 0.
- Taking $V = \frac{1}{2}x^2$

The system

$$\dot{x} = f(x, u) = -x - 2x^3 + (1 + x^2)u^2$$

has a GES origin when u=0, but Lemma 4.6 does not apply since f is not globally Lipschitz.

• Taking $V = \frac{1}{2}x^2$

Examples 4.25 & 4.26

Feng-Li Lian © 2005 NTUEE-NSA-Ch4.7-26

• Note that, in examples 4.25 & 4.26,

$$V(x)=x^2/2$$
 satisfies
 (4.48) of Thm 4.19
 with $lpha_1(r)=lpha_2(r)=r^2/2$.

• Hence, $\alpha_1^{-1}(\alpha_2(r)) = r$ and $\gamma(r)$ reduces to $\rho(r)$.

$$lpha_1(||x||) \leq oldsymbol{V}(t,x) \leq lpha_2(||x||)$$
 (4.48) $rac{\partial oldsymbol{V}}{\partial t} + rac{\partial oldsymbol{V}}{\partial x} f(t,x,u) \leq -W_3(x), \quad orall ||x|| \geq
ho(||u||) > 0, \quad ext{(4.49)}$

- Applications of I.S.S. to stability analysis of cascade systems
- Consider

$$\dot{x}_1 = f_1(t, x_1, x_2)$$
 (4.51)

$$\dot{x}_2 = f_2(t, x_2) \tag{4.52}$$

where

$$f_1:[0,\infty) imes R^{n_1} imes R^{n_2} o R^{n_1}$$
 and

$$f_2:[0,\infty)\times R^{n_2}\to R^{n_2}$$

are piecewise cont. in t

and locally Lipschitz in
$$x = \begin{bmatrix} x_1 \\ x_2 \end{bmatrix}$$
 .

Cascade System

Feng-Li Lian © 2005 NTUEE-NSA-Ch4.7-28

Suppose both

$$\dot{x}_1 = f_1(t, x_1, \mathbf{0})$$

$$\dot{x}_2 = f_2(t, x_2)$$

have G.U.A.S. E.P.

at their respective origins.

Under what condition

will the origin
$$x=\left[egin{array}{c} x_1 \\ x_2 \end{array}\right]=\left[egin{array}{c} 0 \\ 0 \end{array}\right]$$

of the cascade system

posses the same property?

• Under the stated assumptions,

and with x_2 as input

if
$$\dot{x}_1 = f_1(t, x_1, x_2)$$
 is ISS

and
$$x_2=0$$
 of $\dot{x}_2=f_2(t,x_2)$ is GUAS,

then x = 0 of the cascade system:

$$\dot{x}_1 = f_1(t, x_1, x_2)$$
 (4.51)

$$\dot{x}_2 = f_2(t, x_2)$$
 (4.52)

is GUAS.

Lemma 4.7: GUAS of Cascade System: Proof

Feng-Li Lian © 2005 NTUEE-NSA-Ch4.7-30

• Let $t_0 \ge 0$ be the initial time.

$$\dot{x}_1 = f_1(t, x_1, x_2)$$
 (4.51)

$$\dot{x}_2 = f_2(t, x_2) \tag{4.52}$$

• The sol. of (4.51) & (4.52) satisfy

$$||x_1(t)|| \le \beta_1 \left(||x_1(s)||, t - s \right) + \gamma_1 \left(\sup_{s \le \tau \le t} ||x_2(\tau)|| \right)$$
 (4.53)

$$||x_2(t)|| \leq \beta_2 \left(||x_2(s)||, t-s\right)$$
 (4.54)

globally, where $t \geq s \geq t_0$,

 β_1 , β_2 are class \mathcal{KL} functions

and γ_1 is a class $\mathcal K$ function.

• Apply (4.53) with $s = (t + t_0)/2$

$$||x_1(t)|| \le \beta_1 \left(\left| \left| x_1 \left(\frac{t+t_0}{2} \right) \right| \right|, \frac{t-t_0}{2} \right) + \gamma_1 \left(\sup_{\frac{t+t_0}{2} \le \tau \le t} ||x_2(\tau)|| \right)$$
 (4.55)

ullet To estimate $x_1(rac{t+t_0}{2})$, apply (4.53) with $s=t_0$ and t replaced by $rac{t+t_0}{2}$ to obtain

$$\left|\left|x_1\left(\frac{t+t_0}{2}\right)\right|\right| \leq \beta_1\left(\left|\left|x_1\left(t_0\right)\right|\right|, \frac{t-t_0}{2}\right) + \gamma_1\left(\sup_{t_0 \leq \tau \leq \frac{t+t_0}{2}}\left|\left|x_2(\tau)\right|\right|\right)$$
(4.56)

Lemma 4.7: GUAS of Cascade System: Proof

Feng-Li Lian © 2005 NTUEE-NSA-Ch4.7-32

• Using (4.54), we obtain

$$\sup_{t_0 \le \tau \le \frac{t+t_0}{2}} ||x_2(\tau)|| \le \beta_2(||x_2(t_0)||, 0)$$
(4.57)

$$\sup_{\substack{t+t_0 \\ 2} \le \tau \le t} ||x_2(\tau)|| \le \beta_2(||x_2(t_0)||, \frac{t-t_0}{2})$$
 (4.58)

• Substituting (4.56) through (4.58)

into (4.55) and using the inequalities

$$||x_1(t_0)|| \le ||x(t_0)||,$$

$$||x_2(t_0)|| \leq ||x(t_0)||,$$

$$oldsymbol{x} = \left[egin{array}{c} oldsymbol{x_1} \ oldsymbol{x_2} \end{array}
ight]$$

$$||x(t)|| \le ||x_1(t)|| + ||x_2(t)||$$

yield

$$||x(t)|| \leq eta \left(||x(t_0)||, t-t_0
ight)$$

where

$$\beta\left(r,s\right) = \beta_{1}\left(\frac{\beta_{1}\left(r,s/2\right) + \gamma_{1}\left(\beta_{2}(r,0)\right)}{\beta_{2}\left(r,s/2\right)}, \ s/2\right) + \gamma_{1}\left(\frac{\beta_{2}\left(r,s/2\right)}{\beta_{2}\left(r,s/2\right)}\right) + \frac{\beta_{2}\left(r,s/2\right)}{\beta_{2}\left(r,s/2\right)}$$

ullet So, eta is a class \mathcal{KL} func for all $r\geq 0$.

Hence, x = 0 is GUAS