Nonlinear Systems Analysis

Lecture Note 15

Section 4.7

Converse Theorems
(Lyapunov Stability)

Feng-Li Lian NTU-EE Sep05 – Jan06

Outline	Feng-Li Lian © 2005
	NTUEE-NSA-Ch4.7-2

- Introduction (L9)
- Autonomous Systems (4.1 L9)
 - · Basic stability definitions
 - Lyapunov's stability theorems
 - Variable gradient method
 - Region of attraction
 - Instability
- The Invariance Principle (4.2, L10)
 - LaSalle's theorem
- Linear Systems and Linearization (4.3, L11)
- Comparison Functions (4.4, L12)
- Non-autonomous Systems (4.5, L13)
- Linear Time-Varying Systems & Linearization (4.6, L14)
- Converse Theorems (4.7, L15)
- Boundedness & Ultimate Boundedness (4.8, L16)
- Input-to-State Stability (4.9, L17)

Converse Theorems

- Two Questions:
 - Is there a function
 that satisfies the conditions of the Thms?
 (Thm 4.9, 4.10, e.x.)
 - How can we search for such a function?

Converse Theorems

Feng-Li Lian © 2005 NTUEE-NSA-Ch4.7-4

- In many cases,
 Lyapunov theory provides an affirmative answer to the first question.
- The answer takes the form of
 a converse Lyapunov theorem, which is
 the inverse of one of Lyapunov's theorems.
- Most of these converse theorems are proven by actually constructing auxiliary functions that satisfy the conditions of the respective theorems.

- But, the construction almost always assumes the knowledge of the sol. of the diff. eqn.
- In this section,
 we give three converse Lyapunov theorems.

Converse Theorems

Feng-Li Lian © 2005 NTUEE-NSA-Ch4.7-6

- The first one is a converse Lyapunov thm when the origin is exponentially stable and,
- The second,
 when it is uniformly asymptotically stable.
- The third thm applies to autonomous syst.
 and defines the converse Lyapunov func.
 for the whole region of attraction of
 an asymptotically stable equilibrium point.

• Let x = 0 be an EP for the NL system

$$\dot{x} = f(t, x)$$

where $f:[0,\infty)\times D\to R^n$ is cont. diff.,

$$D = \{x \in R^n \mid ||x|| < r\},$$

and the Jacobian matrix $[\partial f/\partial x]$ is

bdd on D, uniformly in t.

- Let k, λ , and r_0 be positive const. with $r_0 < r/k$.
- Let $D_0 = \{x \in R^n \mid ||x|| < r_0\}.$

Theorem 4.14: E.S.

Feng-Li Lian © 2005 NTUEE-NSA-Ch4.7-8

Assume that the traj. of the syst. satisfy

$$||x(t)|| \le k||x(t_0)||e^{-\lambda(t-t_0)}, \quad \forall x(t_0) \in D_0, \ \forall t \ge t_0 \ge 0$$

• Then, there is a function

$$V:[0,\infty)\times D_0\to R$$

that satisfies the inequalities

$$|c_1||x||^2 \le V(t,x) \le |c_2||x||^2$$

$$\frac{\partial V}{\partial t} + \frac{\partial V}{\partial x} f(t, x) \le -c_3 ||x||^2$$

$$\left\| \frac{\partial V}{\partial x} \right\| \le c_4 ||x||$$

for some positive const. c_1, c_2, c_3 , and c_4 .

- Moreover, if $r=\infty$ and the origin is G.E.S., then V(t,x) is defined and satisfies the aforementioned inequalities on \mathbb{R}^n .
- Furthermore, if the system is autonomous,
 V can be chosen independent of t.

Theorem 4.14: E.S.: Proof

Feng-Li Lian © 2005 NTUEE-NSA-Ch4.7-10

- Due to the equivalence of norms, it is sufficient to prove the thm for the 2-norm.
- Let $\phi(\tau; t, x)$ denote the sol. of the syst. that starts at (t, x); that is, $\phi(t; t, x) = x$.
- For all $x \in D_0$, $\phi(\tau; t, x) \in D$ for all $\tau \ge t$.
- Let

$$V(t,x) = \int_{t}^{t+\delta} \phi^{T}(\tau;t,x)\phi(\tau;t,x)d\tau$$

where δ is a positive constant to be chosen.

 Due to the exponentially decaying bound on the trajectories,

$$||x(t)|| \le k||x(t_0)||e^{-\lambda(t-t_0)}$$

 $\forall x(t_0) \in D_0, \ \forall t \ge t_0 \ge 0$

we have

$$V(t,x) = \int_{t}^{t+\delta} \phi^{T}(\tau;t,x)\phi(\tau;t,x)d\tau$$

$$= \int_{t}^{t+\delta} ||\phi(\tau;t,x)||_{2}^{2}d\tau$$

$$\leq \int_{t}^{t+\delta} k^{2}e^{-2\lambda(\tau-t)}d\tau||x||_{2}^{2}$$

$$= \frac{k^{2}}{2\lambda}(1 - e^{-2\lambda\delta})||x||_{2}^{2}$$

• On the other hand, the Jacobian matrix $\left[\frac{\partial f}{\partial x}\right]$ is bdd on D.

Theorem 4.14: E.S.

Feng-Li Lian © 2005 NTUEE-NSA-Ch4.7-12

Let

$$\left\| \frac{\partial f}{\partial x}(t,x) \right\|_2 \le L, \ \forall x \in D$$

• Then, $||f(t,x)||_2 \le L||x||_2$ and $\phi(\tau;t,x)$ satisfies the lower bound

$$||\phi(\tau;t,x)||_2^2 \ge ||x||_2^2 e^{-2L(\tau-t)}$$

• Hence,

$$V(t,x) \geq \int_{t}^{t+\delta} e^{-2L(\tau-t)} d\tau ||x||_{2}^{2}$$
$$= \frac{1}{2L} (1 - e^{-2L\delta}) ||x||_{2}^{2}$$

ullet Thus, V(t,x) satisfies the first inequality of the theorem with

$$c_1=rac{1-e^{-2L\delta}}{2L}$$
 and $c_2=rac{k^2(1-e^{-2\lambda\delta})}{2\lambda}$

To calculate the derivative of V
 along the trajectories of the system,
 define the sensitivity functions

$$\phi_t(\tau;t,x) = \frac{\partial}{\partial t}\phi(\tau;t,x)$$

$$\phi_x(\tau;t,x) = \frac{\partial}{\partial x}\phi(\tau;t,x)$$

Theorem 4.14: E.S.

Feng-Li Lian © 2005 NTUEE-NSA-Ch4.7-14 $V(t,x)=\int_{_{t}}^{t+\delta}\phi^{T}(\tau;t,x)\phi(\tau;t,x)d au$

$$\frac{\partial V}{\partial t} + \frac{\partial V}{\partial x} f(t, x)$$

$$= \phi^{T}(t + \delta; t, x)\phi(t + \delta; t, x) - \phi^{T}(t; t, x)\phi(t; t, x)$$

$$+ \int_{t}^{t+\delta} 2\phi^{T}(\tau; t, x)\phi_{t}(\tau; t, x)d\tau$$

+
$$\int_t^{t+\delta} 2\phi^T(\tau;t,x)\phi_x(\tau;t,x)d\tau f(t,x)$$

=
$$\phi^{T}(t + \delta; t, x)\phi(t + \delta; t, x) - ||x||_{2}^{2}$$

$$+ \int_{t}^{t+\delta} 2\phi^{T}(\tau;t,x) \left[\phi_{t}(\tau;t,x) + \phi_{x}(\tau;t,x) f(t,x) \right] d\tau$$

• It is not difficult to show that (Ex 3.30)

$$\phi_t(\tau;t,x) + \phi_x(\tau;t,x)f(t,x) \equiv 0, \ \forall \tau \geq t$$

• Therefore,

$$\frac{\partial V}{\partial t} + \frac{\partial V}{\partial x} f(t, x) = \phi^{T}(t + \delta; t, x) \phi(t + \delta; t, x) - ||x||_{2}^{2}$$

$$\leq -(1 - k^{2} e^{-2\lambda \delta})||x||_{2}^{2}$$

• By choosing $\delta = \ln(2k^2)/(2\lambda)$, the second inequality of the thm. is satisfied with $c_3 = 1/2$.

Theorem 4.14: E.S.

Feng-Li Lian © 2005 NTUEE-NSA-Ch4.7-16

• To show the last inequality, let us note that $\phi_x(\tau;t,x)$ satisfies the sensitivity eqn.

$$\frac{\partial}{\partial \tau}\phi_x = \frac{\partial f}{\partial x}(\tau, \phi(\tau; t, x))\phi_x, \ \phi_x(t; t, x) = I$$

• Since $||\frac{\partial f}{\partial x}(t,x)||_2 \le L$ on D, ϕ_x satisfies the bound

$$||\phi_x(\tau;t,x)||_2 \le e^{L(\tau-t)}$$

• Therefore,

$$\left\| \frac{\partial V}{\partial x} \right\|_{2} = \left\| \int_{t}^{t+\delta} 2\phi^{T}(\tau; t, x) \phi_{x}(\tau; t, x) d\tau \right\|_{2}$$

$$\leq \int_{t}^{t+\delta} 2\left\| \phi(\tau; t, x) \right\|_{2} \left\| \phi_{x}(\tau; t, x) \right\|_{2} d\tau$$

$$\leq \int_{t}^{t+\delta} 2ke^{-\lambda(\tau-t)} e^{L(\tau-t)} d\tau ||x||_{2}$$

$$= \frac{2k}{\lambda - L} \left[1 - e^{-(\lambda - L)\delta} \right] ||x||_{2} \qquad ||x(t)|| \leq k||x(t_{0})||e^{-\lambda(t-t_{0})}|$$

$$\forall x(t_{0}) \in D_{0}, \forall t \geq t_{0} \geq 0$$

The last inequality of the thm. is satisfies

with
$$c_4 = \frac{2k}{(\lambda - L)} [1 - e^{-(\lambda - L)\delta}]$$

Theorem 4.14: E.S.

Feng-Li Lian © 2005 NTUEE-NSA-Ch4.7-18

- ullet If all the assumptions hold globally, then r_0 can be chosen arbitrarily large.
- If the system is autonomous, then $\phi(\tau;t,x)$ depends only on $(\tau-t)$; i.e.,

$$\phi(\tau;t,x) = \psi(\tau - t;x)$$

Then,

$$V(t,x) = \int_{t}^{t+\delta} \phi^{T}(\tau;t,x)\phi(\tau;t,x)d\tau$$

$$V(t,x) = \int_{t}^{t+\delta} \psi^{T}(\tau - t; x) \psi(\tau - t; x) d\tau$$
$$= \int_{0}^{\delta} \psi^{T}(s; x) \psi(s; x) ds$$

which is independent of t.

QED

• Let x = 0 be an E.P. for the NL syst.

$$\dot{x} = f(t, x)$$

where $f:[0,\infty)\times D\to R^n$ is cont. diff., $D=\{x\in R^n\mid ||x||_2< r\}$, and the Jacobian matrix $[\partial f/\partial x]$ is bdd and Lipschitz on D, uniformly in t.

- Let $A(t) = \frac{\partial f}{\partial x}(t,x)\Big|_{x=0}$
- Then,
 x = 0 is an E.S. E.P. for the NL syst.
 iff it is an E.S. E.P for the L syst.

$$\dot{x} = A(t)x$$

Theorem 4.15: E.S. of NL & L Systems: Proof

Feng-Li Lian © 2005 NTUEE-NSA-Ch4.7-20

- The "if" part follows from Thm 4.13.
- To prove the "only if" part, write the linear system as

$$\dot{x} = f(t,x) - [f(t,x) - A(t)x] = f(t,x) - g(t,x)$$

Recalling the argument preceding
 Thm 4.13, we know that

$$||g(t,x)||_2 \le L||x||_2^2, \ \forall x \in D, \ \forall t \ge 0$$

 Since x = 0 is an E.S. E.P. of the NL syst., there are positive const k, λ, and c such that

$$||x(t)||_2 \le k||x(t_0)||_2 e^{-\lambda(t-t_0)},$$

 $\forall t \ge t_0 \ge 0, \forall ||x(t_0)||_2 < c$

- Choosing $r_0 < \min\{c, r/k\}$, all the conditions of Thm 4.14 are satisfied.
- Let V(t,x) be the function provided by Thm 4.14 and use it as a Lyapunov function candidate for the L syst.

Theorem 4.15: E.S. of NL & L Systems: Proof

Feng-Li Lian © 2005 NTUEE-NSA-Ch4.7-22

ullet Then,

$$\frac{\partial V}{\partial t} + \frac{\partial V}{\partial x} A(t) x = \frac{\partial V}{\partial t} + \frac{\partial V}{\partial x} f(t, x) - \frac{\partial V}{\partial x} g(t, x)$$

$$\leq -c_3 ||x||_2^2 + c_4 L ||x||_2^3$$

$$< -(c_3 - c_4 L \rho) ||x||_2^2, \quad \forall ||x||_2 < \rho$$

- The choice $\rho < \min\{r_0, c_3/(c_4L)\}$ ensures that $\dot{V}(t,x)$ is N.D. in $||x||_2 < \rho$.
- Consequently, all the conditions of Thm 4.10 are satisfied in $||x||_2 < \rho$, and we conclude that the origin is an E.S. E.P. for the L. syst.

QED

• Let x = 0 be an E.P. of the NL syst.

$$\dot{x} = f(x)$$

where f(x) is cont. diff. in some nbhd of x = 0.

- Let $A = \left[\frac{\partial f}{\partial x}\right]$ (0)
- Then, x = 0 is an E.S. E.P. for the NL system iff A is Hurwitz.

Theorem 4.16: U.A.S.

Feng-Li Lian © 2005 NTUEE-NSA-Ch4.7-24

• Let x = 0 be an E.P. for the NL syst.

$$\dot{x} = f(t, x)$$

where $f:[0,\infty)\times D\to R^n$ is cont. diff., $D=\{x\in R^n\mid ||x||_2< r\}$, and the Jacobian matrix $[\partial f/\partial x]$ is bdd on D, uniformly in t.

- Let β be a class \mathcal{KL} function and r_0 be a positive constant such that $\beta(r_0, 0) < r$.
- Let $D_0 = \{x \in R^n \mid ||x|| < r_0\}.$

• Assume that the traj. of the syst. satisfies

$$||x(t)|| \le \beta(||x(t_0)||, t - t_0),$$

$$\forall x(t_0) \in D_0, \ \forall t \ge t_0 \ge 0$$

• Then, there is a cont. diff. function $V:[0,\infty)\times D_0\to R$ that satisfies the inequalities

$$\alpha_1(||x||) \le V(t,x) \le \alpha_2(||x||)$$

$$\frac{\partial V}{\partial t} + \frac{\partial V}{\partial x} f(t, x) \le -\alpha_3(||x||)$$

$$\left\| \frac{\partial V}{\partial x} \right\| \le \alpha_4(||x||)$$

Theorem 4.16: U.A.S.

Feng-Li Lian © 2005 NTUEE-NSA-Ch4.7-26

where $\alpha_1, \alpha_2, \alpha_3$, and α_4 are class \mathcal{K} functions defined on $[0, r_0]$.

- If the system is autonomous,
 V can be chosen independent of t.
- Proof: See Appendix C.7.

• Let x = 0 be an AS EP for the NL syst

$$\dot{x} = f(x)$$

where $f:D\to R^n$ is locally Lipschitz and $D\subset R^n$ is a domain that contains x=0.

- Let $R_A \subset D$ be the region of attraction of x = 0.
- ullet Then, there is a smooth, PD function V(x) and a cont., PD function W(x), both defined for all $x \in R_A$, such that

Theorem 4.17: Region of Attraction

Feng-Li Lian © 2005 NTUEE-NSA-Ch4.7-28

$$V(x) o \infty$$
 as $x o \partial R_A$

$$\frac{\partial V}{\partial x}f(x) \le -W(x), \ \forall x \in R_A$$

and for any c > 0,

 $\{V(x) \le c\}$ is a compact subset of R_A .

- When $R_A = R^n$, V(x) is radially unbounded.
- Proof: See Appendix C.8.

Theorem 4.17: Region of Attraction

- An interesting feeture of Thm 4.17 is that any bounded subset S of the region of attraction can be included in a compact set of the form {V(x) ≤ c} for some constant c > 0.
- This feature is useful because quite often
 we have to limit our analysis to
 a positively invariant, compact set
 of the form {V(x) ≤ c}.

Theorem 4.17: Region of Attraction

Feng-Li Lian © 2005 NTUEE-NSA-Ch4.7-30

- With the property $S \subset \{V(x) \leq c\}$, our analysis will be valid for the whole set S.
- On the other hand, if all we know is the existence of a Lyapunov function $V_1(x)$ on S, we will have to choose a constant c_1 such that $\{V_1(x) \leq c_1\}$ is compact and included in S; then our analysis will be limited to $\{V_1(x) \leq c_1\}$, which is only a subset of S.