Nonlinear Systems Analysis

Lecture Note 12

Section 4.4 Comparison Functions (Lyapunov Stability)

Feng-Li Lian NTU-EE Sep05 – Jan06

Outline Feng-Li Lian © 2005
NTUEE-NSA-Ch4.4-2

- Introduction (L9)
- Autonomous Systems (4.1 L9)
 - · Basic stability definitions
 - Lyapunov's stability theorems
 - Variable gradient method
 - Region of attraction
 - Instability
- The Invariance Principle (4.2, L10)
 - LaSalle's theorem
- Linear Systems and Linearization (4.3, L11)
- Comparison Functions (4.4, L12)
- Non-autonomous Systems (4.5, L13)
- Linear Time-Varying Systems & Linearization (4.6, L14)
- Converse Theorems (4.7, L15)
- Boundedness & Ultimate Boundedness (4.8, L16)
- Input-to-State Stability (4.9, L17)

From autononous to non-autonomous

- The sol of the nonautonomous syst $\dot{x}=f(t,x)$, starting at $x(t_0)=x_0$, depends on both t and t_0 .
- ullet Should refine the definitions to let stability hold uniformly in the initial time t_0 .
- Need some special comparison functions.

Definition 4.2: Class K Functions

Feng-Li Lian © 2005 NTUEE-NSA-Ch4.4-4

- $\alpha: [0,a) \to [0,\infty)$ is a continuous function.
- IF $\alpha(\cdot)$ is strictly increasing and $\alpha(0) = 0$, THEN it is said to belong to class \mathcal{K}

• IF $a=\infty$ and $\alpha(r)\to\infty$ as $r\to\infty$, THEN it is said to belong to class \mathcal{K}_∞ • $\beta: [0,a) \times [0,\infty) \rightarrow [0,\infty)$ is a continuous function.

- IF
 - (1) for each fixed s, the mapping $\beta(r,s)$ belongs to class \mathcal{K} w.r.t. r and,
 - (2) for each fixed r, the mapping $\beta(r,s)$ is decreasing w.r.t. s and $\beta(r,s) \to 0$ as $s \to \infty$
- THEN it is said to belong to class KL

Example 4.16

•
$$\alpha(r) = \tan^{-1}(r)$$

$$\bullet \ \alpha(r) = r^c, \qquad c > 0$$

$$\bullet \ \alpha(r) = \min\{r, r^2\}$$

 $\beta(r,s) = r^c e^{-s}, \quad c > 0$

• $\beta(r,s) = r/(ksr + 1)$, k > 0

Lemma 4.2

Feng-Li Lian © 2005 NTUEE-NSA-Ch4.4-8

- α_1 and α_2 be class \mathcal{K} functions on [0,a), α_3 and α_4 be class \mathcal{K}_{∞} functions and β be a class \mathcal{KL} function.
- Denote the inverse of α_i by α_i^{-1} .

• THEN

- α_1^{-1} is defined on $[0,\alpha_1(a))$ and belongs to class $\mathcal K$
- α_3^{-1} is defined on $[0,\infty)$ and belongs to class \mathcal{K}_{∞} .
- $\alpha_1 \circ \alpha_2$ belongs to class \mathcal{K}
- $\alpha_3 \circ \alpha_4$ belongs to class \mathcal{K}_{∞}
- $\sigma(r,s) = \alpha_1(\beta(\alpha_2(r),s))$ belongs to class \mathcal{KL} .

- Let $V:D\to R$ be a continuous P.D. function defined on a domain $D\subset R^n$ that contains the origin.
- Let $B_r \subset D$ for some r > 0.
- Then, there exist class K functions α_1, α_2 , defined on [0, r], such that

$$\alpha_1(||x||) \leq V(x) \leq \alpha_2(||x||)$$

for all $x \in B_r$.

Lemma 4.3

- If $D=R^n$, α_1,α_2 will be defined on $[0,\infty)$ and the foregoing inequality will hold $\forall x\in R^n$.
- Moreover, if V(x) is radially unbounded, then α_1, α_2 can be chosen to belong to class \mathcal{K}_{∞} .
- If $V(x) = x^T P x$,

$$\lambda_{\min}(P)||x||_2^2 \le x^T P x \le \lambda_{\max}(P)||x||_2^2$$

• Consider the scalar autonomous D.E.

$$\dot{y} = -\alpha(y), \quad y(t_0) = y_0$$

where $\alpha(\cdot)$ is a local Lipschitz class \mathcal{K} function defined on [0,a).

- For all $0 \le y_0 < a$, it has a unique solution $y(t) \ \forall t \ge t_0$.
- Moreover, $y(t) = \sigma(y_0, t t_0)$ where σ is a class \mathcal{KL} function defined on $[0, a) \times [0, \infty)$.

Lemma 4.4: Examples

Feng-Li Lian © 2005 NTUEE-NSA-Ch4.4-12

• If $\dot{y} = -ky$, k > 0,

• If $\dot{y} = -ky^2$, k > 0,

• For the proof of Thm 4.1:

- Want to choose β, δ such that $B_\delta \subset \Omega_\beta \subset B_r$
- So, for a P.D. function V(x),
- Because

• Then

Comparison Funs & Lyapunov Analysis

- ullet Also, want to show that $\hbox{when} \quad \dot{V}(x) \ \hbox{is N.D.}, \quad x(t) o 0 \ \hbox{as} \ t o \infty.$
- Using Lemma 4.3, there is a class $\mathcal K$ function α_3 such that $\dot V(x) \leq -\alpha_3(||x||)$
- Hence, $\dot{V} \leq -\alpha_3(\alpha_2^{-1}(V))$
- ullet Comparison lemma (Lemma 3.4) shows that V(x(t)) is bounded by the solution of

$$\dot{y} = -\alpha_3(\alpha_2^{-1}(y)), \quad y(0) = V(x(0))$$

- Lemma 4.2 shows that $\alpha_3 \circ \alpha_2^{-1}$ is a class $\mathcal K$ function.
- Lemma 4.4 shows that the solution is $y(t) = \beta(y(0), t)$, where β is a class \mathcal{KL} function.
- ullet Consequently, V(x(t)) satisfies $V(x(t)) \leq eta(V(x(0)),t),$ which shows that V(x(t)) o 0 as $t o \infty.$

Estimates of x(t)

- $V(x(t)) \leq V(x(0))$ implies $lpha_1(||x(t)||) \leq V(x(t)) \leq V(x(0)) \leq lpha_2(||x(0)||)$
- Hence, $||x(t)|| \le \alpha_1^{-1}(\alpha_2(||x(0)||),$ where $\alpha_1^{-1} \circ \alpha_2$ is a class $\mathcal K$ function
- Similarly, $V(x(t)) \leq \beta(V(x(0)),t)$ implies $\alpha_1(||x(t)||) \leq V(x(t)) \leq \beta(V(x(0)),t) \leq \beta(\alpha_2(||x(0)||),t)$
- Therefore, $||x(t)|| \le \alpha_1^{-1}(\beta(\alpha_2(||x(0)||), t))$, where $\alpha_1^{-1}(\beta(\alpha_2(r), t))$ is a class \mathcal{KL} func.