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e [ wo Questions:
— Is there a function
that satisfies the conditions of the Thms?

(Thm 4.9, 4.10, e.x.)

— How can we search for such a function?
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e In many cases,
Lyapunov theory provides an affirmative

answer to the first question.

e T he answer takes the form of
a converse Lyapunov theorem, which is

the inverse of one of Lyapunov’'s theorems.

e Most of these converse theorems are proven
by actually constructing auxiliary functions
that satisfy the conditions of the respective

theorems.




Converse Theorems

e But, the construction almost always
assumes the knowledge of

the sol. of the diff. egn.

e In this section,

we give three converse Lyapunov theorems.
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Converse Theorems

e T he first one is a converse Lyapunov thm

when the origin is exponentially stable and,

e T he second,

when it is uniformly asymptotically stable.

e [ he third thm applies to autonomous syst.
and defines the converse Lyapunov func.
for the whole region of attraction of

an asymptotically stable equilibrium point.
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Theorem 4.14: E.S. NN g
e Let x = 0 be an EP for the NL system
z = f(t, )
where f : [0,00) x D — R"™ is cont. diff.,
D ={x € R"|||z|| <},
and the Jacobian matrix [0f/0x] is

bdd on D, uniformly in ¢t.

e Let k£, \, and rg be positive const.

with rg < 7/k.

e Let Dg={x € R"|||z|| < ro}-

Theorem 4.14: E.S. gt Hen © 209
e Assume that the traj. of the syst. satisfy

|lz(t)|] < k||z(to)||le”*~10),  Va(tg) € Do, Vt > tg >0

e [ hen, there is a function
V:[0,00) XDO—>R

that satisfies the inequalities

c1]|zl]? <V (t,z) < eollz||?

oV

A
ot

oV
+——f(t,z) < —callz||?
oV
[27]| < catlz

for some positive const. c¢q,c¢p,c3, and ca.
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e Moreover, if r = oo and the origin is G.E.S.,
then V (t,z) is defined and satisfies

the aforementioned inequalities on R™.

e Furthermore, if the system is autonomous,

V can be chosen independent of t.
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e Due to the equivalence of norms,
it is sufficient to prove the thm
for the 2-norm.

e Let ¢o(7;t,z) denote the sol. of the syst.
that starts at (¢,z); that is, ¢(t;t,z) = =.

e For all x € Dg, ¢(7;t,z) € D for all = > t.

e Let

Vi) = [ T ot b

where § is a positive constant to be chosen.




Theorem 4.14: E.S.
e Due to the exponentially decaying bound

on the trajectories,
we have

Via) = [ Tt b n)dr
t+0
= [ st |3ar

t+9o
| K20 dr )3
t

k2 Y 2
= 5(1—6 ) z]5

e On the other hand,

the Jacobian matrix [0f/0z] is bdd on D.
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[lz(t)]] < k”:}:(tO)He—A(E—fO),

Va(tg) € Dg, ¥Vt > tg > 0

Theorem 4.14: E.S.
e Let

5
H—f(t,sc)H <L VeeD
ox 2

e Then, ||f(t,x)||2 < L||x||2 and
o(7;t,x) satisfies the lower bound

l¢(it,z)|3 > ||z|3e 21

e Hence,
t+9
Vite) 2 [ e Dar|jo)3

1 —2L§ 2
= i(l—e )||33H2
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e Thus, V(t,z) satisfies
the first inequality of the theorem with

1 — 8—2[/(5 kz(l o 8—2)\(5)
c1 = 5T and co = >3

e To calculate the derivative of V
along the trajectories of the system,
define the sensitivity functions

. _ 9 ...
¢t(7_1t733) — 8t¢(77t7$)

bo(rit,a) = 2p(rit,2)
ox
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t+0
e Then, V<t,a:>=/t $T(rit, 2) (it x)dr

ov oV

= ¢l (t+6,t,2)p(t + 6;t,2) — L (t;t,2)p(t;t, )

+ /;quﬂ’(fr;t,:c)qﬁt('r;t,m)d'r
+ /:H 207 (1 t, )P (71 t, 2)dT (¢, 2)

= ¢T(t+6;t,2)p(t + 5;t,2) — ||z]|3

n /j* "26T(rit,2) |ou(ritx) + dulritua) f(t )| dr
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e It is not difficult to show that (Ex 3.30)

oi(7it, @) + ga(7it,2) f(¢,2) =0, V7 > ¢

e [ herefore,

%_V 4+ 8_Vf(tj;c) — qST(t +6;t,2)p(t+6;t,x) — ||33||%
t ox

IA

—(1 — k%229 ||z||3

e By choosing § = In(2k2)/(2)),

the second inequality of the thm.
is satisfied with c3 = 1/2.
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e [0 show the last inequality, let us note that

¢ox(7;t,z) satisfies the sensitivity eqn.
o o
orT ox
i of

Since ||5;:(t,z)|[> < L on D,

¢, satisfies the bound

o (i t, )|y < ePT=0
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e [ herefore,

oV t+o
. ‘ [ 26T (it )it 2)dr
ox |12 t 5
t+o
< / 2H¢(T;t,:c)H ‘Qba:(T;tax)H dr
t 2 2
[P0 A1) L(r—1)
< 2ke e dr||x||2

t

— i[l — e_(A—L)(S]Hx”Q lz(8)]] < K||z(to)||le t—t0)]

A— L
Vz(tg) € Do, Yt > tg >0

e T he last inequality of the thm. is satisfies

2k (1 — e~ (A=L)9]

with ¢y =
(A—=1L)
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e If all the assumptions hold globally,

then rg can be chosen arbitrarily large.

e If the system is autonomous,
then ¢(7;t,x) depends only on (7 —1t); i.e.,
(7 t,x) = (1 —t; x)

+5
e [ hen, V(t,z) = _/LL ’ oL (rit,2)p(T; t, z)dT

+o
V(it,z) = [: dJT(T—t;m)w(’r—t;x)dT
)
= [ 47 (si2)u(sia)ds

which is independent of t. e QED




Theorem 4.15: E.S. of NL & L Systems Ty o
e Let x =0 be an E.P. for the NL syst.
= f(t,z)
where f :[0,00) x D — R" is cont. diff.,
D ={x € R"|||z||2 < r}, and

the Jacobian matrix [0f/0z] is bdd and
Lipschitz on D, uniformly in t.

o Let A(t) = %(t,x)‘m=o

e [ hen,
r=0Iis an E.S. E.P. for the NL syst.
iff it is an E.S. E.P for the L syst.

z= A(t)x

Theorem 4.15: E.S. of NL & L Systems: Proof T o 2000

e The “if" part follows from Thm 4.13.

e [0 prove the “only if" part,
write the linear system as

z= f(t,z) - [f(t,z) — A(D)z] = f(t,z) — g(¢, )

e Recalling the argument preceding
Thm 4.13, we know that

lg(t,z)||> < L||z||3, Yz € D, Vt >0




Theorem 4.15: E.S. of NL & L Systems: Proof
e Since z =0 is an E.S. E.P. of
the NL syst.,
there are positive const k, A, and ¢
such that

z(t)]]2 < klz(to)||pe~ o),
Vt > tg > 0,V||x(tg)|l2 < ¢

e Choosing rg < min{c,r/k},
all the conditions of Thm 4.14 are satisfied.

e Let V(t,z) be the function
provided by Thm 4.14 and
use it as a Lyapunov function candidate
for the L syst.
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Theorem 4.15: E.S. of NL & L Systems: Proof
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e T hen,
oV oV oV oV oV
AWz = -+ —f(t2) - gt
5 T op AT o T g 4@ =5 9t2)
< —ca||z||3 + call]z|3
< —(ez3—cqaLp)|lz]|3, V|zll2 <p

e The choice p < min{rg,c3/(caL)}
ensures that V(¢,z) is N.D. in ||z||2 < p.

e Consequently, all the conditions of
Thm 4.10 are satisfied in ||z||2 < p,
and we conclude that
the origin is an E.S. E.P. for the L. syst.

QED
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e Let x =0 be an E.P. of the NL syst.

= f(x)

where f(z) is cont. diff.

in some nbhd of x = 0.

o Let A= [91](0)

e [ hen,
r=0is an E.S. E.P. for the NL system
iff A is Hurwitz.
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e Let x =0 be an E.P. for the NL syst.

z = f(t,z)
where f:[0,00) x D — R"™ is cont. diff.,
D =A{x € R"|||z||o < r}, and
the Jacobian matrix [0f/0z] is
bdd on D, uniformly in t.

e Let B8 be a class KL function and
ro be a positive constant
such that 3(rg,0) < r.

e Let Dg={x € R"|||z|| < ro}-
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e Assume that the traj. of the syst. satisfies
[z < B(llz(to)ll,t — to),

Vx(tg) € Dg, Vt>tg >0

e Then, there is a cont. diff. function
V:[0,00) x Dg — R
that satisfies the inequalities

ar([lz]]) <V (¢, z) < az(|]z]])

oV oV
P+ % pt.2) < ~as(llal)

¥
ox

= < aaCllal
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where aq,as,a3, and a4 are
class K functions defined on [0, rg].

e If the system is autonomous,
V' can be chosen independent of t.

e Proof: See Appendix C.7.
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e Let x = 0 be an AS EP for the NL syst

z = f(z)

where f: D — R"™ is locally Lipschitz and

D C R" is a domain that contains z = 0.

e Let R4 C D be the region of attraction of
z = 0.

e Then, there is a smooth, PD function V(x)
and a cont., PD function W(x),

both defined for all z € R4, such that
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V(z) - o0 as x — ORy

oV
Hf(m) < -W(z), Vz € Ry

and for any ¢ > 0,

{V(z) < c} is a compact subset of Ry4.

e When R, = R",

V(z) is radially unbounded,

e Proof: See Appendix C.8.
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e An interesting feeture of Thm 4.17 is that
any bounded subset S of
the region of attraction
can be included in a compact set
of the form {V(z) < ¢}

for some constant ¢ > 0.

e [ his feature is useful because quite often
we have to limit our analysis to
a positively invariant, compact set

of the form {V(z) < c}.
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e With the property S C {V(z) < ¢},
our analysis will be valid

for the whole set S.

e On the other hand,
if all we know is the existence
of a Lyapunov function V7 (x) on S,
we will have to choose a constant ¢y
such that {Vi(z) <1} is compact and
included in S;
then our analysis will be limited to

{Vi(x) < c1}, which is only a subset of S.




