Nonlinear Systems Analysis

Lecture 10

Section 4.2 Invariance Principle (Lyapunov Stability)

Feng-Li Lian NTU-EE Sep05 – Jan06

Outline	Feng-Li Lian © 2005
	NTUEE-NSA-Ch4.2-2

- Introduction (L9)
- Autonomous Systems (4.1 L9)
 - · Basic stability definitions
 - · Lyapunov's stability theorems
 - Variable gradient method
 - Region of attraction
 - Instability
- The Invariance Principle (4.2, L10)
 - LaSalle's theorem
- Linear Systems and Linearization (4.3, L11)
- Comparison Functions (4.4, L12)
- Non-autonomous Systems (4.5, L13)
- Linear Time-Varying Systems & Linearization (4.6, L14)
- Converse Theorems (4.7, L15)
- Boundedness & Ultimate Boundedness (4.8, L16)
- Input-to-State Stability (4.9, L17)

• The pendulum equation with friction:

$$\dot{x}_1 = x_2$$

$$\dot{x}_2 = -a \sin x_1 - b x_2$$

- The energy Lyapunov function fails to satisfy the asymptotic cond. of Thm 4.1 because $\dot{V}(x) = -bx_2^2$ is only negative semidefinite.
- But, $\dot{V}(x)$ is negative everywhere, except on the line $x_2=0$, where $\dot{V}(x)=0$.

LaSalle's Invariance Principle - 2

- For the system to maintain $\dot{V}(x) = 0$, the trajectory of the system must be confined to the line $x_2 = 0$.
- THEN,

- Hence, on $-\pi < x_1 < \pi$ of the $x_2 = 0$ line, the system can maintain $\dot{V}(x) = 0$ only at the origin x = 0.
- So, V(x(t)) must decrease toward 0 and, consequently, $x(t) \to 0$ as $t \to \infty$, which is consistent with the fact that, due to friction, energy cannot remain constant while the system is in motion.

LaSalle's Invariance Principle - 4

- LaSalle's invariance principle:
- In a domain about the origin
- IF we can find a Lyapunov function
 whose derivative along the trajectories of
 the system is negative semidefinite, and
- IF we can establish that except at the origin, no trajectory can stay identically at points where $\dot{V}(x)=0$,
- THEN, the origin is asymptotically stable.

Feng-Li Lian © 2005 NTUEE-NSA-Ch4.2-7

- Let x(t) be a solution of $\dot{x} = f(x)$ (4.1).
- IF there is a sequence $\{t_n\}$, with $t_n \to \infty$ as $n \to \infty$, such that $x(t_n) \to p$ as $n \to \infty$, THEN, the point p is said to be a positive limit point of x(t).
- The set of all positive limit points of x(t) is called the positive limit set of x(t).
- IF $x(0) \in M \Rightarrow x(t) \in M, \forall t \in R,$ THEN, the set M is said to be an invariant set with respect to (4.1).

Positive Limit Set & Invariant Set - 2

Feng-Li Lian © 2005 NTUEE-NSA-Ch4.2-8

A set M is said to be
 a positively invariant set if

$$x(0) \in M \Rightarrow x(t) \in M, \ \forall t \ge 0$$

ullet We also say that x(t) approaches a set M as $t o \infty$, if for each $\epsilon > 0$ there is T > 0 such that

$$\operatorname{dist}(x(t), M) < \epsilon, \forall t > T$$

where $dist(p, M) = \inf_{x \in M} ||p - x||$.

- The equilibrium point and the limit cycle are invariant sets,
 since any solution starting in either set
 remains in the set for all t∈ R.
- ullet x(t) approaches M as $t o \infty$ does not imply that $\lim_{t o \infty} x(t)$ exists.

Lemma 4.1 Feng-Li Lian © 2005 NTUEE-NSA-Ch4.2-10

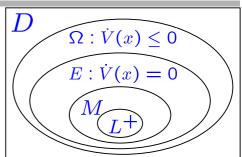
- Lemma 4.1:
 a fundamental property of limit sets
- IF a solution x(t) of (4.1) is bounded and belongs to D for $t \ge 0$,
- THEN its positive limit set L⁺ is
 a nenempty, compact, invariant set.
- Moreover, x(t) approaches L^+ as $t \to \infty$.
- Proof: See Appendix C.3.

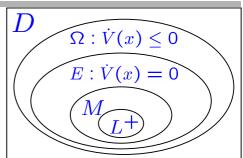
Theorem 4.4: LaSalle's Theorem

Feng-Li Lian © 2005 NTUEE-NSA-Ch4.2-11

- Let $\Omega \subset D$ be a compact set that is positively invariant w.r.t. (4.1).
- Let $V:D\to R$ be a cont. diff. func. such that $\dot{V}(x)\leq 0$ in Ω .
- Let E be the set of all points in Ω where $\dot{V}(x) = 0$.
- Let M be the largest invariant set in E.
- Then every solution starting in Ω approaches M as $t \to \infty$.

Theorem 4.4: LaSalle's Theorem: Proof





Corollaries 4.1 & 4.2:

Feng-Li Lian © 2005 NTUEE-NSA-Ch4.2-14

- We are interested in showing that $x(t) \to 0$ as $t \to \infty$.
- So, to show that

the largest invariant set in E is the origin,

OR

no solution can stay identically in E, other than the trivial solution x(t) = 0.

• Let x = 0 be an E.P. for (4.1).

- Let $V:D\to R$ be a continuously differentiable positive definite function on a domain D containing the origin x=0, such that $\dot{V}(x)\leq 0$ in D.
- Let $S = \left\{ x \in D \mid \dot{V}(x) = 0 \right\}$ and suppose that no solution can stay identically in S, other than the trivial solution $x(t) \equiv 0$.
- THEN, the origin is asymptotically stable.

Corollary 4.2: Krasovskii's Theorem

- Let x = 0 be an E.P. for (4.1).
- Let $V: \mathbb{R}^n \to \mathbb{R}$ be a a continuously differentiable, radially unbounded, positive definite function such that $\dot{V}(x) \leq 0$ for all $x \in \mathbb{R}^n$.
- Let $S = \left\{ x \in \mathbb{R}^n \mid \dot{V}(x) = 0 \right\}$ and suppose that no solution can stay identically in S, other than the trivial solution $x(t) \equiv 0$.
- THEN, the origin is globally asymptotically stable.

• When $\dot{V}(x)$ is negative definite,

$$\Rightarrow$$
 $S = \{0\}.$

Then, Corollaries 4.1 and 4.2 coincide with
 Theorems 4.1 and 4.2, respectively.

Example 4.8: Generalized Pendulum Example

Feng-Li Lian © 2005 NTUEE-NSA-Ch4.2-18

Consider the system

$$\dot{x}_1 = x_2$$

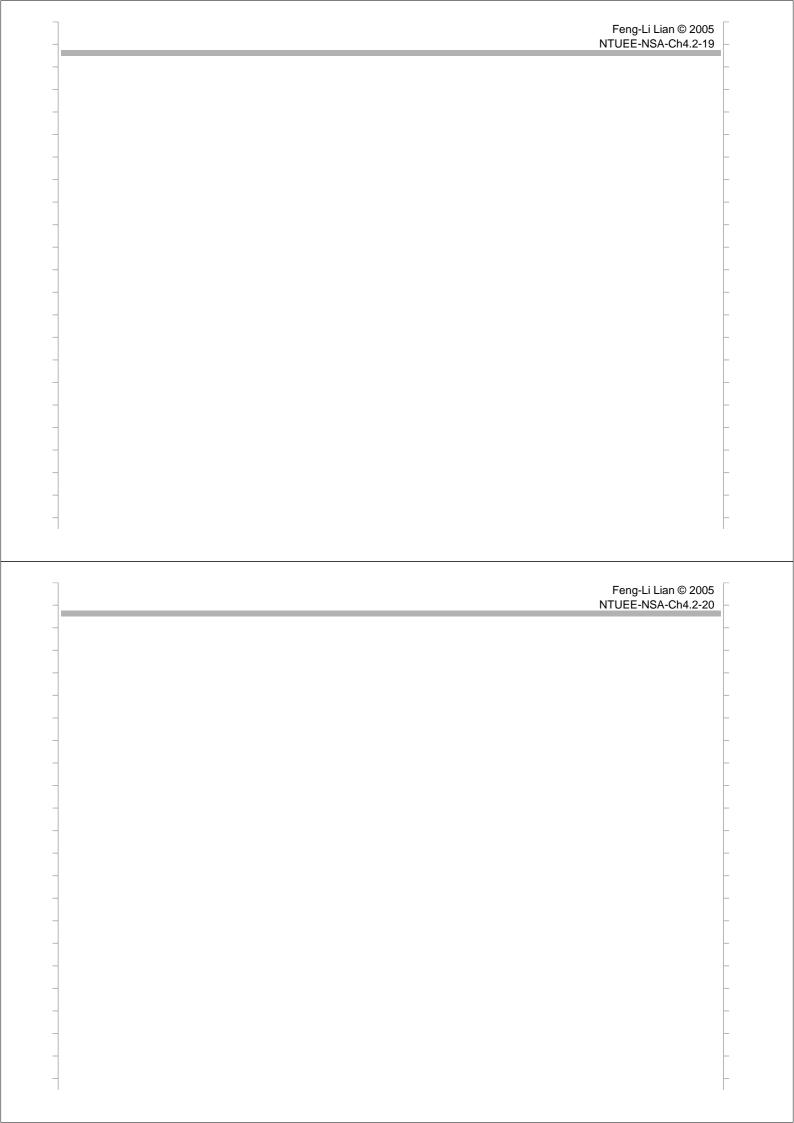
$$\dot{x}_2 = -h_1(x_1) - h_2(x_2)$$

where $h_1(\cdot)$ and $h_2(\cdot)$

are locally Lipschitz and satisfy

$$h_i(0) = 0,$$

$$yh_i(y) > 0, \ \forall y \neq 0 \ \text{and} \ y \in (-a, a)$$



• Consider again the system of Example 4.8, but this time let $a = \infty$ and assume that $h_1(\cdot)$ satisfies the additional condition:

$$\int_0^z h_1(y)dy \to \infty \quad \text{as} \quad |z| \to \infty$$

• The Lyapunov function

$$V(x) = \int_0^{x_1} h_1(y) dy + \frac{1}{2} x_2^2$$

is

Example 4.9:

 Relax the negative definiteness requirement of Lyapunov theorem

- Estimate the region of attraction
 - Not only for $\Omega_c = \{x \in \mathbb{R}^n \mid V(x) \leq c\}$
 - Can be compact positively invariant set
- Used in system with an equilibrium set,
 rather than an isolated equilibrium point.
 - adaptive control example 4.10, sec 1.2.6
- V(x) does not have to be positive definite.
 - neural network example 4.11, sec 1.2.5