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e Stability theory plays a central role
in systems theory and engineering.
In this book, we will discuss
stability of equilibrium points (Chap 4),
input-output stability (Chap 5), and
stability of periodic orbits (Chap 8).

e Stability of equilibrium points is usually
characterized in the sense of Lyapunov,

a Russian mathematician and engineer.
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e An equilibrium point is stable
if all solutions
starting at nearby points stay nearby;
otherwise, it is unstable.
It is asymptotically stable
if all solutions starting at nearby points
not only stay nearby,
but also tend to the equilibrium points

as time approaches infinity.
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e Section 4.1: e Section 4.6:
Basic theorems of Lyapunov's method Linear time-varying systems and

for autonomous systems linearization

e Section 4.2:
An extension of the basic theory, LaSalle.

e Section 4.7:
Converse theorems

e Section 4.3:
Stability of E.P. of z(t) = Az(t):
by the location of the eigenvalues of A.

¢ Section 4.8:
Boundedness and utlimate boundedness

e Section 4.9:
Input-to-state stability

e Section 4.4:
Class K and class KL functions

e Section 4.5:
Uniform stability,
uniform asymptotic stability, and exponen-
tial stability for nonautonomous systems
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e Consider the autonomous system

= f(z) (4.1)
where f: D — R™ is
a locally Lipschitz map

from a domain D C R" into R".

e Suppose z € D is an equilibrium point
of (4.1); that is, f(z) = 0.
Our goal is to characterize and study

the stability of x.
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e FOr convenience,

we state all definitions and theorems

when the equilibrium point is

at the origin of R™; that is, z = 0.
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e Suppose = # 0 and
consider the change of variables y =

Then ¢y =

e In the new variable vy,
the system has equilibrium at the origin.
Therefore, without loss of generality (wlog),
we will always assume that
f(z) satisfies f(0) =0
and study the stability of the origin =z = 0.




. - e Feng-Li Lian © 2005
Basic Stability Definitions NTUEE-NSA.Cha.1-9

e Definition 4.1

The equilibrium point x = 0 of (4.1) is

For each ¢ > 0, if there is § =d(e) >0

e Stable:

such that

[z(0)|| <6 = [lz(@)[] <eVt>0
e unstable: If it is not stable.
e asymptotically If it is stable and § can be chosen

stable: such that
|z(0)|| <6 = limaz(t) =0
t—00

Basic Stability Definitions: Pendulum Example T o200

e The pendulum example.
1 = X
ro = —asSinzy — bz

has two equilibrium points

at (z1 = 0,2p =0) and (z1 = m, 2o = 0).

e Consider two cases:
—b=0

—b>0
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e Let b = 0, (neglecting friction),
trajectories in the neighborhood

of the first equilibrium pt are closed orbits.

e T herefore, by starting sufficiently close to
the equilibrium point,
trajectories can be guaranteed to stay
within any specified ball

centered at the equilibrium point.
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e Hence, the € — § requirement

for stability is satisfied.

e However, the equilibrium point
is not asymptotically stable
since trajectories starting
off the equilibrium point
do not tend to it eventually.

Instead, they remain in their closed orbits.




. - e F -Li Lian © 2005
Basic Stability Definitions: Pendulum Example NTUEE.NSA Gha 1.13

e Let b > 0, (friction is considered)
the equilibrium point at the origin

becomes a stable focus.

e Inspection of the phase portrait
of a stable focus shows that
the € — 6 requirement

for stability is satisfied.

e In addition, trajectories starting

close to the equilibrium point

tend to it as t tends to . e SO, it is AS.
Basic Stability Definitions: Pendulum Example N

e T he second equilibrium point

at 1 = 7 is a saddle point.

e Clearly the ¢ — § requirement
cannot be satisfied
since, for any € > 0,
there is always a trajectory
that will leave the ball {z € R" | ||lz—Z|| < €}
even when z(0) is arbitrarily close to

the equilibrium point z.
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e Actually finding all solutions
= May be difficult or even impossible.

= Try energy concepts first.

e Define the energy of the pendulum E(xz)
as potential energy + kinetic energy,
with the reference of the potential energy

chosen such that E(0) = 0O; that is,

E(x) =

Basic Stability Definitions: Determining Stability g0 © 209

e When friction is neglected (b = 0),
the system is conservative;

that is, there is no dissipation of energy.

e Hence, E = constant
during the motion of the system or,

in other words,

dE(x)
dt
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e Since E(x) = ¢ forms a closed contour
around z = 0 for small ¢,
we can again arrive at the conclusion that

x = 0 is a stable equilibrium point.
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e When friction is accounted for (b > 0),
energy will dissipate
during the motion of the system,
that is,
along the trajectories of the system,

dE(x)
dt




Basic Stability Definitions: Determining Stability
e Due to friction,
E cannot remain constant indefinitely

while the system is in motion.

e Hence, it keeps decreasing
until it eventually reaches zero,
showing that
the trajectory tends to x = 0O

as t tends to oo.
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Basic Stability Definitions: Determining Stability

e Thus, by examining the derivative of F
along the trajectories of the system,
it is possible to determine

the stability of the equilibrium point.

e In 1892, Lyapunov showed that
certain other functions could be used
instead of energy to determine stability

of an equilibrium point.
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Basic Stability Definitions: Determining Stability

e letV:D — R be
a continuously differentiable function
defined in a domain D C R"

that contains the origin.

e [ he derivative of V

along the trajectories of (4.1) is

V(iz) =
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Lyapunov’s Stability Theorem
e Theorem 4.1:

Let x = 0 be an equilbrium point for (4.1)

and D C R™ be a domain containing x = 0.

Let V:D — R be
a continuously differentiable function

such that

V(0) =0 and V(z) >0 in D — {0} (4.2)

V(z) <0 in D (4.3)

Then, x = 0 is stable.

Moreover, if V(z) <0 in D — {0} (4.4)

then x = 0 is asymptotically stable.
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e A continuously differentiable function V (x)
satisfying (4.2) and (4.3)

is called a Lyapunov function.

e The surface V(z) = ¢, for some ¢ > 0,
is called a Lyapunov surface or

a level surface.

C1402<C3
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e The condition V < 0 implies that
when a trajectory crosses
a Lyapunov surface V(z) = ¢,
it moves inside the set
Q.= {z€R"|V(z) <c}

and can never come out again.

e When V < 0,
the trajectory moves
from one Lyapunov surface
to an inner Lyapunov surface

with a smaller c.




Positive/Negative (Semi) Definiteness — 1
e A function V (x) satisfying condition (4.2)
that is, V(0) =0 and V(z) > 0 for z # O,

IS said to be positive definite.

e If it satisfies the weaker condition
V(x) > 0 for x # 0,

it is said to be positive semidefinite.
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Positive/Negative (Semi) Definiteness — 2

e A function V() is said to be
negative definite or negative semidefinite
if —V(x) is positive definite or

positive semidefinite, respectively.

e If V(z) does not have a definite sign
as per one of these four cases,

it is said to be indefinite.
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e Rephrase Lyapunov’s theorem:

e T he origin is stable
if there is a continuously differentiable
positive definite function V(x)

so that V(z) is negative semidefinite.

e T he origin is asymptotically stable
if it is stable and

V(z) is negative definite.
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e A class of scalar functions for which
sign definiteness can be easily checked
is the class of functions of

the quadratic form

Viz) =
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e In this case,

V(x) is positive definite (positive semidefinite)

IFF all the eigenvalues of P are positive (nonnegative),

IFF all the leading principal minors of P are positive

(all principal minors of P are nonnegative).

e The matrix P is positive definite
(positive semidefinite)

and write P > 0 (P > 0).
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e Consider

Viz) = aac% + 2x123 + ax% + 4xox3 + aac%

e T he leading principal minors of P are




Example 4.1 - 2
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Example 4.2: Odd Function — 1

e Consider the differential equation

r = —g(z)
where g(x) is locally Lipschitz on (—a,a)

and satisfies
g(0) =0;

zg(z) >0, Vr# 0 and z € (—a,a)
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e Consider the pendulum eqn w/o friction
Tl = x2
.i’;_) = —asin 1

and let us study the stability of

the equilibrium point at the origin.

e A natural Lyapunov function candidate

is the energy function

V(z) =
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Example 4.4: Pendulum with Friction — 1

e Consider the pendulum eqn with friction

1 = o

o —asinxzy — bxo

e Again, let us try
V(z) =a(l —coszy) + (1/2)3:%

as a Lyapunov function candidate.

Viz) =
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e Try another Lyapunov function candidate

V(z) = a(l —coszy) +
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Variable Gradient Method: SKIP

e A procedure
that searchs for a Lyapunov function

in a backward manner.

e T hat is, investigate an expression
for the derivative V(z) and
go back to choose the parameters of V(x)

so as to make V(z) negative definite.
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e Region of attraction
Region of asymptotic stability
Domain of attraction

Basin

e \When the origin x =0 is
asymptotically stable,
how far from the origin
the trajectory can be and
still converge to the origin

as t approaches oo.
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e Let ¢(t; z) be the solution of (4.1)
that starts at initial state  at time ¢t = 0.

e T hen, the region of attraction is defined
as the set of all points =
such that ¢(t; z) is defined for all t > 0
and limy_.o ¢(t; ) = 0.

e Finding the exact region of attraction
analytically might be difficult
or even impossible.

e However, Lyapunov functions can be used
to estimate the sets
contained in the region of attraction.




Region of Attraction — 3

e From the proof of Theorem 4.1,
if there is a Lyapunov function
that satisfies the conditions of
asymptotic stability over a domain D and,
if Qc={x e R"|V(z) <c}
is bounded and contained in D,
then every trajectory starting in 2.
remains in 2. and

approaches the origin as t — oo.
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Region of Attraction — 4

e Thus, 2. is an estimate of

the region of attraction.

e [ he estimate may be conservative,
that is, it may be much smaller than

the actual region of attraction.

e In Section 8.2, we will solve examples

on estimating the region of attraction and

see some ideas to enlarge the estimates.
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e But, Under what conditions
will the region of attraction be

the whole space R"?

e For any initial state =z,
the trajectory ¢(t; x) approaches the origin
as t — oo,

no matter how large ||z|| is.

e If an asymptotically stable E.P.
at the origin has this property,
it is said to be

globally asymptotically stable.
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e From the proof of Theorem 4.1,
for the global asymptotic stability,
if x € R™ can be included
in the interior of a bounded set 2.
That is, D = R™,

but, is that enough?

e T he problem is that

for large ¢, the set (2. need not be bounded.
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e For example, consider the function

V(x) 443
i = —F xr
1+m% 2
e Fig. 4.4 shows the surfaces V(z) = ¢

for various positive values of c.

b

Region of Attraction is R" — 4 NTURENSA Gt 1.54
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e An extra condition that ensures that

(2. i1s bounded for all values of ¢ >0 is

V(z) — oo as ||z]| — oo

e A function satisfying this condition

IS said to be radially unbounded.
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e [ heorem 4.2:

Barbashin-Krasovskii T heorem:

e Let 2 =0 be an E.P. for (4.1).

e Llet V:R"—> R
be a continuously differentiable function
such that

V(0)=0and V(z) >0, Vz#0 (4.5)
|z|]] = 00 = V(z) — oo (4.6)

V(z) <0, Yr#0 (4.7)

then x =0 is
globally asymptotically stable.




Globally Asymptotically Stable: Proof

Feng-Li Lian © 2005
NTUEE-NSA-Ch4.1-57

Example 4.6 — 1
e Consider the system:

r1 = I
ro = —h(z1) — axp
where
a >0
h(:) locally Lipschitz
h(0) = O

yh(y) > 0, Vy#0
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e [fz=0isa G.A.S. E.P. of a system,
then it must be the unique E.P.
of the system.

e For if there were another E.P. z,
the trajectory starting at =
would remain at z, Vt > O;
hence, it would not approach the origin,
which contradicts the claim that
the origin is G.A.S.

e T herefore, G.A.S. is not studied
for multiple equilibria systems
like the pendulum equation.
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e LletV:D— R be
a continuously differentiable function

on D C R™ that contains x = 0.

e Suppose V(0) =0 and
there is a point zg arbitrarily close to z = 0

such that V(zg) > 0.

e Choose r > 0, such that the ball
By = {z € R" | ||z|]| < r} contained in D,

and let U = {x € B | V(x) >0} (4.8)

Instability Theorem — 2 g0 © 200
e The set U is a nonempty set

contained in B;.

e [ts boundary is

the surface V(z) = 0 & the sphere ||z|| = 7.

e Since V(0) = 0,

xz = 0 lies on the boundary of U inside B;.

e Notice that

U may contain more than one component.
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e For example, Fig. 4.5 shows that

the set U for V(z) = 5(2% — 23).

e The set U can be always constructed
provided that V(0) =0 and V(zg) > 0

for some zq arbitrarily close to x = 0.

Instability Theorem: Theorem 4.3: Chetaev’s Theorem o e © 2008

e [T heorem 4.3: Chetaev's Theorem

e Let z =0 be an E.P. for (4.1).

e let V:D — R be
a continuously differentiable function
such that
V(0) =0, and V(zg) > 0 for some zg

with arbitrarily small ||zg]|l.

e Define a set U as in (4.8) and

suppose that V(z) > 0 in U.

e THEN, z =0 is an unstable E.P.




Instability Theorem: Theorem 4.3: Chetaev’'s Theorem: Proof
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e Consider the second-order system

ry = z1 + g1(z)

to = -z + go(x)

where g1 o(-) are locally Lipschitz functions

that satisfy the inequalities

lg2(z)| < kllz||3

in a neighborhood D of the origin.

Feng-Li Lian © 2005
Example 4.7 — 2 NTUEE-NSA-Ch4.1-68




Feng-Li Lian © 2005
NTUEE-NSA-Ch4.1-69




