Nonlinear Systems Analysis

Lecture 9

Section 4.1 Autonomous Systems (Lyapunov Stability)

Feng-Li Lian NTU-EE Sep05 – Jan06

Outline Feng-Li Lian © 2005
NTUEE-NSA-Ch4.1-2

- Introduction (L9)
- Autonomous Systems (4.1 L9)
 - · Basic stability definitions
 - · Lyapunov's stability theorems
 - Variable gradient method
 - Region of attraction
 - Instability
- The Invariance Principle (4.2, L10)
 - LaSalle's theorem
- Linear Systems and Linearization (4.3, L11)
- Comparison Functions (4.4, L12)
- Non-autonomous Systems (4.5, L13)
- Linear Time-Varying Systems & Linearization (4.6, L14)
- Converse Theorems (4.7, L15)
- Boundedness & Ultimate Boundedness (4.8, L16)
- Input-to-State Stability (4.9, L17)

Introduction Feng-Li Lian © 2005 NTUEE-NSA-Ch4.1-3

Stability theory plays a central role
in systems theory and engineering.
In this book, we will discuss
stability of equilibrium points (Chap 4),
input-output stability (Chap 5), and
stability of periodic orbits (Chap 8).

 Stability of equilibrium points is usually characterized in the sense of Lyapunov, a Russian mathematician and engineer.

Introduction Feng-Li Lian © 2005
NTUEE-NSA-Ch4.1-4

An equilibrium point is stable
 if all solutions
 starting at nearby points stay nearby;
 otherwise, it is unstable.
 It is asymptotically stable
 if all solutions starting at nearby points
 not only stay nearby,
 but also tend to the equilibrium points
 as time approaches infinity.

Section 4.1:

Basic theorems of Lyapunov's method for autonomous systems

Section 4.2:

An extension of the basic theory, LaSalle.

Section 4.3:

Stability of E.P. of $\dot{x}(t) = Ax(t)$: by the location of the eigenvalues of A.

Section 4.4:

Class K and class KL functions

Section 4.7:

Converse theorems

• Section 4.6:

linearization

• Section 4.8: Boundedness and utlimate boundedness

Linear time-varying systems and

• Section 4.9:

Input-to-state stability

• Section 4.5:

Uniform stability, uniform asymptotic stability, and exponential stability for nonautonomous systems

Autonomous Systems

Feng-Li Lian © 2005 NTUEE-NSA-Ch4.1-6

Consider the autonomous system

$$\dot{x} = f(x) \quad (4.1)$$

where $f: D \to \mathbb{R}^n$ is

a locally Lipschitz map

from a domain $D \subset \mathbb{R}^n$ into \mathbb{R}^n .

• Suppose $\overline{x} \in D$ is an equilibrium point of (4.1); that is, $f(\bar{x}) = 0$.

Our goal is to characterize and study the stability of \bar{x} .

• For convenience, we state all definitions and theorems for the case when the equilibrium point is at the origin of \mathbb{R}^n ; that is, $\overline{x}=0$.

Autonomous Systems

Feng-Li Lian © 2005 NTUEE-NSA-Ch4.1-8

 \bullet Suppose $\overline{x} \neq 0$ and $\mbox{consider the change of variables } y = \\ \mbox{Then } \dot{y} =$

• In the new variable y, the system has equilibrium at the origin. Therefore, without loss of generality (wlog), we will always assume that f(x) satisfies f(0) = 0 and study the stability of the origin x = 0.

• Definition 4.1

The equilibrium point x = 0 of (4.1) is

• stable:

For each $\epsilon > 0$, if there is $\delta = \delta(\epsilon) > 0$

such that

$$||x(0)|| < \delta \quad \Rightarrow \quad ||x(t)|| < \epsilon, \forall t \ge 0$$

• unstable:

If it is not stable.

asymptotically stable:

If it is stable and δ can be chosen

such that

$$||x(0)|| < \delta \quad \Rightarrow \quad \lim_{t \to \infty} x(t) = 0$$

Basic Stability Definitions: Pendulum Example

Feng-Li Lian © 2005 NTUEE-NSA-Ch4.1-10

• The pendulum example.

$$\dot{x}_1 = x_2$$

$$\dot{x}_2 = -a\sin x_1 - bx_2$$

has two equilibrium points

at
$$(x_1 = 0, x_2 = 0)$$
 and $(x_1 = \pi, x_2 = 0)$.

Consider two cases:

$$- b = 0$$

$$- b > 0$$

- Let b = 0, (neglecting friction),
 trajectories in the neighborhood
 of the first equilibrium pt are closed orbits.
- Therefore, by starting sufficiently close to the equilibrium point, trajectories can be guaranteed to stay within any specified ball centered at the equilibrium point.

Basic Stability Definitions: Pendulum Example

- Hence, the $\epsilon \delta$ requirement for stability is satisfied.
- However, the equilibrium point
 is not asymptotically stable
 since trajectories starting
 off the equilibrium point
 do not tend to it eventually.
 Instead, they remain in their closed orbits.

- Let b > 0, (friction is considered)
 the equilibrium point at the origin
 becomes a stable focus.
- Inspection of the phase portrait of a stable focus shows that the $\epsilon-\delta$ requirement for stability is satisfied.
- In addition, trajectories starting close to the equilibrium point tend to it as t tends to ∞ .

So, it is AS.

Basic Stability Definitions: Pendulum Example

- The second equilibrium point at $x_1 = \pi$ is a saddle point.
- Clearly the $\epsilon-\delta$ requirement cannot be satisfied since, for any $\epsilon>0$, there is always a trajectory that will leave the ball $\{x\in R^n\mid ||x-\bar{x}||\leq \epsilon\}$ even when x(0) is arbitrarily close to the equilibrium point \bar{x} .

- Actually finding all solutions
 - ⇒ May be difficult or even impossible.
 - ⇒ Try energy concepts first.
- Define the energy of the pendulum E(x) as potential energy + kinetic energy, with the reference of the potential energy chosen such that E(0) = 0; that is,

$$E(x) =$$

Basic Stability Definitions: Determining Stability

- When friction is neglected (b = 0),
 the system is conservative;
 that is, there is no dissipation of energy.
- Hence, E = constant
 during the motion of the system or,
 in other words,

$$\frac{dE(x)}{dt} =$$

• Since E(x) = c forms a closed contour around x = 0 for small c, we can again arrive at the conclusion that x = 0 is a stable equilibrium point.

Basic Stability Definitions: Determining Stability

Feng-Li Lian © 2005 NTUEE-NSA-Ch4.1-18

When friction is accounted for (b > 0), energy will dissipate during the motion of the system, that is, along the trajectories of the system,

$$\frac{dE(x)}{dt} =$$

Feng-Li Lian © 2005 NTUEE-NSA-Ch4.1-19

- Due to friction,
 E cannot remain constant indefinitely
 while the system is in motion.
- Hence, it keeps decreasing until it eventually reaches zero, showing that the trajectory tends to x=0 as t tends to ∞ .

Basic Stability Definitions: Determining Stability

- Thus, by examining the derivative of E
 along the trajectories of the system,
 it is possible to determine
 the stability of the equilibrium point.
- In 1892, Lyapunov showed that certain other functions could be used instead of energy to determine stability of an equilibrium point.

- Let $V:D\to R$ be a continuously differentiable function defined in a domain $D\subset R^n$ that contains the origin.
- ullet The derivative of V along the trajectories of (4.1) is

```
\dot{V}(x) =
```

Lyapunov's Stability Theorem

Feng-Li Lian © 2005 NTUEE-NSA-Ch4.1-22

• <u>Theorem 4.1</u>:

Let x = 0 be an equilbrium point for (4.1)

and $D \subset \mathbb{R}^n$ be a domain containing x = 0.

Let $V: D \to R$ be

a continuously differentiable function

such that

$$V(0) = 0$$
 and $V(x) > 0$ in $D - \{0\}$ (4.2)

$$\dot{V}(x) \leq 0$$
 in D (4.3)

Then, x = 0 is stable.

Moreover, if $\dot{V}(x) < 0$ in $D - \{0\}$ (4.4)

then x = 0 is asymptotically stable.

Lyapunov's Stability Theorem: Proof	Feng-Li Lian © 2005 NTUEE-NSA-Ch4.1-23
	Feng-Li Lian © 2005 NTUEE-NSA-Ch4.1-24
	WIGE NOW CHAILS

Lyapunov's Stability Theorem - 1

Feng-Li Lian © 2005 NTUEE-NSA-Ch4.1-27

- A continuously differentiable function V(x) satisfying (4.2) and (4.3) is called a Lyapunov function.
- The surface V(x) = c, for some c > 0, is called a Lyapunov surface or a level surface.

Lyapunov's Stability Theorem - 2

- The condition $\dot{V} \leq 0$ implies that when a trajectory crosses a Lyapunov surface V(x) = c, it moves inside the set $\Omega_c = \{x \in R^n \mid V(x) \leq c\}$ and can never come out again.
- When $\dot{V} < 0$, the trajectory moves from one Lyapunov surface to an inner Lyapunov surface with a smaller c.

- A function V(x) satisfying condition (4.2)
 that is, V(0) = 0 and V(x) > 0 for x ≠ 0,
 is said to be positive definite.
- If it satisfies the weaker condition
 V(x) ≥ 0 for x ≠ 0,
 it is said to be positive semidefinite.

Positive/Negative (Semi) Definiteness - 2

- A function V(x) is said to be negative definite or negative semidefinite if -V(x) is positive definite or positive semidefinite, respectively.
- If V(x) does not have a definite sign as per one of these four cases, it is said to be indefinite.

- Rephrase Lyapunov's theorem:
- The origin is stable if there is a continuously differentiable positive definite function V(x) so that $\dot{V}(x)$ is negative semidefinite.
- The origin is asymptotically stable if it is stable and $\dot{V}(x)$ is negative definite.

Positive/Negative (Semi) Definiteness - 4

Feng-Li Lian © 2005 NTUEE-NSA-Ch4.1-32

 A class of scalar functions for which sign definiteness can be easily checked is the class of functions of the quadratic form

$$V(x) =$$

• In this case,

V(x) is positive definite (positive semidefinite)

IFF all the eigenvalues of P are positive (nonnegative),

IFF all the leading principal minors of P are positive (all principal minors of P are nonnegative).

• The matrix P is positive definite (positive semidefinite) and write P > 0 ($P \ge 0$).

Example 4.1 – 1

Feng-Li Lian © 2005 NTUEE-NSA-Ch4.1-34

Consider

$$V(x) = ax_1^2 + 2x_1x_3 + ax_2^2 + 4x_2x_3 + ax_3^2$$

 \bullet The leading principal minors of P are

Example 4.2: Odd Function – 1

Feng-Li Lian © 2005 NTUEE-NSA-Ch4.1-36

• Consider the differential equation

$$\dot{x} = -g(x)$$

where g(x) is locally Lipschitz on (-a,a) and satisfies

$$g(0) = 0;$$

$$xg(x) > 0$$
, $\forall x \neq 0$ and $x \in (-a, a)$

• Consider the pendulum eqn w/o friction

$$\dot{x}_1 = x_2$$

$$\dot{x}_2 = -a \sin x_1$$

and let us study the stability of the equilibrium point at the origin.

 A natural Lyapunov function candidate is the energy function

$$V(x) =$$

• Consider the pendulum eqn with friction

$$\dot{x}_1 = x_2$$

$$\dot{x}_2 = -a\sin x_1 - bx_2$$

• Again, let us try

$$V(x) = a(1 - \cos x_1) + (1/2)x_2^2$$

as a Lyapunov function candidate.

$$\dot{V}(x) =$$

• Try another Lyapunov function candidate

$$V(x) = a(1-\cos x_1) +$$

	Feng-Li Lian © 200 NTUEE-NSA-Ch4.1-4
-	
_	
7	

٦	Feng-Li Lian © 2005 NTUEE-NSA-Ch4.1-45	Γ
	NTUEF-NSA-Ch4 1-45	L
		•
\exists		-
П		
4		-
\exists		-
		L
\exists		-
		Г
\dashv		-
٦		
		_
\exists		-
		L
+		-
4		-
\exists		-
		L
+		-

Variable Gradient Method: SKIP

Feng-Li Lian © 2005 NTUEE-NSA-Ch4.1-46

A procedure

that searchs for a Lyapunov function in a backward manner.

• That is, investigate an expression for the derivative $\dot{V}(x)$ and go back to choose the parameters of V(x) so as to make $\dot{V}(x)$ negative definite.

Region of attraction

Region of asymptotic stability

Domain of attraction

Basin

• When the origin x = 0 is

asymptotically stable,

how far from the origin

the trajectory can be and

still converge to the origin

as t approaches ∞ .

Region of Attraction – 2

- Let $\phi(t; x)$ be the solution of (4.1) that starts at initial state x at time t = 0.
- Then, the region of attraction is defined as the set of all points x such that $\phi(t;x)$ is defined for all $t \geq 0$ and $\lim_{t\to\infty}\phi(t;x)=0$.
- Finding the exact region of attraction analytically might be difficult or even impossible.
- However, Lyapunov functions can be used to estimate the sets contained in the region of attraction.

• From the proof of Theorem 4.1, if there is a Lyapunov function that satisfies the conditions of asymptotic stability over a domain D and, if $\Omega_c = \{x \in R^n \mid V(x) \leq c\}$ is bounded and contained in D, then every trajectory starting in Ω_c remains in Ω_c and approaches the origin as $t \to \infty$.

Region of Attraction - 4

- Thus, Ω_c is an estimate of the region of attraction.
- The estimate may be conservative, that is, it may be much smaller than the actual region of attraction.
- In Section 8.2, we will solve examples
 on estimating the region of attraction and
 see some ideas to enlarge the estimates.

- But, Under what conditions will the region of attraction be the whole space \mathbb{R}^n ?
- ullet For any initial state x, the trajectory $\phi(t;x)$ approaches the origin as $t \to \infty$, no matter how large ||x|| is.
- If an asymptotically stable E.P. at the origin has this property, it is said to be globally asymptotically stable.

Region of Attraction is Rn - 2

- From the proof of Theorem 4.1, for the global asymptotic stability, if $x \in R^n$ can be included in the interior of a bounded set Ω_c That is, $D = R^n$; but, is that enough?
- The problem is that for large c, the set Ω_c need not be bounded.

• For example, consider the function

$$V(x) = \frac{x_1^2}{1 + x_1^2} + x_2^2$$

• Fig. 4.4 shows the surfaces V(x) = c for various positive values of c.

Region of Attraction is $R^n - 4$

- An extra condition that ensures that
 - Ω_c is bounded for all values of c > 0 is

$$V(x) \to \infty$$
 as $||x|| \to \infty$

 A function satisfying this condition is said to be radially unbounded.

Globally Asymptotically Stable

Feng-Li Lian © 2005 NTUEE-NSA-Ch4.1-56

Theorem 4.2:

Barbashin-Krasovskii Theorem:

- Let x = 0 be an E.P. for (4.1).
- Let $V: \mathbb{R}^n \to \mathbb{R}$ be a continuously differentiable function such that

$$V(0) = 0$$
 and $V(x) > 0$, $\forall x \neq 0$ (4.5)

$$||x|| \to \infty \quad \Rightarrow \quad V(x) \to \infty \quad (4.6)$$

$$\dot{V}(x) < 0, \quad \forall x \neq 0 \quad (4.7)$$

then x = 0 is

globally asymptotically stable.

Example 4.6 – 1

Feng-Li Lian © 2005 NTUEE-NSA-Ch4.1-58

• Consider the system:

$$\dot{x}_1 = x_2$$
 $\dot{x}_2 = -h(x_1) - ax_2$

where

$$h(\cdot)$$
 : locally Lipschitz

$$h(0) = 0$$

$$yh(y) > 0, \forall y \neq 0$$

Globally Asymptotically Stable

- If x = 0 is a G.A.S. E.P. of a system, then it must be the unique E.P. of the system.
- For if there were another E.P. \bar{x} , the trajectory starting at \bar{x} would remain at \bar{x} , $\forall t \geq 0$; hence, it would not approach the origin, which contradicts the claim that the origin is G.A.S.
- Therefore, G.A.S. is not studied for multiple equilibria systems like the pendulum equation.

- Let $V:D\to R$ be a continuously differentiable function on $D\subset R^n$ that contains x=0.
- Suppose V(0)=0 and there is a point x_0 arbitrarily close to x=0 such that $V(x_0)>0$.
- Choose r>0, such that the ball $B_r=\{x\in R^n\mid ||x||\leq r\} \text{ contained in } D,$ and let $U=\{x\in B_r\mid V(x)>0\}$ (4.8)

Instability Theorem - 2

- The set U is a nonempty set contained in B_r .
- Its boundary is the surface V(x) = 0 & the sphere ||x|| = r.
- Since V(0) = 0, x = 0 lies on the boundary of U inside B_r .
- Notice that
 U may contain more than one component.

• For example, Fig. 4.5 shows that the set U for $V(x) = \frac{1}{2}(x_1^2 - x_2^2)$.

• The set U can be always constructed provided that V(0)=0 and $V(x_0)>0$ for some x_0 arbitrarily close to x=0.

Instability Theorem: Theorem 4.3: Chetaev's Theorem

- Theorem 4.3: Chetaev's Theorem
- Let x = 0 be an E.P. for (4.1).
- Let $V:D\to R$ be a continuously differentiable function such that V(0)=0, and $V(x_0)>0$ for some x_0 with arbitrarily small $||x_0||$.
- Define a set U as in (4.8) and suppose that $\dot{V}(x) > 0$ in U.
- THEN, x = 0 is an unstable E.P.

Instability Theorem: Theorem 4.3: Chetaev's Theorem: Proof	Feng-Li Lian © 2005 NTUEE-NSA-Ch4.1-65
	Feng-Li Lian © 2005
	Feng-Li Lian © 2005 NTUEE-NSA-Ch4.1-66

• Consider the second-order system

$$\dot{x}_1 = x_1 + g_1(x)$$
 $\dot{x}_2 = -x_2 + g_2(x)$

where $g_{1,2}(\cdot)$ are locally Lipschitz functions that satisfy the inequalities

$$|g_1(x)| \leq k||x||_2^2,$$

$$|g_2(x)| \leq k||x||_2^2$$

in a neighborhood D of the origin.

Example 4.7 – 2

Feng-Li Lian © 2005		
Feng-Li Lian © 2005 NTUEE-NSA-Ch4.1-69		